最优路径规划算法设计报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优路径规划算法设计

一、 问题概述

兵力机动模型的功能是支持实施机动的实体按照指定路线,由作战空间的一点向另外一点的位置移动,并带入实体在移动过程中发生变化的状态信息。

兵力机动模型包括行军模型、战斗转移模型、机动能力评估模型。涉及的关键算法包括最优路径规划、行军长径计算、行军时间计算、行军所需油料计算、行军方案评估与优选等。

最优路径问题又称最短路问题。是网络优化中的基本问题,如TSP 问题等。下面先举例说明该问题。

最短路问题(SPP -shortest path problem )

一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。

旅行商问题(TSP -traveling salesman problem )

一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地?)

最短路问题是组合优化中的经典问题,它是通过数学方法寻找离散时间的最优编排、分组、次序、或筛选等,这类问题可用数学模型描述为

min )(x f

..t s 0)(≥x g

D x ∈.

其中,)(x f 为目标函数,)(x g 为约束函数,x 为决策变量,D 表示有限个点组成的集合。

一个组合最优化问题可用三个参数),,(f F D 表示,其中D 表示决策变量的定义域,F 表示可行解区域}0)(,|{≥∈=x g D x x F ,F 中的任何一个元素称为该问

题的可行解,f 表示目标函数,满足}|)(min{)(*F x x f x f ∈=的可行解*x 称为该问题的最优解。组合最优化的特点是可行解集合为有限点集。由直观可知,只要将D 中有限个点逐一判别是否满足0)(≥x g 的约束并比较目标值的大小,就可以得到该问题的最优解。

以上述TSP 问题为例,具体阐述组合优化问题:

此模型研究对称TSP 问题,一个商人欲到n 个城市推销产品,两个城市i 和j 之间的距离ji ij d d =,用数学模型描述为

∑≠j

i ij ij x d min

1..1

=∑=n

j ij x t s n i ,,2,1Λ=,

1..1

=∑=n

i ij x t s n j ,,2,1Λ=,

},,,2,1{,2||2,1||,n s n s s x

s

j i ij

Λ⊂-≤≤-≤∑∈

j i n j i x ij ≠=∈,,,2,1,},1,0{Λ

约束条件决策变量1=ij x 表示商人行走的路线包含从城市i 到j 的路,而0=ij x 表示商人没有选择走这条路;j i ≠的约束可以减少变量的个数,使得模型中共有

)1(-⨯n n 个决策变量。

每一个组合优化问题都可以通过完全枚举的方法求得最优解。枚举是以时间为代价的,在TSP 问题中,用n 个城市的一个排列表示商人按这个排列序推销并返回起点。若固定一个城市为起终点,则需要)!1(-n 个枚举。以计算机s 1可以完成24个城市所有路径枚举为单位,则25个城市的计算时间为:以第1个城市为起点,第2个到达城市有可能是第2个、第3个、……、第25个城市。决定前两个城市的顺序后,余下是23个城市的所有排列,枚举这23个城市的排列需要s 1,所以,25个城市的枚举需要24s 。类似地归纳,城市数与计算时间的关系如表1所示。

表1 枚举时城市数与计算时间的关系

通过表1可以看出,随着城市数的增加,计算时间增加非常之快,当城市数增加到30时,计算时间约为10.8年,实际计算中已无法承受。在城市数较多时,枚举已不可取,我们可以采用一些别的方法缩短计算时间。

TSP 问题是NP 难问题,其可能的路径数目与城市数目n 是成指数型增长的,所以一般很难求出其最优解,因而一般是找出其有效的近似求解算法。遗传算法可以用来解决一些较为复杂的系统问题,显然旅行商问题是需要编码运算的,而遗传算法本身的特征正好为解决这一问题提供了很好的途径。

NP 问题:是指非确定多项式问题类。若存在一个多项式函数)(x g 和一个验证算法H ,使得:判定问题A 的任何一个实例I 为“是”实例当且仅当存在一个验证字符串S ,满足其输入长度)(S d 不超过))((I d g ,其中)(I d 为I 的输入长度,且算法H 验证实例I 为“是”实例的计算时间)(H f 不超过))((I d g ,则称判定问题A 是非确定多项式的。对于判定问题A ,若NP 中的任何一个问题可在多项式时间内归约为判定问题A ,则称A 为NP 难问题。 二、 知识准备

根据实际需求,本文拟给出三种算法针对不同的情况做出解答。分别是基于图论和网络优化的Dijkstra 和Floyd —Warshall 算法。这两种算法用来解决起点与终点不重合的问题。最后根据现有智能优化计算中的遗传算法计算哈密尔顿回路问题,即起点与终点重合问题。 1、 图论基本知识

有向图的定义:一个有向图G 是由一个非空有限集合)(G V 和)(G V 中某些元素的有序对集合)(G E 构成的二元组,记为))(),((G E G V G =。其中

},...,,{)(21n v v v G V =称为图G 的顶点集,)(G V 中的每一个元素),...,2,1(n i v i =,称

为该图的一个顶点;},...,,{)(21m e e e G E =称为图G 的弧集,记为),(j i k v v e =,记有向图),(E V G =

(a ) 和(c )是无向图,(b )是有向图 2、 邻接矩阵表示法

图),(E V G =的邻接矩阵C 是如下定义的:C 是一个n n ⨯的0-1矩阵,即

n

n n n ij c C ⨯⨯∈=}

1,0{)(,⎩

⎨⎧∈∉=A j i A

j i c ij ),(,1),(,0,也就是说,如果两节点之间有一条弧,

则邻接矩阵中对应元素为1,否则为0. 图(a )和图(b )的邻接表矩阵即为

3、 ⎪⎪⎪

⎪⎪

⎭⎫

⎛0001000100100010000100110

y x w v u y

x w v u

在计算机中用二维数组表示,两节点之间有弧相应的元素为1.

必须指出的是:目前为止,一切最短路算法都只对不含负有向圈的网络有效。实际上,对于含负有向圈的网络,其最短路问题是NP-hard 。因此,除非特别说明,一律假定网络不包含负有向圈。此外在实际问题中也会遇到无向网络上的最短路问题,这时原问题一般可以转化为有向网络中上的最短路问题。如果所有弧上的权ij w 全为非负数,只需将无向图的一条边代之以两条对称的有向弧即可。如果弧上的权ij w 有负有正,一般来说问题要复杂得多,要具体问题具体分析。本文中所要解决的问题都取权值为正,无向图皆采取两条对称的有向弧问题。

相关文档
最新文档