(完整版)大学物理牛顿运动定律及其应用习题及答案
浙江省大学物理试题库002-牛顿运动定律及其应用、变力作用下的质点动力学基本问题.docx
![浙江省大学物理试题库002-牛顿运动定律及其应用、变力作用下的质点动力学基本问题.docx](https://img.taocdn.com/s3/m/7e478636ad51f01dc381f114.png)
浙江海洋学院学校002条目的4类题型式样及交稿式样1・选择题题号:00211001 分数:3分难度系数等级:11.在升降机犬花板上拴有轻绳,具下端系一重物,当升降机以加速度⑷上升时,绳中的张 力正好等于绳了所能承受的最人张力的一半,问升降机以多人加速度上 升吋,绳子刚好被拉断? ( )(A) 2a }. (B)2(ai+g). (C)2m+g. (D)a 】+g.答:(C)题号:00211002 分数:3分难度系数等级:1题号:()0211003分数:3分难度系数等级:13.竖立的圆筒形转笼, 的内壁上,物块与圆筒间的摩擦系数为〃, 角速度Q 至少应为 题号:00211004分数:3分难度系数等级:14.已知水星的半径是地球半径的0.4倍,质量为地球的0.04倍.设在地球上的重力加速度 为g ,则水星表面上的重力加速度为: ( )(A) 0.1g (B)0.25g (C) 2.5 g (D) 4 g 答:(B) 题号:00212005固定的光滑斜面」:,则斜面给物体的支持力为 (A) mg cos 0 ・ (B) mg sin 0 ・ ( )(C) 吨.(D)吨.cos0sin&答:(C)2.如图所示,质量为加的物体用细绳水平拉住,静止在倾角为血勺 半径为绕屮心轴00’转动,物块A 紧靠在圆筒 答: (B )7A F (C)题号:00212006 分数:3分难度系数等级:2 6. 在作匀速转动的水平转台上,与转轴札(距R 处有一体积很小的工件A, 如图所示.设工件与转台间静摩擦系数为从,若使工件在转台上无滑动, 则转台的角速度血应满足 ( ) (A) 必怦.⑻处曆•(C)o> < 啓■叫2專 答:(A) 题号:00212007 分数:3分难度系数等级:27. 用水平压力戸把一个物体压着靠在粗糙的竖直墙面上保持静止.当尸逐渐增人时,物体 所受的静摩擦力/ ( )(A) 恒为零.(B) 不为零,但保持不变. (C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 答:(B) 题号:00212008 分数:3分难度系数等级:28. 光滑的水平桌面上放冇两块相互接触的滑块,质量分别为m 和加2,且7W I </?72.今对两滑块施加相同的水平作用力,如图所示.设 在运动过程中,两滑块不离开,则两滑块Z 间的相互作用力N 应 有 ( )(A) N =0. (B)OvNvE (C) F < TV <2F. (D) N > 2F. 答:(B) 题号:002120095. 一个圆锥摆的摆线长为/,摆线与竖肓方向的夹也恒为&,如图所示.则 摆锤转动的周期为CO题号:00212010 分数:3分难度系数等级:210.升降机内地板上放冇物体A,其上再放另一物体二者的质虽分别为M,、M."・当升 降机以加速度a 向下加速运动时(炉初,物体4对升降机地板的压力在数值上等于( )(A) M A g.(C) (Mf-M )@+d). 答:(D) 题号:00213011 分数:3分 难度系数等级:311・一辆汽车从静止出发,在平直公路上加速前进的过程屮,如果发动机的功率一定,阻力 大小不变,那么,下面哪一个说法是正确的?()(A) 汽车的加速度是不变的. (B) 汽车的加速度不断减小. (C) 汽车的加速度与它的速度成正比. (D) 汽车的加速度与它的速度成反比.答:(B) 题号:00213012 分数:3分 难度系数等级:312.如图所示,一轻绳跨过一个定滑伦,两端各系一质暈分别为汕和加2 的重物,n.加〉〃如滑轮质量及轴上摩擦均不计,此吋重物的加速度的大小为/今用一竖直向下的恒力F = m^代替质量为加:的物体,可得质量 为也的重物的加速度的大小为,则()(A) a = a (B) a > a (C) R va (D)不能确定. 答:(B) 题号:00213013 分数:3分 难度系数等级:3数是 ( )(A) (加]+加2)® (B) (加]~m 2)g.(C) 2/17.・<?• m A + in 2 (D)g ・ m { +m 2答:(D)(B) g.(D)9.如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体4 的质量如大于物体B 的质量也.在A 、B 运动过程中弹簧秤S 的读13•如图所示,质量为〃2的物体A用平行于斜而的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为( )(A) gsin&. (B) gcos&.(C)gctg〃. (D)gtg<9.答:(C)题号:00213014分数:3分难度系数等级:314. -•段路而水平的公路,转弯处轨道半径为R,汽车轮胎与路而间的摩擦系数为“,要使汽车不致于发牛侧向打滑,汽车在该处的行驶速率( )(A)不得小于』pgR . (B)不得大于JpgR .(C)必须等于J顽. (D)还应由汽车的质量M决定.答:(B)题号:00213015分数:3分难度系数等级:315. 一只质量为加的猴,原来抓住一根川绳吊在犬花板上的质量为M的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为( )(A)g・(C) (D) M + m M -m答:(C) Mm题号:00213016分数:3分难度系数等级:316. 一公路的水平弯道半径为/?,路面的外侧高出内侧,并与水平面夹角为0要使汽车通过该段路面时不引起侧向摩擦坚车的速率为( )(B) tg& .(C)j RgC;j(D)』Rg ctg 0V sirrO答:(B)题号:00214017分数:3分难度系数等级:417.质量为加的小球, 放在光滑的木板和光滑的墙壁Z间,如图所示.设木板和墙壁之间的夹角为",当Q逐渐增人时,的压力将((A)增加.(B) 减少.(C) 不变.(D) 先是增加,后乂减小.压力增减的分界角为«=45° . 答:(B) 题号:00214018 分数:3分难度系数等级:4(A) a A =0, °B =0. (C) Q/\V0 , Q B >0. 答:(D) 题号:00215020 分数:3分 难度系数等级:52(). —光滑的内表而半径为1() cm 的半球形碗,以匀角速度0绕其对 称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位 置高于碗底4 cm,则由此nJ 推知碗旋转的角速度约为 ( )(A) 10 rad/s.(B) 13 rad/s. (C) 17 rad/s (D) 18 rad/s.答:(B)2.判断题题号:00221001分数:2分 难度系数等级:11-摩擦力总和物体运动的方向相反。
高考物理最新力学知识点之牛顿运动定律解析含答案
![高考物理最新力学知识点之牛顿运动定律解析含答案](https://img.taocdn.com/s3/m/6e4a103addccda38376bafc6.png)
高考物理最新力学知识点之牛顿运动定律解析含答案一、选择题1.灯笼,又称彩灯,是一种古老的中国传统工艺品.每年的农历正月十五元宵节前后,人们都挂起红灯笼,来营造一种喜庆的氛围.如图是某节日挂出的一只灯笼,轻绳a 、b 将灯笼悬挂于O 点绳a 与水平方向的夹角为,绳b 水平.灯笼保持静止,所受重力为G ,绳a 、b 对O 点拉力分別为F 1、F 2,下列说法正确的是( )A .B .C .F 1和F 2的合力与灯笼对地球的引力是一对平衡力D .灯笼只有重心位置处受重力作用,其他位置不受重力2.随着人们生活水平的提高,高尔夫球将逐渐成为普通人的休闲娱乐运动.如图所示,某人从高出水平地面h 的坡上水平击出一个质量为m 的高尔夫球,由于恒定的水平风力作用,高尔夫球竖直地落入距击球点水平距离为L 的A 穴,则( )A .球被击出后做平抛运动B 2h gC .球被击出后受到的水平风力大小为mgLhD .球被击出时的初速度大小为2g h3.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )A .可能落在A 处B .一定落在B 处C .可能落在C 处D .以上都有可能4.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( )A .0m mmg m+ B .00m mF m + C .00m mmg m + D .000m mF m + 5.下列单位中,不能..表示磁感应强度单位符号的是( ) A .TB .NA m⋅ C .2kgA s ⋅ D .2N sC m⋅⋅ 6.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力7.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J8.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( )A .0B .2m/s 2,水平向右C .4m/s 2,水平向右D .2m/s 2,水平向左9.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )A .升降机停止前在向下运动B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态C .13t t -时间内小球向下运动,动能先增大后减小D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量10.2018 年 11 月 6 日,第十二届珠海航展开幕.如图为某一特技飞机的飞行轨迹,可见该飞机先俯冲再抬升,在空中画出了一个圆形轨迹,飞机飞行轨迹半径约为 200 米,速度约为 300km/h .A .若飞机在空中定速巡航,则飞机的机械能保持不变.B .图中飞机飞行时,受到重力,空气作用力和向心力的作用C .图中飞机经过最低点时,驾驶员处于失重状态.D .图中飞机经过最低点时,座椅对驾驶员的支持力约为其重力的 4.5 倍.11.如图所示,质量为1.5kg 的物体A 静止在竖直固定的轻弹簧上,质量为0.5kg 的物体B 由细线悬挂在天花板上,B 与A 刚好接触但不挤压.现突然将细线剪断,则剪断细线瞬间A 、B 间的作用力大小为(g 取210m /s )( )A .0B .2.5NC .5ND .3.75N12.人乘坐电梯加速向上运动,下列说法正确的是( )A .人对电梯地板的压力大于电梯地板对人的支持力B .人对电梯地板的压力等于人的重力C .电梯地板对人的支持力大于人的重力D .电梯地板对人的支持力等于人的重力13.如图所示,有一根可绕端点B 在竖直平面内转动的光滑直杆AB ,一质量为m 的小圆环套在直杆上。
大学物理答案
![大学物理答案](https://img.taocdn.com/s3/m/e09f69abf61fb7360b4c65b3.png)
第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A). 2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 58 mg (B) 12 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a ′为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中aA 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2=-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT -(m1 +m2 )g =(m1+m2 )a (1)F N2 - m2 g =m2 a (2)解上述方程,得FT=(m1+m2 )(g +a) (3)F N2=m2 (g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N a m m mg F 2724f .=+-=讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力F f =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程F f =μmg =ma 1F ′f =-F f =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2=2as由上述各式可得木块相对于平板所移动的距离为 ()m m g μm s +'''=22v 解2 以木块和平板为系统,它们之间一对摩擦力作的总功为W =F f (s +l ) -F fl =μmgs式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得 ()m m g μm s +'''=22v 2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有 ()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为2ωg R h -= 可见,h 随ω的变化而变化. 2 -11 火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m 的火车,以速率v 沿半径为R 的圆弧轨道转弯,已知路面倾角为θ,试求:(1) 在此条件下,火车速率v 0 为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2) 如果火车的速率v ≠v 0 ,则车轮对铁轨的侧压力为多少?分析 如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量F N sin θ 提供(式中θ 角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v 0行驶.当火车行驶速率v ≠v 0 时,则会产生两种情况:如图所示,如v >v 0 时,外轨将会对车轮产生斜向内的侧压力F 1 ,以补偿原向心力的不足,如v <v 0时,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解 (1) 以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有Rm θF N 2sin v = (1) 0cos =-mg θF N (2)解(1)(2)两式可得火车转弯时规定速率为θgR tan 0=v(2) 当v >v 0 时,根据分析有Rm θF θF N 21cos sin v =+ (3) 0sin cos 1=--mg θF θF N (4)解(3)(4)两式,可得外轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θg θR F sin cos m 21v当v <v 0 时,根据分析有RθF θF N 22m cos sin v =- (5) 0sin cos 2=-+mg θF θF N (6)解(5)(6)两式,可得内轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θR θg m F cos sin 22v 2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m ,圆筒半径为R ,演员骑摩托车在直壁上以速率v 作匀速圆周螺旋运动,每绕一周上升距离为h ,如图所示.求壁对演员和摩托车的作用力.分析 杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v 1 和v 2 两个分量,显然v 1是竖直向上作匀速直线运动的分速度,而v 2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力F N 的水平分量F N2 提供,而竖直分量F N1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有01=-mg F N (1)Rm F N 22v = (2) ()222π2π2cos h R Rθ+==v v v (3)2221N N N F F F += (4)以式(3)代入式(2),得222222222222π4π4π4π4h R Rm h R R R m F N +=+=v v (5) 将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22222222221π4π4⎪⎪⎭⎫ ⎝⎛++=+=h R R g m F FF N N N v与壁的夹角φ为()g h R R F F N N 2222212π4π4arctan arctan +==v 讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2 -13 一质点沿x 轴运动,其受力如图所示,设t =0 时,v 0=5m·s-1,x 0=2 m,质点质量m =1kg,试求该质点7s末的速度和位置坐标.分析 首先应由题图求得两个时间段的F (t )函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解 由题图得()⎩⎨⎧<<-<<=7s t 5s ,5355s t 0 ,2t t t F 由牛顿定律可得两时间段质点的加速度分别为5s t 0 ,2<<=t a7s t 5s ,535<<-=t a对0 <t <5s 时间段,由ta d d v =得 ⎰⎰=t t a 0d d 0v v v 积分后得 25t +=v 再由tx d d =v 得 ⎰⎰=t t x 0d d 0v x x 积分后得33152t t x ++= 将t =5s 代入,得v 5=30 m·s-1 和x 5 =68.7 m对5s<t <7s 时间段,用同样方法有⎰⎰=t t a s 52d d 0v v v得 t t t 5.825.2352--=v 再由 ⎰⎰=txx t x s55d d v得x =17.5t 2 -0.83t 3 -82.5t +147.87将t =7s代入分别得v 7=40 m·s-1和 x 7 =142 m2 -14 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N,t 的单位的s.在t =0 时,质点位于x =5.0 m 处,其速度v 0=6.0 m·s-1 .求质点在任意时刻的速度和位置.分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v=+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v vv =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 020d 0.60.40.6dx =5.0+6.0t+2.0t 2 +2.0t 32 -15 轻型飞机连同驾驶员总质量为1.0 ×103kg .飞机以55.0 m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102N·s-1,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αt mma F -===d d v⎰⎰-=t t m t α0d d 0v v v 得 202t mα-=v v因此,飞机着陆10s后的速率为v =30 m·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -16 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1 /10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力F f的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -F f -F =ma由题意P =F 、F f=b v 2,而a =d v /d t =v (d v /d y ),代 入上式后得-b v 2= m v (d v /d y )考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫⎝⎛-v v v v 0d d 0ty b mm by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v v b m y *2 -17 直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m =136 kg,长l =3.66 m .求当它的转速n =320 r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解 设叶片根部为原点O ,沿叶片背离原点O 的方向为正向,距原点O 为r 处的长为d r 一小段叶片,其两侧对它的拉力分别为F T(r)与F T(r +d r ).叶片转动时,该小段叶片作圆周运动,由牛顿定律有()()r r ωlm r r F r F F T T T d d d 2=+-= 由于r =l 时外侧F T =0,所以有()r r lωm F lrtr F T T d d 2⎰⎰= ()()()22222222r l lmn πr l l ωm r F T --=--=上式中取r =0,即得叶片根部的张力F T0 =-2.79 ×105 N负号表示张力方向与坐标方向相反.2 -18 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tmαmg F t d d sin v=-= (1) Rm m αmg F F N n 2cos v =-= (2)由t αr t s d d d d ==v ,得vαr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=αααrg o90d sin d vv v v得 αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.2 -19 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少到12 v 0时,物体所经历的时间及经过的路程.分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v ==tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v02d d μR t ttμR R 00v v v +=(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μRs =2 -20 质量为45.0 kg 的物体,由地面以初速60.0 m·s-1竖直向上发射,物体受到空气的阻力为F r =kv,且k =0.03 N/( m·s-1).(1) 求物体发射到最大高度所需的时间.(2) 最大高度为多少?分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解 (1) 物体在空中受重力mg 和空气阻力F r =k v 作用而减速.由牛顿定律得tmk mg d d vv =-- (1) 根据始末条件对上式积分,有⎰⎰+-=vv vvvd d 0k mg m t ts 11.61ln 0≈⎪⎪⎭⎫⎝⎛+=mg k k m t v (2) 利用yvt d d d d v v =的关系代入式(1),可得 ym k mg d d vvv =-- 分离变量后积分⎰⎰+-=0d d v vvv k mg m y y故 m 1831ln 00≈⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛+-=v v mg k k mg k m y 讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式g t 0v =和gy 220v=分别算得t ≈6.12s和y≈184 m,均比实际值略大一些.2 -21 一物体自地球表面以速率v 0 竖直上抛.假定空气对物体阻力的值为F r =km v 2,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v vv k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v (2) 物体下落过程中,有yv mkm mg d d 2v v =+- 对上式积分,有⎰⎰--=02d d v vvv k g y y则 2/1201-⎪⎪⎭⎫⎝⎛+=g k v v v2 -22 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =k v 2,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则 3ln 2Fm t mv = 又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则 Fm F m x mm 22144.034ln 2v v ≈= *2 -23 飞机降落时,以v 0 的水平速度着落后自由滑行,滑行期间飞机受到的空气阻力F 1=-k 1 v 2 ,升力F 2=k 2 v 2 ,其中v 为飞机的滑行速度,两个系数之比k 1/ k 2 称为飞机的升阻比.实验表明,物体在流体中运动时,所受阻力与速度的关系与多种因素有关,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有F ∝v ,而在速度较大或流体密度较大的有F ∝v 2,需要精确计算时则应由实验测定.本题中由于飞机速率较大,故取F ∝v 2作为计算依据.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实际上已成为飞机跑道长度设计的依据之一.分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F 1为空气阻力, F 2 为空气升力, F 3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v 的函数,所求的又是飞机滑行距离x ,因此比较简便方法是直接对牛顿第二定律方程中的积分变量d t 进行代换,将d t 用vxd 代替,得到一个有关v 和x 的微分方程,分离变量后再作积分.解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有tmk F N d d 21vv =- (1) 022=-+mg k F N v (2)将式(2)代入式(1),并整理得()xm t mk μk mg μd d d d 221v v v v ==--- 分离变量并积分,有()⎰⎰⨯-=-+0221d d 0x k μk mg μvm vv v v 得飞机滑行距离()()⎥⎦⎤⎢⎣⎡-+-=mg μk μk mg μk μk mx 22121ln 2v (3)考虑飞机着陆瞬间有F N =0 和v =v 0 ,应有k 2v 02=mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式()⎪⎪⎭⎫ ⎝⎛-=212122k ln 2k μk μk g k x v 讨论 如飞机着陆速度v 0=144 km·h -1,μ=0.1,升阻比521=k k ,可算得飞机的滑行距离x =560 m,设计飞机跑道长度时应参照上述计算结果.2 -24 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知刹车时卡车的加速度a =7.0 m·s-2,设刹车一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为多大?设木箱与底板间滑动摩擦因数μ=0.50.。
大学物理练习题及答案解析---第二章牛顿定律
![大学物理练习题及答案解析---第二章牛顿定律](https://img.taocdn.com/s3/m/88902f3bec630b1c59eef8c75fbfc77da26997c0.png)
大学物理练习题第二章牛顿定律一、选择题1. 下列四种说法中,正确的为( )A. 物体在恒力作用下,不可能作曲线运动B. 物体在变力作用下,不可能作曲线运动C. 物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D. 物体在不垂直于速度方向的力作用下,不可能作圆周运动2. 关于惯性有下面四种说法,正确的为( )A. 物体静止或作匀速运动时才具有惯性B. 物体受力作变速运动时才具有惯性C. 物体受力作变速运动时才没有惯性D. 惯性是物体的一种固有属性,在任何情况下物体均有惯性3. 在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是( )A. 钢球运动越来越慢,最后静止不动B. 钢球运动越来越慢,最后达到稳定的速度C. 钢球运动越来越快,一直无限制地增加D. 钢球运动越来越快,最后达到稳定的速度4. 一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为( )A. 0B. P/4 C P D P/25. 质量分别为m 1和m 2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的滑动摩擦系数均为μ。
系统在水平拉力F作用下做匀速运动,如图所示.设水平向右为正方向,如突然撤消拉力,则刚撤去力F的瞬间,二者的加速度a A 和a B分别为( )A.a A=0,a B=0B. a A>0,a B<0C. a A<0,a B>0D . a A <0,a B =06. 质量为m 的物体最初位于x 0处,在力F =−K/x 2作用下由静止开始沿直线运动,k 为一常数,则物体在任一位置 x 处的速度应为( ) A. √k m (1x −1x 0) B. √2k m (1x −1x 0) C. √3k m (1x −1x 0) D. √m k (1x −1x 0) 二、填空题1. 一物体的质量M =2kg ,在合外力i t F )23(+=(SI) 作用下,从静止出发沿水平x 轴作直线运动,则当t =1s 时物体的速度=1v 。
大学物理答案第二章牛顿定律-习题解答
![大学物理答案第二章牛顿定律-习题解答](https://img.taocdn.com/s3/m/b343466fabea998fcc22bcd126fff705cc175cbd.png)
将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。
大学物理题库-牛顿定律习题与答案解析
![大学物理题库-牛顿定律习题与答案解析](https://img.taocdn.com/s3/m/ee4876d977eeaeaad1f34693daef5ef7ba0d12ee.png)
7-2 图第二章 牛顿定律一、选择题:1、如图2-1所示,滑轮、绳子的质量均忽略不计,忽略一切摩擦阻力,物体A 的质量A m 大于物体B 的质量B m 。
在A 、B 运动过程中弹簧秤的读数是:[ ](A )g m m B A )(+ (B )g m m B A )(- (C )g m m m m B A B A -4 (D )g m m m m BA BA +42、在升降机的天花板上拴一轻绳,其下端系有一重物。
当升降机以加速度a 上升时,绳中的张力正好等于所能承受的最大张力的一半;当绳子刚好被拉断时升降机上升的加速度为:[ ] (A )a 2 (B ))(2g a + (C )g a +2 (D )g a +3、如图2-7所示,一竖立的圆筒形转笼,其半径为R ,绕中心轴o o '轴旋转,一物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使A 不落下,则圆筒旋转的角速度ω至少应为:[ ](A )Rgμ (B )g μ (C )Rgμ (D )R g4、如图2-8所示,质量为m作用力的大小为:[ ](A )θsin mg (B )θcos mg(C )θcos mg (D )θsin mg5、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2 .今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F. (D) N > 2F. [ ]6、质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.Bm 1-2 图A8-2 图9-2 图 [ ]7、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ] 8、在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rgs μω≤. (B) Rgs 23μω≤. (C) R gs μω3≤. (D)Rg s μω2≤. [ ]9、一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)g l. (B) gl θcos . (C) g l π2. (D) gl θπcos 2 . [ ]10、光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]二、填空题:1、已知质量为m 的质点沿x 轴受力为)2(+=x k F ,其中k 为常数。
牛顿运动定律习题集(含答案)
![牛顿运动定律习题集(含答案)](https://img.taocdn.com/s3/m/f7058626915f804d2b16c1d3.png)
物理训练题 之 牛顿运动定律一、选择题1. 关于惯性,以下说法正确的是: ( )A 、在宇宙飞船内,由于物体失重,所以物体的惯性消失B 、在月球上物体的惯性只是它在地球上的1/6C 、质量相同的物体,速度较大的惯性一定大D 、质量是物体惯性的量度,惯性与速度及物体的受力情况无关2. 理想实验是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。
以下实验中属于理想实验的是: ( ) A 、验证平行四边形定则 B 、伽利略的斜面实验C 、用打点计时器测物体的加速度D 、利用自由落体运动测定反应时间3. 关于作用力和反作用力,以下说法正确的是: ( ) A 、作用力与它的反作用力总是一对平衡力 B 、地球对物体的作用力比物体对地球的作用力大 C 、作用力与反作用力一定是性质相同的力D 、凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力4. 在光滑水平面上,一个质量为m 的物体,受到的水平拉力为F 。
物体由静止开始做匀加速直线运动,经过时间t ,物体的位移为s ,速度为v ,则: ( ) A 、由公式α=可知,加速度a 由速度的变化量和时间决定B 、由公式a 由物体受到的合力和物体的质量决定C 、由公式αa 由物体的速度和位移s 决定D 、由公式αa 由物体的位移s 和时间决定5.力F 1a 1=3m/s 2,力F 2作用在该物体上产生的加速度a 2=4m/s 2,则F 1和F 2( ) A 、 7m/s 2B 、 5m/s 2C 、 1m/s 2D 、 8m/s26.电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤的示数变为8N ,关于电梯的运动,以下说法正确的是: ( ) A 、电梯可能向上加速运动,加速度大小为2m/s 2B 、电梯可能向下加速运动,加速度大小为2m/s 2C 、电梯可能向上减速运动,加速度大小为2m/s 2D 、电梯可能向下减速运动,加速度大小为2m/s 2 7.下国际单位制中的单位,属于基本单位的是:( ) A 、力的单位:N B 、 质量的单位:kg C 、 长度的单位:m D 、时间的单位:s8. 关于物体的运动状态和所受合力的关系,以下说法正确的是: ( ) A 、物体所受外力为零,物体一定处于静止状态 B 、只有合力发生变化时,物体的运动状态才会发生变化 aD、物体所受的合力不变且不为零,物体的运动状态一定变化9.以下说法中正确的是: ( )A、牛顿第一定律反映了物体不受外力作用时的运动规律B、静止的物体一定不受外力的作用C、在水平地面上滑动的木块最终要停下来,是由于没有外力维持木块的运动D、物体运动状态发生变化时,物体必须受到外力作用10.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是:A、悬浮在空中不动B、速度逐渐减小C、保持一定速度向下匀速直线运动D、无法判断11.人从行驶的汽车上跳下来容易: ( )A 、向汽车行驶的方向跌倒 B、向汽车行驶的反方向跌倒C、从向车右侧方向跌倒D、向车左侧方向跌倒12.下面说法中正确的是: ( )A、只有运动的物体才能表现出它的惯性;B、只有静止的物体才能表现出它的惯性C、物体的运动状态发生变化时,它不具有惯性D、不论物体处于什么状态,它都具有惯性13.下列事例中,利用了物体的惯性的是:( )A、跳远运动员在起跳前的助跑运动B、跳伞运动员在落地前打开降落伞C、自行车轮胎有凹凸不平的花纹D、铁饼运动员在掷出铁饼前快速旋转14.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为: ( )A、人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动;B、人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动;C、人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已;D、人跳起后直到落地,在水平方向上人和车始终具有相同的速度。
大学普通物理学-二-牛顿运动定律
![大学普通物理学-二-牛顿运动定律](https://img.taocdn.com/s3/m/921a8c79a5e9856a56126081.png)
第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。
A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。
解析:本题考查对惯性的正确理解。
物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。
2.下列四种说法中,正确的为()。
A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。
解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。
3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。
A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。
解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。
4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。
A.0B.P/4C.PD.P/24.【答案】A。
解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。
如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。
大学物理习题3-5
![大学物理习题3-5](https://img.taocdn.com/s3/m/8cf3af22c5da50e2524d7fe7.png)
度aA和aB分别为:
[]
(A) aA=0, aB=0 ; ( B) aA>0, aB<0 ;
(C) aA<0, aB>0; (D) aA<0, aB=0;
mB g
kx kx
mA g 图1
思路:整体和局部受力分析
F撤销之前,对于整体:匀速运动,系统受力平衡
F (mA mB )g 0
mB
v2 r
0
(有做单摆运动的趋势,
受力分析:
T
T2
mg和T '的合力提供向心力)
T ' mB g cos T :T ' 1 cos2
mg T '
图3
mB g cos
mB g
mB g sin
答案:1/ cos2
5.如图所示,A,B,C三物体,质量分别为M=0.8kg, m=m0=0.1kg,当它们如图a放置时,物体正好做匀速 运动。(1)求物体A与水平桌面的摩擦系数;(2) 若按b放置时,求系统的加速度及绳的张力。
②质点系的功能定理
W外 +W内非 =E2 -E1
即系统机械能的增量等于外力功与内部非保守力功之总和。
③机械能守恒定理 如果W外=0,即系统与外界无机械能交换,同时W内非=0,即系 统内部无机械能与其他形式能量的转换,则系统的机械能始终 保持一个常数,即
Ek E p
说明:
1、动能是状态量,是质点因运动而具有的做功本领。
m0
mM
a m g T M (m m0 ) g
mM
mM
6.质量为m的子弹以速度v0水平射入沙土中,设子 弹所受阻力与速度反向,大小与速度成正比,比例系
大学物理第二章习题及答案
![大学物理第二章习题及答案](https://img.taocdn.com/s3/m/0e32789c1b37f111f18583d049649b6648d709d2.png)
第二章 牛顿运动定律一、选择题1.下列说法中哪一个是正确的A 合力一定大于分力B 物体速率不变,所受合外力为零C 速率很大的物体,运动状态不易改变D 质量越大的物体,运动状态越不易改变2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A 将受到重力,绳的拉力和向心力的作用B 将受到重力,绳的拉力和离心力的作用C 绳子的拉力可能为零D 小球可能处于受力平衡状态3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率A 不得小于gRμ B 不得大于gRμ C 必须等于gRμ2 D 必须大于gRμ34.一个沿x 轴正方向运动的质点,速率为51s m -⋅,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg,则它到达m 10=x 处的速率为A 551s m -⋅B 1751s m -⋅C 251s m -⋅D 751s m -⋅5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大A mgB mg μC )(a g m +μD )(a g m -μ6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F与水平方向的夹角θ应满足 A 1cos =θ B 1sin =θC μθ=tgD μθ=ctg 二、简答题1.什么是惯性系什么是非惯性系2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式;三、计算题质量为10kg 的物体,放在水平桌面上,原为静止;先以力F 推该物体,该力的大小为20N,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为,求物体的加速度;质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数2.0=μ,斜面仰角︒=30α,如图所示,今以大小为的水平力F 作用于m, 求物体的加速度;雨下降时,因受空气阻力,在落地前已是等速运动,速率为5m/s;假定空气阻力大小与雨滴速率的平方成正比,问雨滴速率为4m/s 时的加速度多大一装置,如图所示,求质量为1m 和2m 两个物体加速度的大小和绳子的张力,假设滑轮和绳的质量以及摩擦力可以忽略不计;题 图桌面上叠放着两块木板,质量各为21,m m .如图所示, 2m 和 桌面间的摩擦因数为2μ,1m 和2m 间静摩擦因数1μ,问沿水平方向用多大的力才能把下面的木块抽出来.如图所示,物体A,B 放在光滑的桌面上,已知B 物体的质量是A 物体质量的两倍,作用力1F 和2F 的四倍.求A,B 两物体之间的的相互作用力.北京设有供试验用高速列车环形铁路,回转半径9km,将要建设的京沪列车时速250km/h,若在环路上此项列车试验且铁轨不受侧压力,外轨应比内轨高多少 设轨距为1.435m.在一只半径为R 的半球形碗内,有一个质量为m 的小钢球,当以角速度ω在水平面内沿碗内壁 做匀速圆周运动时, 它距碗底又多高一质量为10kg 质点在力)(40120N t F +=作用下,沿x 轴作直线运动;在t=0时,质点位于05x m=处,其速度06/m sυ=;求质点在任意时刻的速度和位置;mg θFN fmgθFNfyx第二章 牛顿运动定律答案一、选择题 二、简答题1.什么是惯性系什么是非惯性系在这样的参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态不变,这样的参照系称惯性系;简言之,牛顿第一定律能够成立的参照系是惯性系,反之,牛顿第一定律不成立的参照系是非惯性系;2.任一力学量Q 的量纲式:[]p q r Q L M T =;速度、加速度、力、动量的量纲式分别为:1221[],[],[],[]LT a LT F MLT P MLT υ----==== 三、计算题质量为10kg 的物体,放在水平桌面上,原为静止;先以力F 推该物体,该力的大小为20N,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为,求物体的加速度; 解:研究对象是物体桌上面的运动情况:外力静止开始均速直线运动;隔离体讨论受力情况物体受右边所式的四种力的作用;它们是重力G ,弹力N,推力F,滑动摩擦力f 建立坐标系:左边图所示, 在x 轴上:)1(cos maf F =-θ轴上在y :)2(0sin =--θF mg N滑动摩擦力为: )3(Nf μ=式 1,2,3结合求解a 可得:mg2υk f =a2/5.0)]6.02098(1.01.020[101)]37sin 208.910(1.037cos 20[101)]sin (cos [1)sin (cos s m F mg F m a maF mg F =⨯+-⨯=︒⨯+⨯-︒⨯=+-==+-θμθθμθ 答:该物体的加速度为 2/5.0s m质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数2.0=μ,斜面仰角︒=30α,如图所示,今以大小为的水平力F 作用于m, 求物体的加速度;解:以物体为研究对象;讨论物体的运动方向; 斜面向上的力:N F 38.930cos 6.19cos =︒⨯=α 斜面向下的力:N mg 8.930sin 8.92sin =︒⨯⨯=α ααsin cos mg F >∴ 物体沿斜面向上运动,对物体受力分析 )1(0sin cos =-+N F mg αα)3()2(cos sin N f maF f mg μαα==+--结合式 1,2,3可得:2/909.0)]sin cos (sin cos [1s m F mg mg F ma =+--=ααμαα 答:该物体加速度大小为2/909.0s m a =,方向沿斜面向上;雨下降时,因受空气阻力,在落地前已是等速运动,速率为5m/s;假定空气阻力大小与雨滴速率的平方成正比,问雨滴速率为4m/s 时的加速度多大解:根据牛顿第二定律 雨滴等速运动时,加速度为零)1(021=-υk mgmg1FαF题 图1ag m 11T2ag m 22T'1T '1T '2T 2a1 2 3222212221212221/53.38.9)541()1(s m g a mamgmg ma k mg mgk ≈⨯-=-==-=-=υυυυυυ一装置,如图所示,求质量为1m 和2m 两个物体加速度的大小和绳子的张力,假设滑轮和绳的质量以及摩擦力可以忽略不计; 解:假定1m 加速度竖直向上; 对1m 受力分析得)1(1111a m g m T =-对2m 受力分析得)2(2222a m T g m =-对动滑轮受力分析得 )0()3(02212===-m ma T T因为相同时间内1m 下落高度是2m 的2倍,所以)4(221a a =由1—4可得:21112244m m a g m m -=+ 2121224m m a g m m -=+ 1211234m m T g m m =+ 1221264m m T g m m =+桌面上叠放着两块木板,质量各为21,m m .如图所示, 2m 和 桌面间的摩擦因数为2μ,1m 和2m 间静摩擦因数1μ,问沿水平方向用多大的力才能把下面的木块抽出来.解:隔离物体进行受力分析 对图1:1111111a m g m N f ===μμ得 g a 11μ= 对图2:222222121212N f a m f f F g m g m g m N N μ==-'-+=+'=得])([12121122g m m g m F m a +--=μμ 将木块抽出的条件是 12a a > 得到g m m F ))((2121++>μμ如图所示,物体A,B 放在光滑的桌面上,已知B 物体的质量是A 物体质量的两倍,作用力1F 是2F 的四倍.求A,B 两物体之间的的相互作用力.解:条件是光滑的桌面,所以不考虑摩擦力再进行隔离体和受力分析:对物体A :设其向右以加速度a 运动 )1(1a m F F A BA =-对图2:)3()2(2BAAB B AB F F a m F F ==-已知条件代入上面等式中可得:⎩⎨⎧=-=-)2(2)1(422am F F a m F F A AB A AB解此方程组: 23F F F BA AB ==∴北京设有供试验用高速列车环形铁路,回转半径9km,将要建设的京沪列车时速250km/h,若在环路上此项列车试验且铁轨不受侧压力,外轨应比内轨高多少 设轨距为.解:根据列车受力的情况可得: 根据牛顿第二定律BA F1N Ag m A1F12F2Ng m BAB F2Rm mg F mgF n n 2tan tan υθθ===解得2tan gRυθ=m gRl l l h 078.0tan sin 2==≈=υθθ 在一只半径为R 的半球形碗内,有一个质量为m 的小钢球,当以角速度ω在水平面内沿碗内壁 做匀速圆周运动时, 它距碗底又多高解:取刚球为隔离体,其受力分析如图b)3()(cos )2(cos )1(sin sin 2Rh R mgF mR ma F n -====θθθωθ 由上述格式可解得刚球距碗底的高度为2ωgR h -=一质量为10kg 质点在力)(40120N t F +=作用下,沿x 轴作直线运动;在t=0时,质点位于05x m=处,其速度06/m s υ=;求质点在任意时刻的速度和位置;解:由牛顿第二定律F ma =,得124Fa t m ==+ 00002(124)646tt adtt dt t t υυυ=+=++=++⎰⎰0020032(646)2265ttx x dtx t t dtt t t υ=+=+++=+++⎰⎰mgmgxb。
《大学物理》牛顿运动定律练习题及答案解析
![《大学物理》牛顿运动定律练习题及答案解析](https://img.taocdn.com/s3/m/a37cf0d7f605cc1755270722192e453610665b84.png)
《大学物理》牛顿运动定律练习题及答案解析一、选择题1.升降机内地板上放有一质量为m 的物体,当升降机以加速度a 向下加速运动时(a <g ),物体对升降机地板的压力在数值上等于( C )(A)mg. (B) m(g+a).(C)m(g -a). (D)m a.2. 关于作用力和反作用力,表述正确的是 ( D )(A )大小相等,方向相反,作用在同一条直线上 (B )力的性质必定相同(C )两个力同时存在,同时消失 (D )以上均正确3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为 ( C ) (A) R gμ (B)g μ (C) R g μ (D)Rg 4.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足 ( A )(A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. . 5.如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度的大小为a ′,则( B )(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定。
6.如图所示两个A 、B 物体紧靠在一起放在光滑的水平面上,2A B m m =,A 、B 分别受到水平方向的作用力F 1 F 2, 12F F >,则A 、B 之间的作用力为( D )ωO R A1m 2(A )122F F +. (B) 122F F - (C ) 12233F F + (D) 12233F F + 1.C 2.D 3.C 4.A 5.B 6.D二.填空题1.牛顿运动定律适用的参考系称为_________系,牛顿运动定律不适用的参考系称为__________系2. 质量为 m 的物体,在 kt F F -=0 的外力作用下沿 x 轴运动,已知 t =0 时,0,000==v x , 则物体在任意时刻的加速度 _____; 速度 _____ ____ ; 位移 _________ 。
大学物理C-02力学基本定律2参考答案 (1)
![大学物理C-02力学基本定律2参考答案 (1)](https://img.taocdn.com/s3/m/1e6d8c621eb91a37f1115c3b.png)
3.长 l 0.40m 、质量 M 1.00kg 的匀质木棒,可绕水平轴 O 在竖直平面内转动,开始时棒自然竖 直悬垂,现有质量 m 8 g 的子弹以 v 200m / s 的速率从 A 点射入棒中,A 点与 O 点 的距离为 解: (1)应用角动量守恒定律
3 l ,如图所示。求: (1)棒开始运动时的角速度; (2)棒的最大偏转角。 4
(2)应用机械能守恒定律
A
l l 1 1 3 3l 3l [ Ml 2 m ( l )] 2 Mg mg Mg cos mg cos 2 3 4 2 4 2 4 2 9 M m 8 l 0.079 得 cos 1 3 2 M 3m g
4.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5kg,长度为l = 1.0 m,对轴的转动惯量为J =ml2/3 .初始时棒静止.今有一 水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量 为m′= 0.020kg,速率为v =400 m·s-1.试问: (1)棒开始和子弹一起转动时角速度ω有多大?
8. 粒子在加速器中被加速,当加速到其质量为静止质量的 5 倍时,其动能为静止能量的__4__倍。 二、选择题 1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m1 和m2 的物体(m1 <m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的 张力[ C ] (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度
2
O 60
(完整版)大学物理牛顿运动定律及其应用习题及答案
![(完整版)大学物理牛顿运动定律及其应用习题及答案](https://img.taocdn.com/s3/m/093a5261f61fb7360a4c6594.png)
第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:本题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx (k 为比例系数),求:(1)此时作用于质点的力;(2)质点由1x x =处出发,运动到2x x =处所需要的时间。
解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-(0F ,k 均为常量)的作用下作直线运动,求:(1)质点的加速度;(2)质点的速度和位置(设质点开始静止于坐标原点处).解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)(k 是常量)的作用下沿X 轴运动,求质点在x 处的速度。
解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰ 5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰ 6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(kmv 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(kmv 0)[1-t m k e )(-] 00000(1)k t mx tk k t t m m dx v v e dtmv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e = 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000v t k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max 00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未达到极限速度前运动方程为2mg kv ma -= (1)雨滴下降达到极限速度后运动方程为20mg kv -= (2)将v = 4.0 m/s 代入(2)式得2maxmg k v = (3) 由(1)、(3)式22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。
【高考物理必刷题】牛顿运动定律(后附答案解析)
![【高考物理必刷题】牛顿运动定律(后附答案解析)](https://img.taocdn.com/s3/m/758b02437ed5360cba1aa8114431b90d6c85890c.png)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
《大学物理》牛顿力学练习题及答案
![《大学物理》牛顿力学练习题及答案](https://img.taocdn.com/s3/m/88a6dd3458eef8c75fbfc77da26925c52cc591bf.png)
《大学物理》牛顿力学练习题及答案一、简答题1、交通事故造成的损失与伤害跟惯性有关。
为了减少此类事故的发生或减小事故造成的伤害,根据你所学过的物理知识提出三条防范措施。
答:驾驶员与前排乘客要系好安全带;市区内限速行驶;保持车距;车内座椅靠背上方乘客头部位置设置头枕等。
(只要正确即可)2、汽车防止由于惯性受到伤害的安全措施之一是设置头枕,头枕处于座椅靠背上方乘客的头部位置,是一个固定且表面较软的枕头。
请你从物理学的角度解释在发生汽车“追尾”事故时,头枕会起什么作用? (“追尾”是指车行驶中后一辆车的前部撞上前一辆车的尾部)答:原来前面的车速度较慢(或处于静止状态),当发生“追尾”时,车突然加速,坐在座椅上的人由于惯性,保持原来的慢速运动(或静止)状态,头会突然后仰,这时较软的头枕会保护头和颈部不被撞伤。
3、写出牛顿第一定律的内容,并说明这个定律说明了物体的什么? 阐明了什么概念?答:牛顿第一定律的内容:任何物体都保持静止或匀速直线运动状态,直到其它物体对它作用的力迫使它改变这种状态为止。
这个定律说明了物体都有维持静止和作匀速直线运动的趋势。
阐明了惯性和力的概念。
4、写出牛顿第二定律的内容,并说明这个定律定量的描述了力的什么? 定量的量度了物体的什么?答:牛顿第二定律的内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
这个定律定量地描述了力作用的效果,定量地量度了物体的惯性大小。
知识点:牛顿第二定律的内容和意义。
5、牛顿第三定律说明了作用力和反作用力之间有什么样的关系? 其性质如何?答:(1) 作用力和反作用力是没有主次、先后之分。
它们是作用在同一条直线上,大小相等,方向相反。
(2)它们同时产生、同时消失。
(3)这一对力是作用在不同物体上,不可能抵消。
(4)作用力和反作用力必须是同一性质的力。
(5)作用力和反作用力与参照系无关。
大学物理牛顿运动定律及其应用习题及答案(可编辑修改word版)
![大学物理牛顿运动定律及其应用习题及答案(可编辑修改word版)](https://img.taocdn.com/s3/m/a242b1e3af45b307e87197e8.png)
12 第2章 牛顿运动定律及其应用 习题解答1. 质量为10kg 的质点在 xOy 平面内运动,其运动规律为:x = 5con 4t + 3 (m), y = 5sin 4t - 5 (m).求t 时刻质点所受的力.解: 本题属于第一类问题x = 5con 4t + 3v = dx= -20 sin 4t xdt a = dvx xdt = -80 cos 4t y = 5sin 4t - 5 v y = 20 cos 4t a y = -80 sin 4tF x = ma x = -800 cos 4t (N ) F y = ma y = -800 s in 4t (N )1F = (F x + F y )2 = 800(N )2. 质量为 m 的质点沿 x 轴正向运动,设质点通过坐标 x 位置时其速率为 kx ( k 为比例系数),求: (1) 此时作用于质点的力;(2) 质点由 x = x 1 处出发,运动到 x = x 2 处所需要的时间。
解:(1) F = mdv = mk dx= mk 2 x (N ) dt dtdx x 2 dx 1 x 21 x(2) v = kx = ⇒ t = ⎰ = ln x = ln 2dt x 1 kx k x k x 13. 质量为 m 的质点在合力 F = F 0 - kt( N ) ( F 0 ,k 均为常量)的作用下作直线运动,求:(1) 质点的加速度;(2) 质点的速度和位置(设质点开始静止于坐标原点处).解:由牛顿第二运动定律mdv = F - kt ⇒ a = F 0 - kt ( ms -2 ) dt 0mF t - 1 kt 2v dv = t F 0 - kt dt ⇒ v = 0 2( ms -1 ) ⎰ ⎰0 0F t - 1 kt 2 1 F t 2 - 1 kt 3x t 0 0 dx = dt ⇒ x = 2 6 ( m ) ⎰ ⎰ 0 0m m m m1 - v 4. 质量为 m 的质点最初静止在 x 0 处,在力 F = -k / x (N)( k 是常量)的作用下沿 X 轴运动,求 2质点在 x 处的速度。
2024高考物理牛顿运动定理综合练习题及答案
![2024高考物理牛顿运动定理综合练习题及答案](https://img.taocdn.com/s3/m/cb0f8527b94ae45c3b3567ec102de2bd9605de31.png)
2024高考物理牛顿运动定理综合练习题及答案一、选择题1. 牛顿第一定律适用的是()A. 运动状态改变B. 速度改变C. 方向改变D. 惯性运动2. 牛顿第二定律的数学表达式是()A. F = maB. W = mgC. P = mvD. F = mv3. 牛顿第二定律表明,物体的加速度与()成正比,与质量成反比。
A. 力B. 速度C. 位移D. 能量4. 一个质量为2 kg的物体受到的力是10 N,则它的加速度为()A. 2 m/s^2B. 5 m/s^2C. 10 m/s^2D. 20 m/s^25. 一个质量为5 kg的物体受到的力是20 N,则它的加速度为()A. 2 m/s^2B. 4 m/s^2C. 5 m/s^2D. 10 m/s^2二、填空题1. 牛顿第三定律指出,任何两个相互作用的物体之间都有相等大小、方向相反的()。
2. 抛体运动是一种()的运动。
3. 一个物体沿着直线运动,它的速度大小不变,但方向改变,这是一种()运动。
4. 力是引起物体发生()运动或改变运动状态的原因。
5. 物体的质量是物体所具有的性质,不随()而改变。
三、计算题1. 一个质量为3 kg的物体受到的力是12 N,求它的加速度。
答: 加速度 a = F / m = 12 N / 3 kg = 4 m/s^22. 一个质量为5 kg的物体受到的力是20 N,求它的加速度。
答: 加速度 a = F / m = 20 N / 5 kg = 4 m/s^23. 一个物体质量为10 kg,在受到100 N的力作用下,求它的加速度。
答: 加速度 a = F / m = 100 N / 10 kg = 10 m/s^24. 一个物体在10 N的力下产生2 m/s^2的加速度,求物体的质量。
答: 质量 m = F / a = 10 N / 2 m/s^2 = 5 kg5. 一个物体在15 N的力下产生3 m/s^2的加速度,求物体的质量。
大学力学试题及答案
![大学力学试题及答案](https://img.taocdn.com/s3/m/3493c86db80d6c85ec3a87c24028915f804d848e.png)
大学力学试题及答案一、选择题(每题2分,共20分)1. 牛顿第一定律也被称为惯性定律,它描述了物体在不受外力作用时的运动状态。
根据牛顿第一定律,物体将:A. 保持静止B. 保持匀速直线运动C. 做加速运动D. 做减速运动答案:B2. 根据牛顿第二定律,力与物体的质量和加速度之间的关系是:A. F = maB. F = m/aC. F = a/mD. F = 1/(ma)答案:A3. 一个物体从静止开始做自由落体运动,其下落的加速度是:A. 0B. 9.8 m/s²(在地球表面)C. 10 m/s²D. 11.2 m/s²答案:B4. 以下哪种力不是保守力?A. 重力B. 弹力C. 摩擦力D. 电场力答案:C5. 根据能量守恒定律,一个系统的机械能:A. 总是增加B. 总是减少C. 保持不变D. 可以增加也可以减少答案:C6. 一个物体在水平面上受到一个恒定的力作用,若力的方向与物体运动方向相反,则物体将:A. 做加速运动B. 做减速运动C. 保持静止D. 做匀速直线运动答案:B7. 在理想气体状态方程 PV = nRT 中,P 表示:A. 体积B. 温度C. 压力D. 摩尔数答案:C8. 一个弹簧的劲度系数为 k,当弹簧被拉伸或压缩时,它所储存的弹性势能与弹簧的形变量 x 成正比,比例系数为:A. kB. 1/kC. k/2D. 2k答案:C9. 根据动量守恒定律,如果一个系统不受外力作用,那么系统的:A. 动量总是增加B. 动量总是减少C. 动量保持不变D. 动量可以增加也可以减少答案:C10. 一个物体在水平面上做匀速圆周运动,它的向心力是由:A. 重力提供的B. 摩擦力提供的C. 拉力提供的D. 惯性力提供的答案:C二、填空题(每题3分,共30分)1. 牛顿第三定律指出,对于每一个作用力,总有一个大小相等、方向相反的________力。
答案:反作用2. 根据胡克定律,弹簧的形变量与施加在弹簧上的力成正比,比例系数称为________系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 牛顿运动定律及其应用 习题解答
1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:
543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.
解:本题属于第一类问题
543
20sin 480cos 4x x x x con t dx v t dt
dv a t dt
=+==-==- 5sin 45
20cos 480sin 4y y y t v t a t
=-==-
12800cos 4()
800sin 4()()800()
x x y y x y F ma t N F ma t N F F F N ==-==-=+=
2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx (k 为比例系数),求:
(1)此时作用于质点的力;
(2)质点由1x x =处出发,运动到2x x =处所需要的时间。
解:(1) 2()dv dx F m mk mk x N dt dt
=== (2) 22112111ln ln x
x x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-(0F ,k 均为常量)的作用下作直线运动,求:
(1)质点的加速度;
(2)质点的速度和位置(设质点开始静止于坐标原点处).
解:由牛顿第二运动定律 200201000
232000012111262v t x t F kt dv m
F kt a (ms )dt m
F t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰
4.质量为m 的质点最初静止在0x 处,在力2
F k /x =-(N)(k 是常量)的作用下沿X 轴运动,求质点在x 处的速度。
解: 由牛顿第二运动定律
02120v x x dv dv dx dv F k /x m
m mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰ 5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2
/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求
质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律
02120v x x dv dv dx dv F k /x m
m mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰ 6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明
(1) t 时刻的速度为v =t m k e v )(0-;
(2) 由0到t 的时间内经过的距离为x =(k
mv 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(
0k
m v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv m
dt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰
(2) 由0到t 的时间内经过的距离为x =(k
mv 0)[1-t m k e )(-] 00000(1)k t m
x t
k k t t m m dx v v e dt
mv dx v e
dt x e k ---===⇒=-⎰⎰
(3)停止运动前经过的距离为)(0k
m v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(
0k m v (4)当k m t =时速度减至0v 的e
1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:
01v v e = 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:
(1) 子弹射入沙土后,速度随时间变化的函数式;
(2) 子弹进入沙土的最大深度.
解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m
=-⇒=- 考虑初始条件,对上式两边积分: 000
v t k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max 00max 0
0x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)
解: 由牛顿第二运动定律
雨滴下降未达到极限速度前运动方程为
2mg kv ma -= (1)
雨滴下降达到极限速度后运动方程为
20mg kv -= (2)
将v = 4.0 m/s 代入(2)式得
2max
mg k v = (3) 由(1)、(3)式
22424max 16(1)10(1) 3.6/25
v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有
sin 0cos 0T N mg T N θθμ+-=-=
联立以上2式得 ()cos sin mg
T μθθμθ=+
上式T 取得最小值的条件为
tg θμ==
由此得到
2.92l m =≈。