正方形的判定与性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.3.2正方形的判定与性质

一.选择题(共5小题)

1.下列说法错误的是()

A.有一个角为直角的菱形是正方形

B.有一组邻边相等的矩形是正方形

C.对角线相等的菱形是正方形

D.对角线相等且互相垂直的四边形是正方形

2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()

A.1个B.2个C.4个D.无穷多个

3.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()

A.3 B.2 C.4 D.8

4.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()

A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D.2cm,3cm,5cm

5.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()

A.40 B.25 C.26 D.36

二.填空题(共4小题)

6.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是_________(填写图形的形状)(如图),它的一边长是_________.

7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为_________.

8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_________.

9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;

④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________

A、①④⇒⑥;

B、①③⇒⑤;

C、①②⇒⑥;

D、②③⇒④

三.解答题(共11小题)

10.如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′、B′、C′、D′.

求证:四边形A′B′C′D′是正方形.

11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.

12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.

(1)当DG=2时,求证:菱形EFGH为正方形;

(2)设DG=x,试用含x的代数式表示△FCG的面积.

13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.

(1)求证:BF=DE;

(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.

14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.

(1)若DG=2,求证四边形EFGH为正方形;

(2)若DG=6,求△FCG的面积;

(3)当DG为何值时,△FCG的面积最小.

15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC 上移动,另一边交DC于Q.

(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;

(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.

16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.

17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?

18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.

(1)求证:AF﹣BF=EF;

(2)四边形EFGH是什么四边形?并证明;

(3)若AB=2,BP=1,求四边形EFGH的面积.

19.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.

20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.

19.3.2正方形的判定与性质

参考答案与试题解析

一.选择题(共5小题)

1.下列说法错误的是()

A.有一个角为直角的菱形是正方形

B.有一组邻边相等的矩形是正方形

C.对角线相等的菱形是正方形

D.对角线相等且互相垂直的四边形是正方形

考点:正方形的判定.

分析:正方形:四个角都是直角,四条边都相等,对角线相等,且互相垂直平分的平行四边形;

菱形:四条边都相等,对角线互相垂直平分的平行四边形;

矩形:四个角都相等,对角线相等的平行四边形.

解答:解:A、有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故本选项说法正确;

B、有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故本选项说法正确;

C、对角线相等的菱形的特征是:四条边都相等,对角线相等的平行四边形,即该菱形为正方形.故本选项说法正确;

D、对角线相等且互相垂直的平行四边形是正方形.故本选项说法错误;

故选D.

点评:本题考查了正方形的判定.正方形集矩形、菱形的性质于一身,是特殊的平行四边形.

2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()

A.1个B.2个C.4个D.无穷多个

考点:正方形的判定与性质;全等三角形的判定.

专题:计算题.

分析:在正方形四边上任意取点E、F、G、H,若能证明四边形EFGH为正方形,则说明可以得到无穷个正方形.

解答:解:无穷多个.如图正方形ABCD:

AH=DG=CF=BE,HD=CG=FB=EA,∠A=∠B=∠C=∠D,

有△AEH≌△DHG≌△CGF≌△BFE,

则EH=HG=GF=FE,

另外很容易得四个角均为90°

则四边形EHGF为正方形.

故选D.

相关文档
最新文档