轴向受力构件2—偏心受压柱

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态
受拉破坏 受压破坏
6.3.2 两种偏心受压破坏形态的界限
大、小偏心受压破坏形态的根本区别是破坏时远离纵 向力一侧的纵向钢筋是否达到受拉屈服。
6.3.3 附加偏心距ea和初始偏心距ei
考虑到工程中实际存在着竖向荷载作用位置的不确定性、 混凝土质量的不均匀性、配筋的不对称性以及施工偏差等因 素,规范在偏心受压构件受压承载力计算中,规定必须计入 轴向压力在偏心方向的附加偏心距ea。参考国外规范的经验, 规范把ea取为20mm和偏心方向尺寸的1/30两者中的较大值。 因此,轴向压力的计算初始偏心距ei应为:
式中 e0——轴向压力对截面重心的偏心距:

6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
e0 N
在偏心受压构件中,二阶
效应指的是纵向弯曲引起的二
阶弯矩。即:承受偏心压力的
构件将产生纵向弯曲(即侧向
变形),导致e0→e0+f,使截面
中弯矩变为N(e0+f),f是随着
件的受力情况区分为以下三类:短柱、长柱和细长柱,见下图。 ① 偏心受压短柱(l0/h≤5): ◆ 侧向挠度 f 与初始偏心距ei相比很小; ◆ 柱跨中弯矩M=N(ei+f ) 随轴力N的增加基本呈线性增长; ◆ 直至达到截面承载力极限状态产生破坏; ◆ 对短柱可忽略挠度f影响。 ◆ 破坏属于材料破坏。
N
N
As 太

ssAs
f'yA's
ssAs
f'yA's
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态
② 小偏心受压破坏:
◆ 截面受压侧混凝土和钢筋的受力较大; ◆ 受拉侧钢筋应力较小; ◆ 当相对偏心距e0/h0很小时,‘受拉侧’还可能出现受压情 况; ◆ 截面最后是由于受压区混凝土首先压碎而达到破坏; ◆ 承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压 区高度较大,受拉侧钢筋未达到受拉屈服,破坏具有脆性性质; ◆ 第二种情况在设计应予避免,因此受压破坏一般为偏心距 较小的情况,故常称为小偏心受压。
f
荷载的增大而不断加大的,因
而弯矩的增长也就越来越快。
我们把截面弯矩中的Ne0称为初 始弯矩或一阶弯矩,而把Nf称
为附加弯矩或二阶弯矩。见图。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
(1)长细比对偏心受压柱受压承载力的影响 从二阶效应的角度根据长细比的不同,可把偏心受压构
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数η 《规范》给出η的计算公式为:
式中 ei—初始偏心距;
ξ1—偏心受压构件的截面曲率修正系数,
,即
当ξ1>1.0时,取ξ1=1.0; A为构件的截面面积,对T形、I形
◆ 形成这种破坏的条件是:偏心距e0较大,且 受拉侧纵向钢筋配筋率合适。
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态 ② 小偏心受压破坏(受压破坏)有两种情况:见图。 (A) 当相对偏心距e0/h0较小; (B) 虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时。
由图可见,这三个柱虽然具有相同的外荷载偏心距ei值, 其承受纵向力N值的能力是不同的,其值分别为Nus、Num、Nul, 即由于长细比加大降低了构件的承载力。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应 (2)偏心距增大系数η
为了考虑纵向弯曲的影响,《规范》将初始偏心距乘以 一个大于1的偏心距增大系数η。
N
◆ 此后,裂缝迅速开展,受压区高度减小
◆ 最后受压侧钢筋A's 受压屈服,压区混凝土 压碎而达到破坏。
◆ 这种破坏具有明显预兆,变形能力较大,破
坏特征与配有受压钢筋的适筋梁相似,承载力主
要取决于受拉侧钢筋。破坏始自受拉钢筋先屈服,
最后受压区混凝土被压碎而破坏,破坏时一般受
fyAs
f'yA's
压钢筋也能达到屈服强度。属塑性破坏。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
③ 过于细长的偏压柱(长细比l0/h >30 细长柱): ◆ 侧向挠度 f 的影响已很大; ◆ 在未达到截面承载力极限状态之前,侧向挠度 f 已呈不 稳定发展; ◆ 柱的轴向荷载最大值发生在荷载增长曲线与截面承载力 Nu-Mu相关曲线相交之前; ◆ 这种破坏为失稳破坏。在E点的承载力以达到最大。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应 N
N0
Nus Num
Nusei Numei
Nul Nul ei
Num fm Nul fl
M0
Байду номын сангаас
M

6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
② 比较细长的偏压柱(中长柱或长柱)(5<l0/h≤30): ◆ f 与ei相比已不能忽略; ◆ f 随轴力增大而增大,柱跨中弯矩M = N ( ei + f ) 的增长 速度大于轴力N的增长速度; ◆ 即M随N 的增加呈明显的非线性增长; ◆ 虽然最终在M和N的共同作用下达到截面承载力极限状态, 但轴向承载力明显低于同样截面和初始偏心距情况下的短柱; ◆ 因此,对于中长柱,在设计中应考虑附加挠度 f 对弯矩 增大的影响。
6.3 偏心受压构件正截面承载力计算
偏心受压:既受压力,又受弯矩(有时还有剪力),是轴压 和受弯的中间状态,而轴压和受弯是它的两个极端。
偏心受压(单向偏心)构件的配筋:纵筋沿与偏心轴垂直的 截面的两个边缘(弯矩作用方向的两个对边)配置,离偏心压力 较近一侧的纵筋为受压钢筋,用As/表示,另一侧可能受拉也可能 受压,但一律用As表示。
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态 试验表明,从加荷开始到接近破坏为止,偏心受压构件截面的
平均应变分布也都较好地符合平截面假定。
两类破坏形态——大偏心受压破坏(受拉破坏)和小偏心受压
破坏(受压破坏) :
①大偏心受压破坏(受拉破坏):见图。
◆ 截面受拉侧混凝土较早出现裂缝,As的应力 随荷载增加发展较快,首先达到屈服。
相关文档
最新文档