极限存在两个准则
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限存在两个准则
数列极限存在的两个定理
1、 夹逼定理:
若∃N ,当n>N 时,≤≤
n y n x n z 存在条件A y n n =∞→lim =A z n n =∞
→lim ,则:
A x
n n =∞→lim 2、 单调有界数列必收敛定理:
单调上升数列有上界
收敛
单调下降有下界
收敛
函数极限存在的两个定理:
1、 夹逼定理:
存在∃δ>0,在δ<−<0x x 0时,有
n y ≤≤,
n x n z 存在条件A y n x x =→0x x →0
x x → 则:
x lim =,则: A z n =lim A x
n x x =→lim 0
其他趋近过程也有类似结论 2、 单侧极限与双侧极限的关系: A x f =)(lim 0
A x f =−0
0 0 h(x)
0 ① 左右侧极限存在,但是不相等 )( x -δ x x x 求极限时,指数函数 y= x a 反正切函数y=arctanx 反余切函数 y=arccotx 必须要求两侧的极限值。 ② ⅰ、∃ →,≠; n x 0x n x 0x 不存在, )(lim n n x f +∞→ⅱ、∃→,→, n x 0x n y 0x 但是≠ )(lim n n x f +∞→)(lim n n y f +∞→