七年级上册数学期末试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学期末试卷(含答案)
一、选择题
1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22
B .70
C .182
D .206
2.下列数或式:3
(2)-,6
1()3
-,25- ,0,21m +在数轴上所对应的点一定在原点右边
的个数是( ) A .1
B .2
C .3
D .4
3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短
4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )
A .2
B .2﹣1
C .2+1
D .1
5.计算32a a ⋅的结果是( )
A .5a ;
B .4a ;
C .6a ;
D .8a .
6.下列分式中,与2x y
x y
---的值相等的是()
A .
2x y
y x
+-
B .
2x y
x y
+-
C .
2x y
x y
--
D .
2x y
y x
-+ 7.若x=﹣1
3
,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7
B .﹣1
C .9
D .7
8.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1 D .(-1)n x 2n +1
9.如果a ﹣3b =2,那么2a ﹣6b 的值是( )
A .4
B .﹣4
C .1
D .﹣1
10.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )
A .1010
B .4
C .2
D .1
11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元
C .赚了50元
D .不赔不赚
12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为
( )
A .8
B .12
C .18
D .20
二、填空题
13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.
14.一个角的余角等于这个角的
1
3
,这个角的度数为________. 15.已知x=5是方程ax ﹣8=20+a 的解,则a= ________
16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 17.把53°30′用度表示为_____. 18.已知单项式2
45225n m x y x y ++与是同类项,则m n =______.
19.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.
21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.
22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 23.用“>”或“<”填空:
13_____35
;2
23-_____﹣3.
24.观察“田”字中各数之间的关系:
则c 的值为____________________.
三、压轴题
25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和
b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.
请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .
(1)请你在图②的数轴上表示出P ,Q 两点的位置;
(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);
(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?
26.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.
(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;
(2)当线段CE 运动到点A 在C 、E 之间时,
①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;
(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度. 27.观察下列等式:111122=-⨯,1112323=-⨯,111
3434
=-⨯,则以上三个等式两边分别相加得:
1111111131122334223344
++=-+-+-=⨯⨯⨯. ()1观察发现
()1n n 1=+______;()
1111122334n n 1+++⋯+=⨯⨯⨯+______.
()2拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成1
4
圆周(如图2),在新产生的分点标上相邻的已标的两数之和的
12,记4个数的和为2a ;第三次将四个14圆周分成1
8
圆周(如图3),在新产生的分点标上相邻的已标的两数之和的1
3
,记8个数的和为3a ;第四次将八个
18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的1
4,记16个数的和为4a ;⋯⋯如此进行了n 次.
n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求
123n
1111
a a a a +++⋯⋯+的值.
28.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.
问题解决:
(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);
(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A
点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).
①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;
②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.
29.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);
(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;
(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?
30.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.
31.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.
32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】
设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行
∴x 的个位数只能是3或5或7
∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+
A .令41022x += 解得3x =,符合要求;
B .令41070x += 解得15x =,符合要求;
C .令410182x +=解得43x =,符合要求;
D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】
本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.
2.B
解析:B 【解析】 【分析】
点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】
()3
2-=-8,6
13⎛⎫- ⎪⎝⎭
=1719,25
-=-25 ,0,21m +≥1 在原点右边的数有6
13⎛⎫- ⎪⎝⎭
和 21m +≥1 故选B 【点睛】
此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.
3.B
解析:B
【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.
4.D
解析:D 【解析】 【分析】
根据题意列出算式,计算即可得到结果.
【详解】
解:∵A ,B ﹣1,
∴A ,B ﹣1)=1; 故选:D . 【点睛】
此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.
5.A
解析:A 【解析】
此题考查同底数幂的乘法运算,即(0)m
n
m n
a a a a +⋅=>,所以此题结果等于325a a +=,
选A ;
6.A
解析:A 【解析】 【分析】
根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x y
x y y x
++-=--, 故选:A . 【点睛】
本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.
7.D
解析:D 【解析】 【分析】
将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣
1
3
,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】
本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.
8.C
解析:C 【解析】 【分析】
观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】
观察可知,奇数项系数为正,偶数项系数为负,
∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】
本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.
9.A
解析:A 【解析】 【分析】
将a ﹣3b =2整体代入即可求出所求的结果. 【详解】
解:当a ﹣3b =2时, ∴2a ﹣6b =2(a ﹣3b ) =4, 故选:A . 【点睛】
本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.
10.B
解析:B 【解析】 【分析】
根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果. 【详解】 解:由题意可得, 当x =1时,
第一次输出的结果是4, 第二次输出的结果是2, 第三次输出的结果是1, 第四次输出的结果是4, 第五次输出的结果是2, 第六次输出的结果是1,
第七次输出的结果是4,
第八次输出的结果是2,
第九次输出的结果是1,
第十次输出的结果是4,
……,
∵2020÷3=673…1,
则第2020次输出的结果是4,
故选:B.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.
11.A
解析:A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
12.A
解析:A
【解析】
【分析】
根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.
【详解】
解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,
长方体的容积是4×2×1=8,
故选:A.
【点睛】
本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.
二、填空题
13.-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2xmy3与﹣5ynx是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案
解析:-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】
解:∵单项式2x m y3与﹣5y n x是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x度,依题意得90-x=
解得x=67.5
故填
【点睛】
此题主要考查角度的求解,解题的关键是
解析:67.5
【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x度,依题意得90-x=1 3 x
解得x=67.5
故填67.5
【点睛】
此题主要考查角度的求解,解题的关键是熟知补角的性质.
15.7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解析:7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解得:a=7.
故答案为7.
考点:方程的解.
16.-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
17.5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:5330’用度表示为53.5,
故答案为:53.5.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以
解析:5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53︒30’用度表示为53.5︒,
故答案为:53.5︒.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
18.9
【解析】
【分析】
根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.
【详解】
解:
和是同类项
且
,
【点睛】
本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9
【解析】
【分析】
根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.
【详解】
解:
242n x y +和525m x y +是同类项
∴25n +=且24m +=
∴3n =,2m =
∴239m n ==
【点睛】
本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.
19.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.
解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
20.3(x ﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x 辆车,则可列方程:
3(x ﹣2)
解析:3(x ﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x 辆车,则可列方程:
3(x ﹣2)=2x+9.
故答案是:3(x ﹣2)=2x+9.
【点睛】
本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.
21.2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x 的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键
解析:2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.
22.18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原
解析:18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:118000=1.18×105,
故答案为1.18×105.
23.<>
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:<;>﹣3.
故答
解析:< >
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】 解:
13<35;223->﹣3. 故答案为:<、>.
【点睛】 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
24.【解析】
【分析】
依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
【详解】
解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数
解析:270
【解析】
【分析】
依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
【详解】
解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.
故答案为:270.
【点睛】
本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
三、压轴题
25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.
【解析】
【分析】
(1)根据数轴的特点,所以可以求出点P ,Q 的位置;
(2)根据向左移动用减法,向右移动用加法,即可得到答案;
(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.
【详解】
解:(1)如图所示:
.
(2)由(1)可知,点P 为2-,点Q 为5;
∴移动后的点P 为:2x --;移动后的点Q 为:53x +;
∴线段PQ 的长为:53(2)47x x x +---=+;
(3)根据题意可知,
当PQ=2cm 时可分为两种情况:
①当点P 在点Q 的左边时,有
(21)72t -=-,
解得:5t =;
②点P 在点Q 的右边时,有
(21)72t -=+,
解得:9t =;
综上所述,当运动时间为5秒或9秒时,PQ=2cm.
【点睛】
本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.
26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或
487
或527 【解析】
【分析】
(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;
(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案
(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解
【详解】
(1)数轴上A 、B 两点对应的数分别是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵点F 是AE 的中点,∴AF=EF=7,
,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,
故答案为16,6,2;
(2)∵点F 是AE 的中点,∴AF=EF ,
设AF=EF=x,∴CF=8﹣x ,
∴BE=16﹣2x=2(8﹣x ),
∴BE=2CF.
故答案为①162x -②2BE CF =;
(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,
=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,
解得:t=1或3;
②当6<t ≤8时,P 对应数()33126t 22
t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12
t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527
; 故答案为t=1或3或
487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健
27.(1)
11n n 1-+,n n 1+(2)①()()n 1n 2m 3
++②75364 【解析】
【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;
()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3
==,找规律可得结论;
②由()()n 1n 2m 22713173
++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.
【详解】
()1观察发现:
()111n n 1n n 1
=-++; ()
1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1
=-+-+-+⋯+-+, 11n 1=-
+, n 11n 1+-=
+, n n 1
=+; 故答案为
11n n 1-+,n n 1+. ()2拓展应用
16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3
==, ⋯⋯
()()n n 1n 2a m 3
++∴=, 故答案为()()n 1n 2m.3
++ ()()n n 1n 2a m 61883②++==,且m 为质数,
对6188分解质因数可知61882271317=⨯⨯⨯⨯,
()()n 1n 2m 22713173
++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,
m 7∴=,n 50=,
()()n 7a n 1n 23
∴=++, ()()
n 131a 7n 1n 2=⋅++, 123n
1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++
()()311172334n 1n 2⎡⎤=
++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦ 31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭
75364
=
. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:
()111n n 1n n 1
=-++. 28.(1)1+a 或1-a ;(2)
12或52;(3)1≤b≤7. 【解析】
【分析】
(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;
(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②
【详解】
解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;
点N 在点M 左侧时,点N 表示的数是1-a ;
(2)①b=4时,AB 相距3个单位,
当点A 在点B 左侧时,t=(3-2)÷(3-1)=
12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52
; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,
∴1-d+3×(3-1)≤6,
解得d ≥1,
∴d=1,
当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,
∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7
∴1<d ≤7,
综合两种情况,d 的取值范围是1≤d ≤7.
故答案为(1)1+a 或1-a ;(2)①12或52
;②1≤b≤7.
【点睛】
本题考查了数轴上两点之间的距离和动点问题.
29.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】
【分析】
(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;
(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.
(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
【详解】
解:(1))∵点A表示的数为10,B在A点左边,AB=30,
∴数轴上点B表示的数为10-30=-20;
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为
t(t>0)秒,
∴点P表示的数为10-5t;
故答案为-20,10-5t;
(2)线段MN的长度不发生变化,都等于15.理由如下:
①当点P在点A、B两点之间运动时,
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;
②当点P运动到点B的左侧时:
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,
∴综上所述,线段MN的长度不发生变化,其值为15.
(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.
①点P、Q相遇之前,
由题意得4+5t=30+3t,解得t=13;
②点P、Q相遇之后,
由题意得5t-4=30+3t,解得t=17.
答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
30.(1)-12,8-5t;(2)9
4
或
11
4
;(3)10;(4)MN的长度不变,值为10.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;
(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;
(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=20,
∴点B表示的数是8﹣20=﹣12,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8﹣5t,
故答案为﹣12,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;
分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=20,解得t=9
4;
②点P、Q相遇之后,
由题意得3t﹣2+5t=20,解得t=11 4,
答:若点P、Q同时出发,9
4
或
11
4
秒时P、Q之间的距离恰好等于2;
(3)如图,设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=20,
解得:x=10,
∴点P运动10秒时追上点Q;
(4)线段MN的长度不发生变化,都等于10;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=
1
2
AB=10,
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=
1
2
AB=10,
∴线段MN的长度不发生变化,其值为10.
【点睛】
本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
31.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.
【解析】
【分析】
(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;
(2)先求出对称点,即可得出结果;
(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.
【详解】
(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.
∵b是最小的正整数,∴b=1.
故答案为﹣2,1,7.
(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.
故答案为4.
(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则
AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.
故答案为3t+3,5t+9,2t+6.
(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.
【点睛】
本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
32.(1)45°;(2)45°;(3)45°或135°.
【解析】
【分析】
(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;
(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;
(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.。