第二章Z变换

合集下载

第二章 z变换

第二章 z变换


n
,
Rx z Rx
n 0,1,2,
1 x ( n) X ( z ) z n1dz , 2j c
围线积分路径
2.2 逆Z变换
一、围线积分法(留数法)
留数定理求逆Z变换:如果函数
F(z)=X(z)zn-1在围线c上连续,在c以内有
K个极点用zk,在c以外有M个极点用zm, 则有,
n


x ( n) z n M
使上式成立的Z变量取值的域称为收敛域。 不同形式的序列x(n)其收敛域形式不同。
2.2 Z变换的定义与收敛域
二、z变换的收敛域
1. 有限长序列
x ( n) x ( n) 0
n2
n1 n n2 其它
其Z变换为
X ( z ) x(n) z n
第二章 Z变换

2.1
引言


2.2
2.3
Z变换的定义与收敛域
Z反变换
2.4
2.5 2.6 2.7 2.8
Z变换的基本性质和定理
序列的z变换与连续信号的相关变换的关系 序列的傅立叶变换 傅里叶变换的一些对称性质 离散系统的系统函数,系统的频率响应
第二章 Z变换
2.2 Z变换的定义与收敛域
a u ( n) z
n

n
a z
n 0

n n
az
n 0


1 n
1 , 1 1 az
za
z=a为极点 收敛域为极点所在圆|z|=|a|的外部。 一般说来,右边序列的z变换的收敛 域一定在模最大的有限极点所在圆之
外,对因果序列,包含z=。

_2第二章z变换

_2第二章z变换
| x(n) bnu(n 1 ) z || b |
Im[z] Rx+ 0 Re[z]
0 |z| ,
n1 0
n1 0, Rx | z |
0 |z| 序列实例: x(n)=RN(n) Im[z]
ROC
z || a | x(n) anu(n| )
Im[z]
Rx0 0 Re[z]
收敛域图示:
有限长序列的收敛域
右边序列
左边序列
2.5.4
Z 变换的性质和定理
(1) 线性
Z 若x(n) X ( z ) (R x1 < z <R x2 )
y(n) Y ( z)
Z
(R y1 < z <R y2 )
交集
Z 则ax(n) by (n) aX ( z ) bY ( z )
z
|Z|>1
(4)尺度变换性
x(n) ¾¾ ® X ( z)
Z
n Z
Rx < z < Rx
1
2
z z 则 a x(n) X , R x1 R x2 a a
x(n)乘以指数序列等效于z平面尺度伸缩。
z z 则 a x(n) X , R x1 R x2 a a
n2>0
0 z Rx 2
Rx 2
(2)n1=-∞ n2<0
z Rx 2
Rx 2
左边序列
【例】 求x(n)=-anu(-n-1)的Z变换及其收敛域。
解 这里x(n)是一个左序列,当n≥0时,x(n)=0,
X ( z)
n
a u(n 1) z
n

第二章z变换

第二章z变换

ˆ ( s ) Lx (t ) L x(nT ) (t nT ) Xs s n
st ˆ s x t e st dt XS x(nT ) (t nT )e dt s n
解:
X 1 ( z ) Z x1[n] a n z n
n0

如果|z|>a, 则上面的级数收敛, 1 z n n X1 ( z) a z 1 za 1 az n0
X 2 ( z ) Z x2 [n]
n
z a
(a n ) z n

lim
n
an1 ρ an
2.根值判定法 即令正项级数的一般项 a n 的n次根的极限等于,
lim n a n
n

<1:收敛 =1:可能收敛也可能发散 >1:发散
例2.1
例已知两序列分别为x1[n]=anu[n], x2[n]= -anu[-n-1],分别 求它们的z变换,并确定它们的收敛域。

1
a z 1 (a 1 z ) n
n n n 1 n0
1 z 1 1 1 a z z a
za
两个不同的序列对应于相同的z变换,但它们的收敛域不同。
三 几类序列的Z变换收敛域
1、有限长序列 此序列只在有限的区间(n1n n2)具有非零的有限值, 此时,Z变换为: n2

n
b u ( n 1)z
n

n
= a z
n n 0


n

n
b
n 0
1
z
n
= a z

数字信号处理,第二章 Z变换讲解

数字信号处理,第二章 Z变换讲解

二、右边序列
例3:求序列 x(n) u(n)的Z变换及收敛域。
Z[x(n)] u(n)zn zn
n
n0
1 1 1 z z2
1 1 z 1
z z 1
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
Z[u(n) u(n 1)]
Z[u(n)] Z[u(n 1)]
s1in2zz1
1 sin(0 cos0
z 2
)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
即: x(n)z n M n
一、有限长序列
例1:求序列 x(n) RN (n) 的Z变换及收敛域。
Z[RN (n)]
RN (n)zn
n
N 1
z n
n0
1 zN 1 z1
收敛域为: 0 z ,
例2:求序列 x(n) (n)的Z变换及收敛域。
解:
Z[ (n)] (n)zn z0 1
z z1 z z 1 1
z 1
z 1 z 1
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
u(n) u(n 1) (n), Z[ (n)] 1
例4:求序列 x(n) anu(n)的Z变换及收敛域。
解: X (z) anu(n)z n a n z n (az 1 )n
例2-4-2:
X
(
z)

第二章(2)序列的Z变换.

第二章(2)序列的Z变换.

Im(z)
Rx
Re(z)
Rx
1
解:X (z) a n zn an zn an zn an zn an zn
n
n
n0
n1
n0
第一部分收敛域为 az 1,
z
|
1 a
| ,X
(
z)的收敛域为:a
z
a -1
第二部分收敛域为 az-1 1,
z
a
X (z)
az 1 az
1
1 az
1
(1
j Im(z)
0
Re( z )
Rx+
例2.5.4 求x(n) anu(n 1)的Z变换并确定其收敛域
解:X (z) an zn an zn= (a1z)n
n1
n1
n1
a1z (a1z)n
n0
a1z 1 a1z
1 1 az1
收敛域为: a1z 1, z a
3. 双边序列Z变换及收敛域
2.5.3、逆Z变换
一.定义: 已知X(z)及其收敛域, 反过来求序列x(n)的变换称作Z反变换。
记作:x(n) Z 1[X (z)]
z变换公式:

正:X (z) x(n)zn , Rx z Rx n
Ñ 反:x(n) 1
2 j
X (z)zn1dz,
c
c (Rx , Rx )
(2.5.5)
§2.5 序列的Z变换
2.5.1 Z变换定义
设某序列为x(n),其Z变换定义为
双边Z变换 单边Z变换
X (z) x(n)zn n
X (z) x(n)zn n
(2.6.1) (2.6.2)
1.收敛域定义

第二章Z变换

第二章Z变换

2n-
1 3
(0.5)n
u
(
n
)
由已知的收敛域 知道是因果序列
n0 n0
16
2、长除法
x(n)的z变换定义为z-1的幂级数,即
X (z )x ( n )z n x ( 1 )z x ( 0 ) x ( 1 )z 1 x ( 2 )z 2 n
因此只要在给定的收敛域内将X(z)展成幂级数, 则级数的系数就是序列x(n)。一般情况下,X(z)是 一个有理分式,分子分母都是z的多项式,则可直接 用分子多项式除以分母多项式,得到幂级数展开式, 从而得到x(n)。
[ x ( n ) ] X ( z ) R x |z | R x
[y (n ) ] Y (z ) R y |z| R y
则 [ a ( n ) b x ( n ) y a ] ( z ) b X ( z )Y R |z | R 其中RmaRx x,[Ry],RmiR nx,[Ry],即线性组合后的
zb
| z||b|
如果a=b,则此例与上例中右边序列的Z变换表达式 完全一样,所以只给出Z变换的闭合表达式是不够的, 不能正确得到原序列,必须同时给出收敛域范围, 才能惟一确定一个序列,这就说明了研究收敛域的
重要性。
10
4、双边序列
一个双边序列可以看做一个左边序列和一个右边 序列之和,因此双边序列Z变换的收敛域就应该是这 两个序列Z变换的公共收敛区间。
0 |z| , n 20
ROC
0
Re[z]
有限长序列的收敛域
5
例:矩形序列是一个有限长序列,x(n)=RN(n),求其 X(z)。
解:
X(z)n x(n)znN n 0 1zn1 1 zz N 1

第二章 Z变换1,2,3,4

第二章 Z变换1,2,3,4
n


x ( n) z n M
2
z z 因此,要满足此不等式, 必须在一定范围之内才行。 满足的范 围就是收敛域。 不同形式的序列,其收敛域形式也不同。下面讨论几种序列 的收敛域: 1.有限长序列 在有限区间(n1 n n2 )之内序列才具有非零的有限值, 在此区间之外,序列值都是零。其 z 变换为:
c c
x ( n) x ( n)
2 j c 2 j c
1
1
X ( z ) z n 1dz Re s[ X ( z ) z n 1 ]z zk
k
X ( z ) z n 1dz Re s[ X ( z ) z n 1 ]z zm
m
16
以上两式的选择,需根据具体情况来考虑。 下面给出求 X ( z ) z n 1 在任一极点 z r 处的留数的方法。 (1)z r 是 X ( z ) z n 1 的单(一阶)极点,则有
n n n 1
正幂级数 有限长序列的变换 按照阿贝尔定理,必定存在收敛半径 Rx z 综合以上两项, 变换的收敛域为: 0 z Rx 6
如果 n2 0 ,则右端第二项不存在,收敛域应包括 z 0 ,即
0 z Rx
4.双边序列 x n 为任意值时, (n) 都有非零值的序列,可以看成是左边序列 与右边序列之和。
1
§2.2 z 变换的定义与收敛域 一、z 变换(ZT)的定义 若序列为x(n),则幂级数
X ( z)
n
x ( n) z n

称为序列的 z 变换,其中 z 为变量,简便表示为: Z x ( n) X ( z )
二、z 变换的收敛域(ROC) 只有幂级数收敛, z 变换才存在。 收敛域:对任意给定序列 x(n) ,使其 z 变换收敛的所有值的 集合,称为~。 按照级数理论,z 变换式中级数收敛的必要且充分条件是满 足绝对可和的条件,即

Z变换新版

Z变换新版

第2章 时域离散信号和系统的频域分析
例 3.1.3求x(n)=anu(n)旳Z变换及其收敛域
解:
X (z)
n
anu(n)zn
n0
anzn
1 1 azn
在收敛域中必须满足|az-1|<1, 所以收敛域为|z|>|a|。 3. 左序列
左序列是在n≤n2时, 序列值不全为零, 而在n>n1, 序列值全为零旳序列。 左序列旳Z变换表达为
1
X (z)
anu(n 1)zn
n
n
anzn
n1
anzn
X(z)存在要求|a-1 z|<1, 即收敛域为|z|<|a|
X
(z)
a 1 z 1 a1z
1 1 az1
,
z a
第2章 时域离散信号和系统的频域分析
4. 双边序列
一种双边序列能够看作一种左序列和一种右序列 之和, 其Z变换表达为
例 3.1.5 x(n)=a|n|, a为实数, 求x(n)旳Z变换及其
收敛域。 解:
X (z)
a n zn
n
1
anzn
znzn
n
n0
an zn zn zn
n0
n0
第2章 时域离散信号和系统的频域分析
第一部分收敛域为|az|<1, 得|z|<|a|-1, 第二部分收 敛域为|az-1|<1, 得到|z|>|a|。 假如|a|<1, 两部分旳公 共收敛域为|a|<|z|<|a|-1, 其Z变换如下式:
(3)
n
使(3)式成立, Z变量取值旳域称为收敛域。 一
般收敛域用环状域表达

第2章--Z变换及Z传递函数

第2章--Z变换及Z传递函数
sin t cost
F(z)
z za
z z eaT
z sin T z2 2z cosT 1
z(z cosT ) z2 2z cosT 1
第2章 Z变换及Z传递函数
2.2 Z变换的性质和定理
1.线性定理 设a,a1,a2为任意常数,连续时间函数f(t),f1(t),f2(t) 的Z 变换分别为F(z),F1(z),F2(z)、及,则有
则:
fi (kT )
1
ai z z zi
i 1, 2, , n
n
f * (t) fi (kT) (t kT) k 0 i1
第2章 Z变换及Z传递函数
3.留数法
设已知Z变换函数F(z),则可证明,F(z)的Z反变换 f(kT)值,可由下式计算
f (kT ) 1 F (z)
1
i0

G(z)
F(z) 1 z 1
7.初值定理 设连续时间函数f(t)的Z变换为F(z),则有
f (0) lim F(z) z
第2章 Z变换及Z传递函数
8.位移定理 设a为任意常数,连续时间函数f(t)的Z变换为F(z),则有
f (t)eat F(z eaT )
9.微分定理 设连续时间函数f(t)的Z变换为F(z),则有
G1 (z) G2 (z)
第2章 Z变换及Z传递函数
由上式可知,两个串联环节之间有同步采样开关隔开的 Z传递函数,等于每个环节Z传递函数的乘积。
在一般情况下,很容易证明:
G1G2 (z) G1 (z) G2 (z)
在进行计算时,应引起注意。
第2章 Z变换及Z传递函数
pi )F (z)zk1
n
f
(kT )

第2章Z变换v3

第2章Z变换v3

a u n z
n 1

n
a z
n 0

n n
az
n 0

1 n

1 az az

1 2

az
1 n

z a 时,这是无穷递缩等比级数。
1
a1 1 z q az , S 。 1 1 q 1 az za z a为极点,在圆 z a 外, X z 为解析函数,故收敛。
综上述所, 有
n<0
x n a u n
n
实际上,由ROC可知,本序列一定是因果序列, 所以: 当n<0时,一定有x(n)=0.
电子工程学院
1 , z 4,求z反变换。 例. 已知 X ( z ) 1 4 (4 z )( z ) 4
第二章 序列的Z变换
电子工程学院
2.5.1 Z变换的定义及收敛域
模拟信号傅里叶变换拉普拉斯变换 时域离散信号傅里叶变换Z变换 时域 频域 复频域
电子工程学院
2.5.1 Z变换的定义及收敛域
z为复变量
一.Z变换定义:
序列x(n)的Z变换定义如下:
X z Z x n
z zk
(2.5.7)
Res X z z n 1 , zk 1 d z zk N X z z n 1 N 1! dz N 1 zz
N 1
(2.5.8)
k
电子工程学院
根据留数辅助定理,有:
2 j
k
1
c
X z z n 1dz
j Im[ z ]
a

第二章(2)序列的Z变换

第二章(2)序列的Z变换

z
n
Im [z ]
1 0
za
C
当 n 0时 , 因 为 z a, 围 线 c内 F ( z ) 有 一 个 单 阶 极 点 z a , 围 线 c 外 有 一 个 n阶 极 点 z
a R e [z ]
x(n) Re s[ X ( z ) z
k 1
1
n 1
, zk ] Re s[ F ( z ), a] ( z a)

n 1
n2
x(n) z
n
j Im(z )
若 n2 0, 级 数 没 有 负 幂 项 , 其 收 敛 域 为 0 z R x 若 n2 0, 其 收 敛 域 为 0 z R x 总之,其收敛域是半径为的圆内部,是否包括 原点由的具体取值而定
0
Rx+
Re(z )
例 2 . 5 . 4 求 x ( n ) a u ( n 1)的 Z 变 换 并 确 定 其 收 敛 域
X (z)

n

x(n) z
n
收敛的所有Z值之集合,即
为X(z)的收敛域(ROC,Region of convergence)
2.收敛条件: X(z)收敛的充要条件是绝对可和。

n

x(n) z
n

( 2 .6 .3 )
j Im[ z ]
3. 序列的收敛半径
阿贝尔定理:
§2.5 序列的Z变换
2.5.1 Z变换定义 设某序列为x(n),其Z变换定义为
双 边 Z变 换 X (z) X (z)


n
x (n ) z
n
(2 .6 .1 )

第二章2 Z变换的定义

第二章2 Z变换的定义

2. Z 变换的定义及收敛域1. Z变换的定义对于一个序列x(n),它的Z 变换定义为()()n n X z x n z ∞-=-∞=∑其中Z 为一个复变量,上式定义的Z 变换称为双边Z 变换或标准Z 变换。

序列的Z 变换实质上是以序列x(n)为加权系数的z 的幂级数之和。

如n 的取值范围0到+∞,则序列的单边Z 变换为()()nn X z x n z∞-=-∞=∑序列的单边Z 变换是以序列x(n)为加权系数的z 的负幂项的级数之和。

2.从抽样吸纳后的拉普拉斯变化引出Z 变换 连续信号x(t)冲激抽样信号可表示为:()()()s s s n x nT x t t nT δ∞=-∞=-∑()()s s nx nT t nT δ=-∑对()s s x nT 取拉普拉斯变换,得()()sts s X s x nT e dt ∞--∞=⎰()()sts s nx nT t nT e dt δ∞--∞=-∑⎰()()s s snT sT s n x nT e X e ∞-=-∞==∑令s sT z e =,并将T 归一化为1,()s x nT 简写为()x n 则同样可得到离散信号的 z 变换:()()nn X z x n z∞-=-∞=∑对比: 拉普拉斯变换 Z 变换 对应离散信号,s j σ=+Ω(2f πΩ=是相对连续系统和连续信号的角频率) 则()s s s s sT j T T j T z e e e e σσ+ΩΩ===⋅, 令,s T r e σ=, 2s s T f f ωπ=Ω=是相对于离散系统和离散信号的圆周频率(rad ), 则j z re ω=。

将j z re ω=代入()()nn X z x n z∞-=-∞=∑可得:()()()j nn X z x n reω∞-=-∞=∑=[()]nj n n x n re ω∞--=-∞∑上式表明,只要()nx n r -满足绝对可和的收敛条件,即()n n x n r ∞-=-∞<∞∑,则x(n)的Z 变换存在。

数字信号处理,第二章 Z变换讲解

数字信号处理,第二章 Z变换讲解

各个变换的关系:
连续: L[h(t)]
系 统 函 数
x(t)est dt 0
x(t)e jt dt
s=jΩ
X(S)
X(j)
z=esT
=T
X(z)
z=ejω
X(ejω)
模拟:x(t)

率 响
t=nT
应s
离散: Z[h(t)]
x(n)z n
n
x(n)e jn
n
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
横坐标为实轴,纵坐标为虚轴; •两平面都是复平面。
z e sT re j e( j)T eT e jT
r eT , T
(1)r与的关系 (r eT )

=0,即S平面的虚轴→r=1,即z平面单位圆; <0,即S的左半平面→r<1,即z的单位圆内; >0,即S的右半平面→r>1,即z的单位圆外 。
j
0
0

r=0,=0时, =–,=0,即z平面的原点映射到
s平面的实轴上负无穷远处。
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
z zk
再利用已知的z变换:
Z[ Ak zknu(n)]
Ak
z z zk
或Z[-Ak zknu(-n -1)]
Ak
z z zk
N
结合收敛域写出反变换: x(n) A0 Ak (zk )n
k 1

第二章_Z变换

第二章_Z变换
n →∞ m = −1 n −m
− ∑ x( m)z −m ]
m =0
n
在单位圆上无极点, 因为 ( z − 1) X ( z ) 在单位圆上无极点,上式两端对 z = 1 取极限
lim( z − 1) X ( z ) = lim[ ∑ x(m + 1) − ∑ x(m)]
z →1 n →∞ m = −1 m =0 n n
Z变换总结
X ( z) =
n=−∞
x(n)z−n = ∑ x(n)z−n + ∑ x(n)z−n ∑
n=0 n=−∞


−1
= 右边序列 + 左边序列
1) 的模决定, (1)由于收敛条件由 |z| 的模决定,所以收敛于一个 圆的边界 收敛, 大的Z的模一定 (2)对右边序列:z > r1 收敛,则比 r1 大的 的模一定 )对右边序列: 收敛, r1 是右边序列的极点 收敛, 收敛, 小的数一定收敛, (3)对左边序列:z < r2 收敛,比 r2 小的数一定收敛, )对左边序列: r2 是左边序列的极点
Z [ x ( n + n 0 )] = x ( m ) z − m + n0 ∑

m = −∞
∞ n0 −m = z ∑ x ( m ) z = z n0 X ( z ) m = −∞
20
时移后收敛域一般不发生变化(单边序列0和 有例外 有例外) 时移后收敛域一般不发生变化(单边序列 和∞有例外)

x(n) z − n
要使上式收敛,只要求 n1 ≤ n ≤ n2 时, x(n) < ∞ ,且 且 如果 n1 < 0 ,则收敛域不包括 z = ∞ 点 如果 n 2 > 0 ,则收敛域不包括 z = 0 点 也就是说收敛域至少是除了 z = 0 及 z = ∞ 外的开域

2第二章-z变换

2第二章-z变换
p0 p1e j p2 e j 2 pM e jM H ( e j ) d 0 d1e j d 2 e j 2 d N e jN
调用: num [ p0 , p1 , p2 , , pM ]
den [d 0 , d1 , d 2 , , d N ] H freqz(num, den, )
ˆ X a ( s)
X (z )
思考练习
?
X a (s)
2. Z变换与傅里叶变换
s j 的拉普拉斯变换即为傅里叶变换,
ze e
sT
jT
映射为z平面的单位圆
jT
X ( z ) z e jT X (e
ˆ ) X a ( j)
抽样序列在单位圆上的z变换,等于其理想抽 样信号的傅里叶变换。


c
c
| H (e j ) |2 d
c
Parseval定理
序列的傅立叶变换是从频域对离散时间信号和系
统进行分析。它是用{ 变换用{
jt
e
j n
}作为基函数对序
列进行正交展开,这与连续时间信号中的傅立叶
e
}对模拟信号进行展开相似。
4. 序列傅立叶变换的对称性
• 序列的共轭对称性质
xe (n) xe (n) 若序列 xe (n)满足
则称 xe (n)为共轭对称序列
若序列xo (n)满足 xo (n) x
o
( n)
则称 xo (n)为共轭反对称序列
任何序列 x(n)均可表示成上述两种序列之和,
即x(n) xe (n) xo (n) 1 xe ( n) {x( n) x ( n)} 2 其中 1 xo ( n) {x( n) x ( n)} 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左边序列的n Z 变 换的收敛域n 一 定位于最内n 部 1 极点的内部,
其收敛域为:
0 z Rx
左边序列 的收敛域
4.双边序列
双边序列可看作左边序列和右边序列之和,其Z变换为:
1
X (z ) x (n )z nx (n )z n x (n )z n
n
n 0
n
双边序列 的收敛域
X(ej)1a1ej
za
此时,ROC包括了单位圆。
例2: x(n)anu(n1)
1
X(z) anzn anzn
n
n1
1aa1z1z 11az1
za
例3. x(n)(1)nu(n)2nu(n1)
2
X (z) (1)n zn 1 2n zn
n0 2
n
1
1 1
z 1
1
1 2 z 1
2
ROC: 1 z 2 2
定包括 z 点。
因果序列的收敛域为: Rx z
例1.考虑一系统,其中 H(z)11 1z112 1z1
判断其是否为因果系统?
2
z2
解: 因为H(z)的ROC是最外边极点的圆的外边,所以它的 单位脉冲响应h(n)是右边序列。为了确定是否是因果的, 我们可以利用因果性所要求的其它条件来检验。
把H(z)表示成两个多项式之比
数形式 的反变X换( z。)
3. 留数法:
由留数定理有:
x (n )1 2j
cX (z)zn 1 d zR e s[X (z)zn 1 ,zi] i
x ( n ) 等 于 X ( z ) Z n 1 在 围 线 积 分 C 内 所 有 极 点 Z i 上 的 留 数 的 总 和
• x ( n在) n的部0分 • x ( n在) n的部0 分
2z2 5 z
H (z)
z2
5
2
z 1
2
z 2
解法一:H(z)是Z的有理函数,其分子分母阶次都是2,因 此该系统是因果的。反之,如果H(z)分子的阶次高于分 母的阶次,则该系统是非因果的。
解法二: H(z)的反变换
hn(1 2)n 2nu(n) 因为 n<0 ,h[n]=0 。说明系统是因果的。
例:
X (z)
3 5 z1 6
(1 1 z1)(1 1 z1)
4
3
1 4
z
1 3
1
2
X(z)
11z1 11z1
z 1, z 1 43
4
3
所以前式按降幂长除,后式按升幂长除。幂级数展
开法的缺点是当 较复X ( 杂z ) (含多个极点时)难以得
出 的闭x式( n。) 幂级数展开法适合用于求解非有理函
对于不同形式的序列其收敛域不同。下面我们结合一些 典型情况讨论Z变换的收敛半径与序列的关系:
1. 有限长序列 x ( n )
x(n)x(0n)
n1nn2 nn1,nn2
其Z变换为
n 2
X ( z )x ( n ) z n x ( n 1 ) z n 1 x ( n 2 ) z n 2
n n 1
4
3
x(n)(1)nu(n)2(1)nu(n1)
4
3
例2.有一序列的Z变换为
X(z)117z1z2 65z1z2
求:X(z)的反变换 x。( n )
|z|>1
解:
117z1z2 117z1z2
X(z)
65z1z2 (2z1)(3z1)
1
1
1/2
1/3
1
1
2z1 3z1
11z1 11z1
2
3
因为 X(z)的收敛域|z|>1,所以
1
X (z) x (n )z n x (n )z n x (n )z n
n n 1
n n 1
n 0
右边序列 的收敛域
右边序列总是收敛的,右边序列的Z变换的ROC一定位
于最外部极点的外部,但可能不包含 Z 点 。右边序列
收敛域是 Rx z 。
右边序列不一定是因果序列,只有在 n1时 0,ROC包 含 z点时才是因果序列。因此,因果序列的收敛域一
若 Z Z i 是多重极点,则有
Res[X(z)zn1] zzi
1
(N1)!
dN1 dzN1
[(zzi
)N
X(z)zn1]
zzi
§3.4 Z变换的基本性质:
Res[X(z)zn1,zi]
i
Res[X(z)zn1,zi] i
上式必须满足 X(z)的zn分1 母多项式的阶次比分子多项
式Z的阶次高二阶或二阶以上。
如果 X(z)z在n1 处Z 为Z单i 阶极点,则有
R e s [X (z )z n 1 ]z z i [(z z i)X (z )z n 1 ]z z i
使得级数一致收敛的充分必要条件是:
x(n)zn
n
Z变换的ROC,一般是Z平面上以原点为中心的环形区域。
RxZ Rx , 称Rx为 、收Rx 敛半径。收敛半径与序 列有密切关系,对于不 同形式的序列其收敛域 不同。
例1: x(n) anu(n)
X(z) anzn
n
11az1
z a 时收敛
当 a 时1 , x的( nD)TFT存在
z8
(
1 3
)
8
e
j2 k
z e1 3
j
2
K 8
8个零点
收敛域为除了0和
的整个 平z面
j Im[z]
z0
7阶重极点
z
1 3
一阶极点
Re[ z ]
an, 0nN1, a 0
例4. x (n )
0,
其它n
X(z)N n 0 1anzn11 aa N zz 1 NzN z N 1( za N a)
双边序列的收敛域应该是左边序列和右边序列的公共部 分。双边序列的收敛域一定是环形区域,其收敛域为:
RX Z RX
例2. x(n)bn,b0
x(n )b n u (n ) b n u ( n 1 )
bnu(n)11bz1, zb
bnu( n 1 ) 1b 1 1z 1,zb 1
在 b 时1 ,两部分收敛域无公共部分,表明此
x(n)(n) 1 2 1 2 nu(n) 1 3 1 3 nu(n)
(n) 2(n1)3(n1) u(n)
2. 幂级数展开法:(长除法)
由 X ( 的z ) 定义,将其展开为幂级数:
X (z) x (n )z n x ( n )zn x ( 1 )z n x ( 0 ) x ( 1 ) z 1 x ( 2 ) z 2 x ( n ) z n
X (z)是有限项级数之和,只要级数的每一项有界,
这个级数就收敛。显然,有限长序列的收敛域是除了
Z=0及z两点外的有限Z平面。即: 0 z
如果 n 1 、n选2 择不同,收敛域可以进一步扩展。
当 n10,n时2 , 0 当 n1 0, n2时,0
0 z
0 z
2.右边序列
指 x (只n )在 n时有n1值, 时n, n1 x(n) 0
x ( n ) Z 1 [ X ( z ) ] 1 X ( z ) Z n 1 d z , 2jc
c ( R x ,R x )
式中积分表示对X(z)Zn-1进行的围线积分,积分路径C是一
条在X(z)收敛域 (Rx, 以Rx内),逆时针环绕原点一周的单围线, 如图所示:
➢反变换的求取方法:
展开式中 z项 n的系数即为 。x (当n ) 是有X ( 理z ) 函数时,
可以通过长除的方法将其展开为幂级数。
由于右边序列的展开式中应包含无数多个Z的负 幂项,所以要按降幂长除。
由于左边序列的展开式中应包含无数多个Z的 正幂项,所以要按升幂长除。
双边序列则先要将其分成两部分,分别对应信 号的右边和左边部分,再分别按上述原则长除。
极点:z a (一阶)
z 0 (N-1阶)
零点:z
ae
j
2
N
k
(k0,1N1)
ROC: z 0
3.左边序列
左边序列x (n只) 在 n时 n有2值, 时n , n2 。x(n) 0
左边序列的Z变换为:
n 2
0
n 2
X ( z ) x ( n ) z n x ( n ) z n x ( n ) z n
换不存在。
2
z
1 3
时x ( n是) 左边序列,且是反因果的,其傅氏
变换不存在。
3
1 3zΒιβλιοθήκη 时2x是( n双) 边序列,傅氏变换存在。
ROC是否包括 z , 是 是x ( 否n ) 因果的标志。
ROC是否包括 z ,0 是 是x ( n否) 反因果的标志。
§3.3 Z反变换
➢ Z反变换的一般数学表达式为
收敛域的不同,可能代表了不同序列的Z变换,因此为了单值 地确定Z变换所对应的时域序列,不仅要给出序列的Z变换函 数,而且必须同时说明它的收敛域。也就是说,信号的Z变换 与收敛域一起才能构成与时域信号一一对应的关系。
收敛域 — Z平面上那些能使 X 收(z)敛的所有Z值的集合,就构 成了 的X收(z敛) 域,用“ROC”表示。
N
如果为右边序列,则 x(n)A0(n) AiPiinu(n)
i1
若为左边序列,则
1
x(n)A 0(n) A iP iinu(n1)
i
若为双边序列,则由左边序列和右边序列相加而得到。
3 5 z1
例1:X (z)
6
(1 1 z1)(1 1 z1)
4
相关文档
最新文档