3点归纳法

3点归纳法
3点归纳法

------------------ 原始邮件 ------------------

所有内容都归纳为3点

“无论何时,话题都请归纳为3点。”

大多数新职员都曾被上司这样教导过。

我们甚至可以这样说,通过观察一个人能否将内容归纳为3点,便可判断这个人是否是合格的宝洁职员。

认真汇总信息、严谨传达必要内容是最为普通的思维方式。然而,上司则要求每位职员必须将内容“归纳为3点”。

“无论何时何地,无论何种内容信息,都请将其归纳为3点。”

一开始,我们并不知道具体该如何归纳。

下面以举例的形式为大家讲述宝洁所要求的内部信息交流法。

例如,向上司汇报由自己负责的新产品销售状况时,可以将汇报内容作出以下形式的整理:

1.这次新产品的销售额及销售数量推移与预想相当。

2.已确认商品特征是否明确传达宗旨。

3.下周开始非限量购买,因此下周是一个非常紧要的周期。

例如,向各相关部门说明日程变更时,可以将汇报内容作出以下形式的整理:

1.本次计划被延迟了6个月。

2.打算让本次计划与海外计划一同携手并行,目的是为了提高效率。

3.打算利用这6个月,修订营销计划。

例如,报告新商品消费者满意程度调查结果时,可以将汇报内容作出以下形式的整理:

1.新商品概念的评价并不十分理想。

2.必须将商品机能特征再度具体化。

3.消费者已提出明确需求,因此可确认商品概念的定位有误。

例如,说服上司,让自己参加公司外部研修时,可以将汇报内容作出以下形式的整理:

1.下周,东京有一场使用最尖端社会媒体进行营销的研讨会。

2.参加研讨会须支付相关费用,您看是否可以申请参加?

3.从研讨会学成归来后,会将成果汇总后介绍给大家。

例如,因孩子生病,必须请假时,可以将汇报内容作出以下形式的整理:

1.非常抱歉!我今天恐怕无法来公司上班了。

2.因为孩子发高烧。

3.明天会正常出勤。

像以上将所要传达的信息归纳为3点的做法是宝洁日常交流的精髓。并且,因情况不同,这3点的构成也可能发生变化。

例如,提出结论并希望获得认可时,需要介绍以下方面的情况:

1.背景。

2.结论。

3.理由。

向上司汇报状况,并传达自己意见时,则需要说明下列要素:1.结论。

2.理由。

3.今后的计划。

总之,总结出来的要点皆因情境的不同而不同。

请大家也试着将主要信息归纳为3点陈述吧!如此,想要传达的信息是不是变得异常清晰?

如此,不需要其他方式便可让对方在最短的时间内准确把握信息。大家只要记住:无论何时都将信息归纳为3点即可。这3点必须涵盖所有应该传达的内容,换言之,这3点必须是集成一切必要信息,且极富条理性的。所以,掌握这一归纳技术是重中之重。

为了练就以上思考能力及沟通能力,极具效果的训练自然必不可少。想要让阐述变得足够清晰有条理,就应踏踏实实学会这项技能。

“归纳为3点”

当我刚进入研究开发本部时,担任的是产品经理一职,主要负责新产品日本市场导入这一领域。我的工作搭档是负责营销计划及品牌商务管理的品牌经理。我们每天都会联系,给新产品作定位,并按照具体的计划推进工作。

我的沟通技能就是在与这位品牌经理不断讨论的基础上练就的。作为前辈,我的搭档只比我早入社一年,但他却能让刚进公司的我在短时间内迅速上手。可想而知,就在这短暂的一年当中,他已然扎扎实实掌握了沟通术的基本技巧。

当时,我的工作地点与前辈不在同一个地方,电话是我们交流的重要工具。

为了确保计划能够按部就班地推进,我每天都要跟前辈通电话。那时,我渴望提高自己的沟通能力,更希望能尽快与前辈一样,说话干净利落、一语中的、浅显易懂。善于沟通的人,其实非常了解那些不会沟通的人的心理。通过沟通交流,前辈一眼即可识别我是一个立即能够上手的新人还是一个教不会的新人。

那时的我,在给前辈打电话之前总会重复同一件事。那便是将今天想要传达的内容及话语“分3点”写在纸上。虽然我大体上知道自己想说什么,但即便如此,我仍会梳理之后将其归纳为3点,并写出来。

这件事情让我明白了一个道理,即所谓的“3点归纳”技术需要反复反复再反复,只有每天不间断地训练才能熟练掌握。此外,每天的训练还为我的信息整理能力打下了扎实的基础。即便是现在,我也仍然保持着“3点归纳”这一良好习惯。

对我来说,还有一个非常重大的课题。那便是当前辈在电话中提出问题时,我该如何清清楚楚给出答复。

“你认为那个怎么样?”

被这样问及时,我会作出如下反应:尽量明确自己的现有信息、表达自己的判断、说明作出该判断的理由。其实,这也是所谓的“3点归纳”交流术。类似情况时常出现在电话交流中,我也因此每天都在努力着。在回答问题时,我会尽量加速脑力运转,在脑中形成3点要素后迅速作出答复。

我已经记不起这一行为重复了多少次,但它确实产生了非常明显的效果。通过训练,我能越来越快地汇总重要信息并进行有条理的阐述。

总而言之,反复彻底的训练可以让条理性思考变得越发灵敏。

通过训练成就的这一技能时常让我在工作中大显身手。无论是向高层管理人员提计划意见之时,还是就计划与部下进行交谈之时,“3点归纳”这一沟通术可谓无处不在。只要我们按照“迅速开动大脑、明确现有信息、表达自己的想法、简单清晰阐述这一想法的理由”的思路与对方沟通,总会取得令人意想不到的成果。

它决定着商务成败

对于内部信息沟通法来说,“有条理地整理要点”是最为关键的一步。仅凭自我意识,不对要点加以整理的话,是达不到良好的沟通这一目的的。

在此之前,想必大家都曾有过胡乱瞎侃的经历吧。那时的对话,是不是连自己都不明白自己在说些什么呢?

当然,不同情境的话,沟通的模式也会有所差异,对于那些必须有沟通效果的商务洽谈来说,整理要点、有条理地阐述,将决定洽谈的成功与否。

越是状况复杂的时候,“3点归纳”越有效果

越是状况复杂、难以明白的时候,“3点归纳”的效果就越发显著。当团队陷入信息混乱这一泥潭时,亦是最浪费时间之时。想要尽早摆脱这一混乱局面的话,就应尽早明确把握现状,并将自己握有的信息及时反馈给上司及相关部门。这一过程非同寻常,亦是对我们自身能力的考验。

譬如,当团队内部出现某问题时,局面定然会陷入混乱。

此时,一旦有人将非重要信息列入重要行列并将之汇报给团队的话,团队不但会将这一信息立即视为必要问题,还会投入过多精力去解决,如此一来,问题反倒越发纠结难解。

这时,简明扼要地汇总现状才是首要任务,目的是要让大家形成统一的认识。如果自身拥有这样的技能,包括上司、相关部门、高层管理人员在内,你都可凭借一己之力把他们带向“正轨”。而此时,“3点归纳”的沟通术则可起到举足轻重的作用。

1.问题的本质是什么?

2.会给业务带来何种程度的冲击?

3.今后应该如何应对解决?

要像这样进行归纳,才能达到认识统一的目的。随着团队解决力度的加大,业务也终将迈向成功。

为什么是“3点”

那么,为何魔力数字会是“3”呢?其实,我还并未见过有谁针对这一问题进行过系统的说明。但是,从沟通手法这一角度加以思考的话,“3点归纳”这一说法是合情合理的。

首先,3点可以给人不会太过复杂的印象。对于交流来说非常重要的一点是——阐述对方可以理解的内容。倘若内容太过复杂,即便经过条理性的整理,仍有四五个要点的话,会给对方的理解造成一定的障碍及困扰。

反之,倘若要点简明精辟,只有3点的话,对方不仅立即就能吸收,还会对说话者产生一种“信息处理得当”的良好印象。此外,也不会因为要点太过单薄,让人感觉“太过简单”。

其次,就全局来说,3点能够起到有效平衡的作用。它不仅能在各要点之间轻松建立联系,还能组合成最适宜的构成。

总而言之,数字“3”的由来并非偶然,正因为它有相当合理的理由,才能被大家认可。

信息三角形

其实,宣传及交流等专门领域在接受媒体采访时,也常常会采用将信息归纳为3点的手法。

在大型企业中,宣传部通常都要为社长接受媒体采访作好准备。而在诸多准备工作当中,一种名为“信息三角形”的发言表则必不可少。这里的“信息三角形”并不是为社长准备发言稿,而是为社长的发言列出3个要点,即制作一种版面布局为“3点=三角形”的发言资料。如此一来,社长便可手执该资料,一边确认自己发言的要点一边接受媒体的采访(图3,见下页)。

当公司将信息传达给对方时,特别是面对报道记者的提问或对方明显有意将话题引入不同的方向时,传达及回复的方向常常就在被列举的3大要点中。如此,这一“3大信息集约”型的手法便会向我们展现

它极为有益的一面。对于为何是3点,正如前文所述,因为3点既不过于复杂又不过于简单,还能起到有效平衡的作用。

这是沟通专家时常使用的方法,如能在每天的工作当中对其加以运用的话,想必你的沟通能力一定能更上一层楼,甚至达到非常出色的境地。

虽然以下只是一些闲话,但也很有必要讲一下。当政治家出现丑闻,接受媒体追究采访时,如能站在自己的立场,用3点归纳法澄清解释的话,效果要明显好于那些毫无章理、思绪混乱的人。越是紧急时刻,越应该将即将阐述的内容明确归纳为3点。3点归纳的沟通技巧在某一程度上决定了视听者对自己留下印象的好坏。同理,工作当中亦是如此。

养成“3点归纳”的良好习惯,自信大胆地阐述观点

日本人不太喜欢在公众场合表述自己的意见,我想,最大的原因还在于“他们不想过度模仿”吧。这也是日本人特有的气质,难道不是吗?然而,他们之所以不愿意这么做,还存有另外一个原因。因为他们事先并未整理好自己的思路,所以才避于表述。在日本,大家一起表述意见的现象并不受欢迎,因此,很多人的潜意识中都认为表述意见是非必要的行为。有了这一想法之后,大家也就自然而然不会去事先思考、整理自己的意见了。因为没有思考、整理,所以才不去表述。因为不去表述,所以才会失去发言的机会。

我觉得大家就是这样,才会陷入恶性循环中无法清醒。

就拿我个人来说吧,在养成“3点归纳”这一习惯之后,凡事总会事先在脑中精密梳理一遍。经过认真整理之后,意见开始形成,当然,自信也会随之而来。如果自己能对即将阐述的内容作好充分准备,相信大家能够理解的话,就可避免被人驳回、被人羞辱的凄惨场面。

同时,如能对信息进行系统性整理的话,不但会给人留下“这个人是有仔细思考过”的良好印象,还能帮助自己有中心有条理有目的地进行阐述。当自己阐述完意见及观点之后,对方定然也会提出反馈性意见,如此一来,便是一种自我提高、精益求精的绝佳机会。

因“被要求提意见而感到为难软弱”时,往往正是脑子一片空白之时。此时,建议大家不要过于惊慌,尝试着静下心来慢慢整理一遍,这样做至少可以帮助当事人简单明了地表达自己的观点。综上所述,“3点归纳”的习惯具有增强自信的魔力。

领导必备的“3点归纳”能力

“3点归纳”这一训练的成果并不仅限于增强自信,从理论上来说,“3点归纳”还能帮助我们在团队当中提高自身价值的潜能。换言之,可以帮助我们晋级领导职位,统筹整个部门。

带领团队摆脱困境、继续向前的能力是每位团体领导都在追求的素养。

20世纪90年代中期,宝洁以日本为据点开始向中国市场进军。当时,我担当的是日本洗涤剂开发团队的经理。某天,我被产品开发本部的上层领导叫去,他说希望我能负责中国市场的开发,那句话至今我仍记忆犹新:

“中国的计划现在很是混乱,我希望你能Soft Out这一切。”

所谓的“Soft Out”,就是整理的意思。产品计划首领的第一使命便是整理。而当时,那位上层领导就是这样对我说的。

实际工作中确实要从整理入手。那时的我完全不明白其他人到底在做些什么,只是感觉眼前有一大堆的问题没有解决,而每个人所做的事又都非常茫然零散。

我的使命就是梳理现状,明确应该做的事情。在完成这一使命的过程中,我发现自己之前努力练就的“3点归纳”能力真的非常有用,其切切实实是领导不可或缺的第一能力。

让它成为一种习惯

最近,邮件作为一种商务沟通手段开始逐渐活跃起来,书写沟通的方式也变得越发频繁。如仔细观察,你会发现,其实比起口语交流,书面交流更需要过硬的梳理能力。(当然,这只是针对商务沟通的分析,并不是邮件比电话更具沟通力的意思。)

在书写邮件时,我时常会自我评估,即确认自己是否有表明意图。

通过一段时间的历练,我发现似乎“书写”更有利于“3点归纳”的养成。“3点归纳”的训练不需要任何人的协助即可完成。自己书写,自己理解,自己完善。唯有如此这般反复,才能锻炼出将重要信息归纳为3点的能力。接着,我们才能去步步为营地与对方进行沟通,让工作进展得更顺利。

读到这里,您感觉如何呢?如若让您将读后感归纳为3点的话,您会如何整理呢?

现在,如有什么想法或提案想向上司传达表述的话,您是否会事先将其归纳为3点呢?

请大家尽快尝试吧!

另外,在“3点归纳”成为思考“习惯”之前,请不要放弃努力哦。

例谈不完全归纳法在初中数学中的运用

例谈不完全归纳法在初中数学中的运用 郧西县城关镇城北中学 徐华进 不完全归纳法是指从一个或几个(但不是全部)特殊情况作一般性的结论的归纳推理。这种归纳法是用一定数量数值为基础,进行分析探究,从中找出规律,并将此规律推广应用到一般情况下的计算和证明.在初中数学教材中,经常会用这种方法进行定义、公式、法则、定理的推导.学生在学习中,若能正确运用不完全归纳法,可提高分析、解决问题能力,发现、探索问题的能力。下面略举几例说明它的运用; 一. 在推导法则、定理中的运用 1.利用不完全归纳法推导分式乘方的运算法则 根据乘方的意义和分式乘法法则,可得: ①222)(b a bb aa b a == ②bbb aaa b a =3)(=33b a ③7 7 7)(b a bbbbbbb aaaaaaa b a ==…… 由此可推出,当n 为正整数时,= n b a )( b a n b a b a b a 个 ···??=n n b n a n b a b bb a aa =???? 个个····(b ≠0) 即分式乘方要把分子、分母分別乘方 2.利用不完全归纳法推导凸多边形内角和定律 将教材的推导过程整理成下表:

通过引导学生填写上表内容,分析概括,总结归纳出多边形内角和定理:n 边形内角和等于1800 ×(n-2). 说明:本定理的推导,还可以在多边形内(或一边上)取任一点,分别连接多边形的顶点,也可仿照上述方法,得到同样的结论,可让学有余力的学生在课外去探讨。 二.在解题中的应用 1 . 从计算结果中探究规律 例 计算:⑴211- = 3 ⑵221111-=33 ⑶222111111-=333 ⑷222211111111-=3333 请根据上述规律写出下式的结果: 2 1 222....222211......11111个个n n -=______________. 分析:①从⑴至⑵式的左边可以看出:被开方数中被减数1的个数是减数2的二倍,其结果中3的个数是减数2的个数。 解: 2 1 222....222211......11111个个n n -= 3 333个n ? 说明:解此类题目关键是正确分析归纳出题中的结果数字与算式中数字之间的特殊关系,再从特殊推 广到一般. 2.从图形的特征中探究规律 例1 下列各三角形图案是由若干个五角星组成的,每条边(包括两个顶点)有n (n>1)五角星,每个图案中五角星的总数为s.按此规律推断:s 与n 的关系. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ …… ★ ★ ★ ★ n=2,s=3 n=3 s=6 n=4,s=9 图(1) 图(2) 图(3 分析方法一:由于每条边上的五角星数包括了两个顶点,若每边按n 个计算,则重算了三角形三个顶点上的三个。故有s=3n-3. 分析方法二:由图可知,每个图案上的五角星总数,随着各边上五角星的增多而增多,且前面一个图案中五角星总数总比其后面一个图案中五角星总数少3,因此可猜想:s=b n +κ,根据图(1)、图(2)中的条件就能求出k ,b 的值,再验证是否满足图(3)的条件。 解:设s=b n +κ, 把n=2,s=3;n=3,s=6分别代入上式,得 ?? ?=+=+6 33 2b k b k 解得? ? ?=-=33 k b ∴s=3n-3 经检验:n=4,s=9也满足s=3n-3 所求s 与n 的关系为s=3n-3

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

高中数学不完全归纳法证明题

數學歸納法的迷思 數學歸納法可說是高中數學裡最令同學納悶的一部份了,數學歸納法學的不錯的同學,大概都能謹遵老師交待要寫出以下2步驟: 1、 步驟1:證明n=1時,敘述成立。(不一定從1開始) 2、 步驟2:假設n=k 時,敘述成立;證明n=k+1時,敘述也成立 由數學歸納法得證,n 為任意自然數時都成立。 完整寫出以上2步驟,並且遇到數學歸納法的證明題時,操作以上步驟,算是達到了學習數學歸納法的最基本要求。只是能操作數學歸納法的基本步驟,不一定代表了解數學歸納法的原理,因此容易造成誤用,而不知道錯在何處,或者是雖然做出了正確的証明,但終究對於這樣的証明方法存疑,先說存疑之處:「只知道n=k 和n=k+1成立,仍不知道後面幾項是否成立」、「用假設來證明很沒說服力,萬一假設不成立呢?」、「怎麼可以假設n=k 成立呢?」這是學習數學歸納法常會出現的疑問,所以再複習一下數學歸納法的基本原理,皮亞諾(G.Peano)在西元1889年提出的自然數的序數理論,包含5條公理: (1)1是一個自然數 (2)每一個自然數a 都有一個後繼元素 (3)1沒有生成元素 (4)如果a 與b 的後繼元素相等,則a=b (5)若一個由自然數所組成的集合S 包含1,並且當S 包含某一自然數a 時,它一定也含有a 的後繼元素,則S 就包含有全體自然數。 數學歸納法原理就是皮亞諾的第5條公理,無需證明。數學歸納法實際上是一種演繹方法,由於我們無法證明所有自然數均滿足於某一條件,所以我們用邏輯遞推的方式,先證明有一個起始值合於條件(步驟1),接下來證明所滿足的條件是可以遞推的,若n=k 成立?n=k+1成立(步驟2)。就以老師上課常講的以骨牌為例,假設我們有無限多顆骨牌,因為數量是無限多,所以我們無法實際操作,看到所有骨牌倒下,但是我們可以確認的兩件事就是第一顆骨牌會倒,以及若骨牌倒了,後一顆骨牌也必倒,這兩件事確定了,我們不必眼見所有骨牌倒下,也知道所有骨牌都會倒,這就是數學歸納法的原理。 同學在學習數學歸納法常見的錯誤上大致有以下二種: (一)忽略起始值與遞推過程的互相配合,以證明n n 22<,N n ∈為例: 1、 當1=n 時,1221<,成立 2、 設k n =時k k 22<成立;當1+=k n 時 1 2122)12(22)1(2222221--=--->++-?=+-+k k k k k k k k k k 01)2(>--=k k ?122)1(+<+k k ,由數學歸納法得証。 以上證明犯了很明顯的錯誤,就是01)2(>--=k k 的條件必須3≥k ,所以用k=1當起始值就與證明過程沒有配合,仔細再檢視一遍,4,3,2=n ,均不符合,

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

最新数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

归纳法基本步骤

归纳法基本步骤 (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤nn0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 (1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。 (2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。 (3)证明数列前n项和与通项公式的成立。 (4)证明和自然数有关的不等式。 数学归纳法的变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

本文主要对数学归纳法的教学进行较为完整的研究

本文主要对数学归纳法的教学进行较为完整的研究。 数学归纳法是一种证明与正整数有关的命题的极为有效的科学方法。了解数学归纳法的发现和发展的历史,明确数学归纳法与归纳法的区别与联系,是教师教授和学生掌握数学归纳法的基础。对数学归纳法逻辑基础即原理的准确理解,是教师进行数学归纳法教学的前提,也是学生能否掌握这种证明方法的关键。 数学归纳法的教学首先是一种程序性教学。为了让学生能够正确应用数学归纳法,还要进行形式化教学。在形式化现象下的本质规律的教学,即内涵教学,则是数学归纳法教学的内在精髓。数学归纳法通过有限的程序,完成了验证无限的结论,它的灵魂就是递归思想。 归纳法是发现问题的一种有效方法。在数学归纳法的教学过程中,恰到好处地进行数学归纳法的教学,既可帮助学生区分这两种方法,又可引领学生了解发现问题的途径,可谓一举两得。培养学生“观察一归纳一猜想一证明”的链条式思维模式,开发学生的创造性思维能力,将会对未来数学的发展起到推波助澜的作用。数学归纳法的应用是数学归纳法教学中很重要的一个环节。数学归纳法可以用来证明与正整数有关的恒等式、不等式、整除性问题和几何问题等。 本文针对数学归纳法应用过程中,学生常见错误出现的心理因素进行了问卷调查。在应用数学归纳法证题时,导致学生犯错误的主要原因是对数学归纳法的原理没有真正理解;另一个原因是数学归纳法应用中的思维定势。要克服学生使用数学归纳法的心理障碍,一个有效的方法就是要了解数学归纳法应用的局限性。能运用非数学归纳法证明另外一些与正整数有关的命题,也是学生学习和使用数学归纳法时所要克服的心理依赖和必经过程。 1. 2数学归纳法的研究现状 对“数学归纳法”的研究国内己有不少论文,这些论文在某些具体方面作出了详尽的论述。例如,赵龙山在《有关数学归纳法教学中的逻辑问题》一文中,对数学归纳法的逻辑基础问题进行了论述和研究,形象地引入“递推机”,从而加深了对数学归纳法本质的理解,有助于学生更好地、合逻辑地运用数学归纳法证题,也有助于学生克服对于数学归纳法的模糊甚至是错误认识。文中还指出了数学归纳法与归纳法、完全归纳法是完全不同的证题方法,只是没有对一三者的内在关系进行系统详细地阐述。罗增儒在《关于数学归纳法的逻辑基础》一文中指出:历史上数学归纳法曾被称为“逐次归纳法”、“完全归纳法”,后来被称为“数学归纳法”,既区别于逻辑上的“完全归纳法”,又比“逐次归纳法”更能表明它论证的可靠性。在此文中还引述了一些学者的观点,就数学归纳法的本质进行了表述。 刘世泽在《数学归纳法的另外两种形式》一文中,介绍了除数学归纳法第I型和第II 型以外的另两种形式:跳跃归纳法和二元有限归纳法;朱孝建在《数学归纳法的构造》一文中,给出了数学归纳法的一个一般性定理,由此可推导出数学归纳法的各种常见形式,还可根据具体问题的需要构造出其它数学归纳法的形式,进一步开拓了数学归纳法的应用范围,从而对数学归纳法的本质有了一个较为全面深入地了解;李淑文、孙德菊在《累积数学归纳法》一文中,比较了数学归纳法的第一种形式和第二种形式,并就第二种形式,即累积数学归纳法作了举例说明。以上三篇论文都是针对数学归纳法的形式或构造的论述。 邵光华所作的论文《对中学“数学归纳法”教材教法的几点思考》,主要针对教材教法中对数学归纳法内容的安排和教学,提出了值得思考的五个具体问题,并简单地说明了数学归纳法和归纳法的区别。文中提到了不完全归纳法,但未作深入论述。唐以荣在《中学数学综合题解题规律讲义》中指出:“早在五十年代的苏联的教学法书籍中,己明确指出数学归纳法是演绎法的特殊形式;八十年代的中国中学数学课本和教学法书籍却没有做到这一点不能不令人遗憾。”①即使是现在的中学教材也还是没有改进这些。 齐智华在《“数学猜测”的教学构想与实践》一文中,介绍了“数学猜测”的教学纲目,

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

高中数学归纳法证明题

高中数学归纳法证明题 高中数学归纳法证明题 1/2+2/2^2+3/2^3+......+n/2^n=2-n+2/2^n. 1/2+2/2^2+3/2^3+......+n/2^n=2-(n+2)/2^n. 1、当n=1时候, 左边=1/2; 右边=2-3/2=1/2 左边=右边,成立。 2、设n=k时候,有: 1/2+2/2^2+3/2^3+......+k/2^k=2-(k+2)/2^k成立, 则当n=k+1时候:有: 1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1) =2-(k+2)/2^k+(k+1)/2^(k+1) =2-[2(k+2)-(k+1)]/2^(k+1) =2-(k+3)/2^(k+1) =2-[(k+1)+2]/2^(k+1) 我觉得不是所有的猜想都非要用数学归纳法. 比如a1=2,a(n+1)/an=2,这显然是个等比数列 如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

结果带入递推公式验证是对n属于正整数成立. 用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量 进行验证,已经对n属于正整数成立了.怎么说就是错误的. 这说明你一眼能看出答案,是个本领。 然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。 比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过, 就说明答案是唯一的!比如x+y=2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所 以你的证明方法是严格错误的! 说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不 是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都 是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从, 永远也解不出来了!这就是你的做法带来的.答案,你想想呢?你的这 种做法有什么值得推广的? OK,了解! 数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论 确保了n属于N时成立,这是严密的。 你的例题太简单,直接用等比数列的定义就可以得到答案(首项 和公比均已知),不能说明你的证明方法有误。我的本意是:任何一 种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证 明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的 结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事 实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”

(完整版)数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立, ②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果

① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立; (4)双重归纳法 设 是一个含有两上独立自然数 的命题. ① 与 对任意自然数 成立; ②若由 和 成立,能推出 成立; 根据(1)、(2)可断定, 对一切自然数 均成立. 3.应用数学归纳法的技巧 (1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时容易,

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

相关文档
最新文档