锂离子电池的基本知识

合集下载

培训资料-锂离子电池知识培训

培训资料-锂离子电池知识培训

培训资料-锂离子电池知识培训锂离子电池知识培训(一)锂离子电池是一种常见的电池类型,广泛应用于手机、电动汽车、无人机等领域。

本次培训将为大家介绍锂离子电池的基本知识和注意事项。

一、锂离子电池的结构锂离子电池由正极、负极、隔膜和电解液组成。

正极一般采用过渡金属氧化物,如三元材料(锂镍锰钴氧化物);负极采用碳材料,如石墨;隔膜起到电解液的导电和离子穿透的作用;电解液通常由有机溶剂和锂盐组成。

二、锂离子电池的工作原理锂离子电池的工作原理是通过利用锂离子在正负极之间的迁移来实现电荷的存储和释放。

充电时,锂离子从正极迁移到负极,使正负极电势差增大,储存电荷;放电时,锂离子从负极迁移到正极,使正负极电势差减小,释放电荷。

三、锂离子电池的优势和劣势锂离子电池相比传统电池具有以下优势:①高能量密度,能提供更长的使用时间;②低自放电率,不用担心长时间不使用电池导致电量消耗;③无记忆效应,可以随时充放电;④环保,不含重金属等有害物质。

然而,锂离子电池也存在劣势:①成本较高,加工工艺复杂;②温度过高或过低会影响电池寿命和安全性;③充放电速率过大可能导致电池受损。

四、锂离子电池的使用与维护1. 使用注意事项(1)避免过度充放电。

过度充放电会缩短电池寿命并增加安全风险。

(2)避免高温环境。

高温会加速电池老化,降低电池寿命。

(3)避免湿润环境。

湿润环境可能引起电池短路等安全问题。

(4)避免剧烈震动。

剧烈震动会导致电池失灵或损坏。

2. 维护方法(1)适时充电。

避免电池放电完全后长时间不充电。

(2)避免深充电。

一般情况下,电池电量低于20%时应及时充电。

(3)定期检查电池状态。

定期检查电池外观是否有损坏,如有损坏应及时更换。

五、锂离子电池的安全性锂离子电池在充放电过程中可能出现过充、过放、短路等问题,导致电池燃烧、爆炸等安全事故。

为增强锂离子电池的安全性,需要注意以下几点:(1)使用正规厂家生产的电池产品。

(2)避免机械碰撞,避免刺穿电池外壳。

高三锂离子电池知识点

高三锂离子电池知识点

高三锂离子电池知识点锂离子电池是一种常见的电池类型,它在现代社会中广泛应用于各个领域。

作为高三学生,了解和掌握锂离子电池的相关知识点对于我们的学习和未来的发展非常重要。

本文将介绍锂离子电池的基本原理、组成部分以及应用领域。

【一、锂离子电池的基本原理】锂离子电池是一种通过锂离子在正负极之间的移动来实现能量转换的电池。

其基本原理是:在充电过程中,锂离子从正极材料(如锂钴酸锂)脱嵌并通过电解质传输到负极材料(如石墨)中;而在放电过程中,锂离子则从负极材料嵌入正极材料中,从而完成电能的释放。

【二、锂离子电池的组成部分】1. 正极材料:常见的正极材料有锂钴酸锂(LiCoO2)、锂铁酸锂(LiFePO4)等。

正极材料的选择对电池的性能有着重要影响,如容量、循环寿命等。

2. 负极材料:一般使用石墨作为负极材料。

石墨具有良好的锂离子嵌入和释放性能,确保电池的可靠性和长寿命。

3. 电解质:常用的电解质包括有机电解质和聚合物电解质。

电解质的作用是传导锂离子,并阻止正负极材料之间发生直接接触。

4. 隔膜:隔膜用于隔离正负极材料,防止短路。

常见的隔膜材料包括聚乙烯(PE)等。

5. 电池壳体:电池壳体通常由金属材料制成,起到固定和保护电池内部结构的作用。

【三、锂离子电池的应用领域】1. 便携式电子设备:锂离子电池广泛应用于手机、平板电脑、数码相机等便携式电子设备中。

锂离子电池具有高能量密度和较高的电压稳定性,能够满足这些设备的电能需求。

2. 电动汽车:随着环保意识的提升,电动汽车逐渐成为人们关注的焦点。

锂离子电池作为电动汽车的主要动力源,具有高能量密度、重量轻、循环寿命长等优点,被广泛应用于电动汽车领域。

3. 储能系统:随着可再生能源的发展,储能系统的需求也在不断增加。

锂离子电池可用于对太阳能、风能等能源进行储存,满足能源的平稳供应。

【四、锂离子电池的优缺点】1. 优点:- 高能量密度:相对于其他类型的电池,锂离子电池具有更高的能量密度,可以提供更长的工作时间。

锂电池基本知识

锂电池基本知识

锂电池基本知识锂电池是一种以锂离子为原料的电池,被广泛应用于电子设备、电动车辆和储能系统等领域。

它具有高能量密度、长寿命、轻巧小型等优点,因此备受青睐。

1. 锂电池的构造锂电池主要由正极、负极、电解质和隔膜四部分组成。

正极通常使用锂化合物,如氧化钴、磷酸铁锂等,负极则使用碳材料。

电解质是锂离子在正负极之间传递的介质,常用液态电解质为聚合物电解质。

隔膜则起到隔离正负极的作用,防止短路。

2. 锂电池的工作原理锂电池的工作原理是通过正负极之间的锂离子传递来实现电荷和放电过程。

当充电时,锂离子从正极释放出来,经过电解质和隔膜,嵌入到负极的碳材料中。

而在放电时,锂离子从负极脱嵌,经过电解质和隔膜,重新嵌入到正极的锂化合物中。

这个过程是可逆的,因此锂电池可以反复充放电。

3. 锂电池的优点锂电池具有高能量密度,即单位重量或体积所储存的电能较高,能够提供更长的使用时间。

同时,锂电池具有较低的自放电率,即在不使用的情况下,电池自身的电量损失较小。

此外,锂电池还具有长寿命、低污染、快速充电等优点。

4. 锂电池的分类锂电池根据其正极材料的不同可以分为多种类型,常见的有锂离子电池、锂聚合物电池和锂硫电池。

其中,锂离子电池是目前最常用的,具有较高的能量密度和较长的寿命。

锂聚合物电池则因其更高的能量密度和更薄的设计,被广泛应用于便携式电子设备。

锂硫电池则具有更高的能量密度和更低的成本,但目前仍在研发阶段。

5. 锂电池的安全性锂电池在使用过程中需要注意安全性。

由于锂电池内部的锂金属非常活泼,在遇到高温或物理损伤时可能发生短路、过热甚至起火爆炸的情况。

因此,锂电池的设计中通常包含了安全防护措施,如保护电路、热敏感元件和隔热材料等。

此外,用户在使用锂电池时也要遵循正确的操作方法,避免过度充放电、避免撞击或损坏电池等。

总结:锂电池作为一种高性能的电池技术,已经广泛应用于各个领域。

它的构造简单,工作原理清晰,具有高能量密度、长寿命等优点。

锂离子电池基本知识

锂离子电池基本知识

锂离子电池基本知识锂离子电池基本知识1、什么是Li-ion电池?Li-ion是锂电池发展而来。

所以在介绍Li-ion之前,先介绍锂电池。

举例来讲,以前照相机里用的扣式电池就属于锂电池。

锂电池的正极材料是锂金属,负极是碳。

当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。

而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。

同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。

回正极的锂离子越多,放电容量越高。

我们通常所说的电池容量指的就是放电容量。

在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。

Li-ion就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。

所以Li-ion又叫摇椅式电池。

2、Li-ion电池有哪几部分组成?(1)电池上下盖(2)正极——活性物质为氧化锂钴(3)隔膜——一种特殊的复合膜(4)负极——活性物质为碳(5)有机电解液(6)电池壳(分为钢壳和铝壳两种)3、Li-ion电池有哪些优点?哪些缺点?Li-ion具有以下优点:1)单体电池的工作电压高达3.6-3.8V:2)比能量大,目前能达到的实际比能量为100-115Wh/kg和240-253Wh/L(2倍于Nl-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L3)循环寿命长,一般均可达到500次以上,甚至1000次.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力.4)安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd 电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

锂离子电池基础知识

锂离子电池基础知识

电池基础知识培训资料一、锂离子电池工作原理与性能简介:1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源.2、锂离子电池的工作原理:即充放电原理。

Li-ion的正极材料是氧化钴锂,负极是碳。

当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极.而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。

同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。

回正极的锂离子越多,放电容量越高。

我们通常所说的电池容量指的就是放电容量。

在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。

Li—ion就象一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅两端来回奔跑。

所以,Li—ion又叫摇椅式电池。

通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。

电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。

整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。

正极反应:LiCoO2==== Li1-xCoO2+ xLi+ + xe负极反应:6C + xLi+ + xe—=== Lix C6电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC63、电池的连接:根据电池的电压与容量的需求,可以把电池做串联、并联及混连连接。

a、串联:电压升高,容量基本不变;b、并联:电压基本不变,容量升高;c、混联:电压与容量都会升高;4、化学电池的种类:锂离子电池按电池外形来分类,可分为圆柱形、方形、钮扣形和片状形等。

锂离子电池基本知识培训PPT课件

锂离子电池基本知识培训PPT课件

温度检测
在电池组中安装温度传感器,实时监 测电池温度。
温度控制
根据温度传感器的反馈,通过电池管 理系统控制充放电电流,使电池工作 在安全温度范围内。
防止外部短路措施
电池外壳设计
采用绝缘材料制作电池外壳,防止外部短路。
电池组连接方式
采用串联连接方式,减少外部短路的可能性。
短路保护
在电池管理系统中设置短路保护电路,当发生外 部短路时,自动切断电流,保护电池安全。
用恒流放电方式,放电电流根据电池容量和测试要求设定。
02
充电容量测试
在规定条件下对电池进行充电,记录充电时间并计算充电容量。一般采
用恒流恒压充电方式,充电电流和电压根据电池类型和测试要求设定。
03
容量保持率
电池在多次充放电循环后,其放电容量与初始容量的比值。用于评估电
池循环性能的重要指标。
内阻测试方法及标准
锂盐
如六氟磷酸锂(LiPF6), 提供锂离子源。
添加剂
改善电解液的某些性能, 如提高导电性、降低粘度、 提高安全性等。
PART 03
制造工艺与设备简介
REPORTING
WENKU DESIGN
电极制备工艺流程
涂布
将混合好的浆料均匀涂布在集 流体上,形成电极片。
压片
将干燥后的电极片进行压片处 理,提高其密度和机械强度。
料。
涂布设备
将电极浆料均匀涂布在集流体上, 形成电极片的关键设备。
干燥设备
用于去除电极片中的水分和有机溶 剂,保证电极片的干燥程度。
关键设备介绍
压片机
对干燥后的电极片进行压片处理, 提高其密度和机械强度。
分切机
将压片后的电极片按照要求进行 分切,得到所需尺寸的电极片。

锂电池一些基本知识

锂电池一些基本知识

锂电池一些基本知识目录一、内容概览 (2)1.1 锂电池的重要性 (3)1.2 锂电池的应用领域 (4)二、锂电池的基本概念 (5)2.1 锂电池的定义 (6)2.2 锂电池的组成 (6)三、锂电池的工作原理 (8)3.1 质子交换反应 (9)3.2 电池电压与电化学特性 (9)四、锂电池的性能参数 (11)4.1 能量密度 (12)4.2 充放电速率 (13)4.3 循环寿命 (13)五、锂电池的类型 (14)5.1 锂离子电池 (15)5.2 锂硫电池 (17)5.3 固态电池 (18)六、锂电池的安全问题 (19)6.1 自燃与热失控 (20)6.2 防止短路与热扩散 (21)七、锂电池的回收与处理 (23)7.1 回收技术 (24)7.2 废弃物处理 (26)八、未来发展趋势与挑战 (27)8.1 技术创新 (28)8.2 环境友好型发展 (29)九、结论 (30)9.1 锂电池在未来的重要性 (31)9.2 对锂电池研究的展望 (32)一、内容概览本文档旨在为读者提供关于锂电池的全面而基础的知识,我们将从锂电池的定义和分类入手,详细介绍其工作原理、结构组成以及制造过程。

我们会探讨锂电池在各个领域的应用,包括便携式电子设备、电动汽车和可再生能源等。

我们还将分析锂电池的安全性问题、充放电策略以及未来的发展趋势。

在锂电池的基本概念部分,我们将解释其工作原理,即通过正负极之间的化学反应产生电流。

我们也会介绍锂电池的各种类型,如锂离子电池、锂聚合物电池等,并讨论它们的优缺点。

在锂电池的应用方面,我们将重点介绍其在便携式电子设备中的普及情况,如手机、笔记本电脑等,以及在这些设备中的具体应用。

我们还将探讨锂电池在电动汽车和可再生能源领域中的潜力,以及它们如何助力实现可持续能源发展。

在安全性和性能优化部分,我们将分析锂电池可能面临的安全风险,如过热、短路等,并提出相应的预防措施。

我们也会介绍一些提高锂电池性能的方法,如改进电极材料、优化电解液等。

锂离子电池基础知识新ppt课件.ppt

锂离子电池基础知识新ppt课件.ppt

锂离子电池的充放电制式
❖ 充电制式:恒流充电 恒压充电 ❖ 放电制式:恒流放电 恒阻放电
锂离子电池的充放电曲线图
锂离子电池的优缺点
❖ 优点: ❖ 开路电压高,单体电池电压在3.6~3.8V ❖ 比能量高 ❖ 循环寿命长,自放电小 ❖ 无记忆性,可随时充放电,对环境污染小 ❖ 缺点: ❖ 过充放电保护问题 ❖ 电池成本高 ❖ 大电流放电性能不好, ❖ 电解液是有机溶剂的锂盐溶液,一旦漏液会引起起火,爆炸
聚合物锂离子电池
❖ 作为第三代锂离子电池 的聚合物锂电,有什么 特点和优势,下面我们 来简单的介绍一下
1.聚合物锂离子电池前景
❖ 随着便携式电子产品的应用越来越广、市场需求越 来越多,锂电池的需求量也随之增加。基于如此广 阔的市场,世界各大电池公司为了在这个市场领域 中取得领先的地位,无不致力于开发具有更高能量 密度、小型化、薄型化、轻量化、高安全性、长循 环寿命与低成本的新型电池。其中,聚合物锂离子 (Lithium ion polymer)电池因为具有上述各项优点, 更是各家厂商致力研发的目标。聚合物锂离子电池 基于安全、轻薄等特性,符合便携、移动产品的要 求,因此,在未来2~3年内,聚合物锂电池取代锂 离子电池市场的份额将达50%,被称为21世纪移动 设备的最佳电源解决方案。
电池类型 ( 特 性)
安全性能
几种充电电池性能比较
铅酸电池
镍镉电池
镍氢电池液态锂电池 Nhomakorabea聚合物锂电池



一般
优秀
工作电压 (V)
重量能量比 (Wh/Kg) 体积能量比 (Wh/1) 循环寿命
工作温度 (℃)
2 35
80
300 0~ 60

《锂离子基础知识》课件

《锂离子基础知识》课件
推动能源转型
锂离子电池的发展将加速能源的 转型,使可再生能源得到更广泛
的应用。
提高能源利用效率
锂离子电池的高能量密度和长寿命 将提高能源利用效率,减少能源浪 费。
改变交通产业
锂离子电池在电动汽车领域的广泛 应用将深刻改变交通产业,推动电 动汽车的普及和替代传统燃油车。
THANKS
感谢观看
常用的正极材料包括钴酸锂、 镍酸锂、锰酸锂等,它们具有 较高的能量密度和稳定性。
正极材料的性能直接影响锂离 子电池的能量密度、循环寿命 和安全性能。
负极材料
负极材料是锂离子电池中存储锂 离子的场所,常用的负极材料包
括石墨、钛酸锂等。
负极材料的性能对电池的容量、 充放电速度和循环寿命有重要影
响。
负极材料的稳定性也是影响锂离 子电池安全性能的重要因素。
技术创新与改进方向
01
02
03
固态电解质
研发固态电解质是锂离子 电池的重要创新方向,固 态电解质能够提高电池的 安全性和能量密度。
锂硫电池
锂硫电池具有高能量密度 和低成本的优势,是下一 代锂离子电池的有力候选 者。
锂空气电池
锂空气电池具有极高的能 量密度,但目前仍存在寿 命和充电机制的问题,需 要进一步研究和改进。
锂离子电池的种类
总结词
介绍锂离子电池的主要类型及其特点。
详细描述
根据正极材料的不同,锂离子电池可分为钴酸锂、磷酸铁锂、三元材料等类型。 不同类型的锂离子电池在能量密度、充放电性能、安全性等方面存在差异。
锂离子电池的应用领域
总结词
概述锂离子电池在各个领域的应用情 况。
详细描述
锂离子电池广泛应用于消费电子产品 、电动汽车、储能系统等领域。其高 能量密度和长寿命等特点使得它在现 代社会中具有广泛的应用前景。

锂电电池知识点总结

锂电电池知识点总结

锂电电池知识点总结锂电池是一种将化学能转换为电能的充电式电池。

它采用了锂盐作为电解质,以及正极和负极之间的锂离子传输来实现充电和放电。

锂电池的高能量密度、长循环寿命和较低的自放电率使其成为电子产品、电动工具和电动汽车等广泛应用的首选电池类型。

以下是一些关于锂电池的知识点总结:1. 锂电池的类型- 锂离子电池(Li-ion):是最常见和广泛应用的锂电池类型,常见于手机、笔记本电脑、电动汽车等产品中。

- 锂聚合物电池(LiPo):与锂离子电池类似,但使用的是固态聚合物电解质,相比锂离子电池更轻薄,适用于一些特殊场合的产品。

2. 锂电池的构成- 正极材料:常用的正极材料包括三元材料(如锂钴氧化物)、磷酸铁锂、锰酸锂等,它们影响了电池的能量密度和循环寿命。

- 负极材料:一般采用石墨材料,用于吸附和释放锂离子。

- 电解质:通常是一种含有锂盐的有机溶液,用于传导锂离子。

- 隔膜:用于隔离正负极材料,防止短路。

3. 充放电原理- 充电:在充电过程中,正极材料释放出锂离子,通过电解质传输至负极材料并嵌入其中。

- 放电:在放电过程中,负极材料释放出锂离子,通过电解质传输至正极材料并嵌入其中,同时释放电能。

4. 充放电性能- 能量密度:指单位重量或体积的电池可存储的能量,是衡量电池性能的重要指标。

- 循环寿命:指电池循环充放电的次数,影响电池的使用寿命。

- 自放电率:指电池在不使用的情况下自行放电的速率,较低的自放电率可以延长电池的储存寿命。

5. 锂电池的安全性- 过充电保护:采用电池管理系统(BMS)进行电池充电控制,避免过充电导致安全风险。

- 过放电保护:同样采用BMS进行电池放电控制,避免过放电导致安全风险。

- 过热保护:采用温度传感器进行监控,一旦温度超过安全范围,将自动停止充放电。

6. 锂电池的环境影响- 电池回收:为了减少对环境的影响,应该将废旧的锂电池送至专门的回收中心进行处理和回收利用。

- 资源稀缺性:锂是一种有限资源,长期大规模使用可能会引发资源短缺问题,因此应该重视电池的循环利用和节约能源。

锂离子电池知识培训ppt课件

锂离子电池知识培训ppt课件
3
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(2)锂离子电池定义及原理图
锂离子电池是一种充电电池,它
主要依靠锂离子在正极和负极之
间移动来工作。在充放电过程中, Li+ 在两个电极之间往返嵌入和 脱嵌:充电池时,Li+从正极脱 嵌,经过电解质嵌入负极,负极 处于富锂状态;放电时则相反。
镍氢电池
14
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
镍镉 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池容易与下面两种电 池混淆:

(1)锂电池:存在锂单质。

(2)锂离子聚合物电池:
用多聚物取代液态有机溶剂。
4
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(3)电池的分类 从电池的使用上分:
一次电池:是只能一次性使用的电池, 如:碱性电池、碳性电池、钮扣电池。 二次电池:是可反复使用的电池。如: 镍镉(Nicd)、镍氢(Nimh)、铅 酸、锂离子可充电池(Li-ion)。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.电池的基本知识
2
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

高三化学锂离子电池知识点

高三化学锂离子电池知识点

高三化学锂离子电池知识点介绍锂离子电池原理及应用锂离子电池作为一种重要的储能设备,广泛应用于手机、电动车和电子设备等领域。

在高三化学学习中,了解锂离子电池的原理和应用显得尤为重要。

本文将对锂离子电池的基本知识进行全面介绍。

一、锂离子电池的构成锂离子电池由多个重要组件构成,包括正极、负极、电解质和隔膜等。

其中,正极主要由锂化合物、导电剂和粘合剂组成,负极由碳材料构成,电解质则通常采用有机溶液或聚合物凝胶。

隔膜则起到隔离正负极、防止短路的作用。

二、锂离子电池的工作原理锂离子电池的工作原理基于离子在电解质中的迁移现象。

在充电过程中,锂离子从正极向负极迁移,电子则由负极经过外部电路流向正极,完成充电过程。

而在放电的过程中,则是锂离子从负极向正极迁移,同时释放电子,达到释放能量的目的。

三、锂离子电池的优点和缺点1. 优点锂离子电池具有能量密度高、自放电率低、无记忆效应、寿命长、体积小等优点。

由于这些特点,使得锂离子电池成为了目前最为流行的储能设备之一。

2. 缺点锂离子电池的缺点主要体现在制造成本高、安全性问题、容量衰减快等方面。

目前,科学家正致力于解决这些问题,以进一步提高锂离子电池的性能。

四、锂离子电池的应用锂离子电池广泛应用于各个领域,如手机、电动汽车和便携式电子设备。

随着科技的进步,锂离子电池的应用领域还会继续扩大,未来可能在能源存储和航空航天等领域发挥更大的作用。

结语通过本文的介绍,相信读者对高三化学中的锂离子电池知识点有了更全面的了解。

锂离子电池作为一项重要的科技成果,正逐渐改变着人们的生活。

我们应当加强学习和探索,为锂离子电池的发展贡献自己的力量。

电池基础知识

电池基础知识
• 露点:在固定气压下,空 气所含气态水达到饱和饱 和而凝结成液态水所需降 至的温度。
• ppm:百万分之
4.5容量
• 电池在一定放电条件下所能给出的电量称为电池的容量, 以符号C表示。常用的单位为安培小时,简称安时(Ah) 或毫安时(mAh)。
4.6电压
• 电池正负极之间的电势差。常用的单位为伏特,简称伏 (V)或毫伏(mV)。锂电(钴酸锂/三元/锰酸锂)安全工作 上限电压4.2V或4.35V,下限电压3.0V。
• 电解液根据不同的安全性能的要 求会添加不同的增强安全性能的 添加剂,如防过充的、阻燃的、 提高高温性能的、提高储存性能 的、提高低温性能的等
1.2.5锂离子电池结构——铝塑膜
软包装锂离子电池的包装膜为铝塑膜; 我们使用过的铝塑膜的主要生产厂家为:日本DNP 和昭和,韩国栗村,国产有紫江,华谷,卓越等 铝塑膜由多层聚合物薄膜和Al层复合而成,一般最 外层为NYLON层,粘接到Al层,内层为CPP层,也有 在CPP和Al层间多粘接一层PET层的,用来防止短路;
• 2.粉尘控制:文件规范涂布烘道、制片环境粉尘、 正负极片料的粘接好(是否易掉料)、卷绕机台 清洁频率与要求
• 3.注液前水分控制:严格按照工艺要求烘烤,做 好过程自检巡检;
• 4.禁止用酒精清洗注液系统;
• 5.导入新的电解液前做压降评估测试;
• 6.常规化成电芯谨慎推行精准注液,批量生产前 进行试验;
1.2.4锂离子电池结构——电解液
电解液具有一定 的腐蚀性,更换电解 液时,须带防护眼镜
• 电解液多为六氟磷酸锂的1mol/L 碳酸酯溶液,根据电池的不同用 途,溶质也可以是:六氟砷酸锂、 高氯酸锂、三氟甲基二乙基磺酸 锂或者其组合等,溶剂可以是碳 酸二甲酯、碳酸乙酯、碳酸丙烯 酯、碳酸甲乙酯或者其不同比例 的组合等。

锂离子电池基础知识培训

锂离子电池基础知识培训
锂离子电池基础知识培训
目录 Contents
• 锂离子电池简介 • 锂离子电池的组成与结构 • 锂离子电池的充放电特性 • 锂离子电池的性能指标与测试 • 锂离子电池的维护与保养 • 锂离子电池的发展趋势与展望
01
锂离子电池简介
定义与工作原理
定义
锂离子电池是一种二次电池,通过锂离子在正负极之间的迁移实现充放电。
常用的正极材料包括钴酸锂、镍 酸锂、锰酸锂等,它们具有较高 的能量密度和良好的电化学性能

正极材料的性能直接影响锂离子 电池的能量密度、充放电性能和
使用寿命。
负极材料
负极材料是锂离子电池中存储锂离子 的主体,通常采用石墨、钛酸锂等材 料。
负极材料的比容量、电导率、稳定性 以及与电解液的相容性等特性需综合 考虑。
能量密度
电池的容量与其体积或重量的比值, 表示单位体积或重量所能储存的能量 ,单位为Wh/kg(瓦时每千克)或 Wh/L(瓦时每升)。
循环寿命与自放电率
循环寿命
电池在特定充放电条பைடு நூலகம்下能够维持性能的时间,通常以充放电循环次数来表示。
自放电率
电池在不使用情况下,电量自行减少的比例,通常以每月损失的电量百分比表示 。
05
锂离子电池的维护与保养
使用注意事项
避免过度充电和过度放电
01
锂离子电池有严格的充电和放电范围,过度充电和放电都会影
响电池性能和寿命。
保持适宜的存储环境
02
锂离子电池应存放在干燥、阴凉、通风良好的地方,避免高温
、高湿、阳光直射等环境。
定期检查电池状况
03
定期检查电池外观、电量、电压等参数,确保电池正常工作。
隔膜通常采用聚烯烃材料制成 ,要求具有较高的化学稳定性 、热稳定性和机械强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池的基本知识第一节锂离子电池的基本知识一般而言,锂离子电池有三部分构成:1.锂离子电芯2.保护电路(PCM)3.外壳即胶壳电池的分类从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA998,8088,NOKIA的大部分机型1.外置电池外置电池的封装形式有超声波焊接和卡扣两种:1.1超声波焊接外壳这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.超声波焊塑机其作用为:行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的.焊接有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲.1.2卡扣式卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66.2.内置电池内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起)超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等.包标的电池就很多了,如前两年很浒的MOTO998 ,8088了.第二节锂离子电芯的基本知识锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。

锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。

一、电芯原理锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。

其反应示意图及基本反应式如下所示:二、电芯的构造电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。

根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。

通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X 值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。

负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。

所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。

三、电芯的安全性电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。

在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( >4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。

在材料已定的情况下,C/A太大,则会出现上述结果。

相反,C/A太小,容量低,平台低,循环特性差。

这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。

所以在生产中应就以下几个方面进行控制:1.负极材料的处理1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。

2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。

处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。

2.制浆工艺的控制1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。

提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。

2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。

3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。

均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。

3.采用先进的极片制造设备1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。

2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。

3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。

设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。

4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。

同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。

4.先进的封口技术目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。

为了达到密封焊,必须掌握以下几个要素:1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。

2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。

3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。

四、电芯膨胀原因及控制锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:1锂离子嵌入带来的厚度变化电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。

2.工艺控制不力引起的膨胀在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。

特别是水,因为充电形成的高活性锂碳化合物对水非常敏感,从而发生激烈的化学反应。

反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。

所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。

在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。

五、铝壳电芯与钢壳电芯安全性比较铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。

因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。

其中钢壳电芯型号为063448。

第三节锂离子电池保护线路(PCM)由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。

此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。

过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。

当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。

另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。

过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6过电流及短路电流因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。

过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为:V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)。

假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A。

同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。

通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。

相关文档
最新文档