第三章-土的压缩性与地基沉降计算..
第三章 计算土的压缩性与地基沉降量
故
Es
p
p2 p1
e1 e2 1e1
1 e1
式中
Es—土的侧限压缩模量,MPa; α 、e1、e2—与式(3-6)中的含义相同。
学习单元2 计算地基最终沉降量
基础知识 一、地基最终沉降量的概念
地基最终沉降量是指地基在建筑物荷载作用下达到压缩稳定 时,地基表面的沉降量。对于偏心荷载作用下的基础,则以基底 中点沉降量作为其平均沉降量。 计算地基最终沉降量的目的,在 于确定建筑物的最大沉降量、沉降差、倾斜和局部倾斜,并将其 控制在允许的范围内,以保证建筑物的安全和正常使用。
压缩仪中进行的。如图3-1所示 为室内侧限压缩仪(又称固结仪) 示意图,它由压缩容器、加压 活塞、刚性护环、环刀、透水 石和底座等组成。
图3-2 侧限压缩仪示意图
常用的环刀内径为60~80mm,高20mm,试验时,先用金属环 刀取土,然后将土样连同环刀一起放入压缩仪内,土样上下各放 一块透水石,以便土样受压后能自由排水,在透水石上面再通过 加荷装置施加竖向荷载。由于土样受到环刀、压缩容器的约束, 在压缩过程中只能发生竖向变形,不能发生侧向变形,所以这种 方法称为侧限压缩试验。
(3)确定地基沉降计算深度zn。 地基沉降计算深度是指基底以下 需要计算压缩变形的土层总厚度,也称为地基压缩层深度。 在该
深度以下的土层变形小,可略去不计。确定zn时该深度处应符合 σz≤0.2σc的要求;若其下方存在高压缩性土,则要求σz≤0.1σc。
(4)计算各分层的自重应力平均值。
p1i
c(i1)
式中 α —土的压缩系数,MPa-1; e1 —相应于p1作用下压缩稳定后的孔隙比; e2 —相应于p2作用下压缩稳定后的孔隙比。
土在完全侧限条件下的竖向附加应力与相应的应变增量的比
土力学与地基基础3
3.3 土的压缩性原位测试
在工地现场,选择有代表性部位进行载荷试验。根据 测试点深度,载荷试验分为浅层平板载荷试验和深层 平板载荷试验两种。载荷试验是通过承压板对地基土 分级施加压力 p,观测记录每级荷载作用下沉降随时 间的发展以及稳定时的沉降量 s,利用地基沉降的弹 性力学理论反算出土的变形模量和地基承载力。
3.3 土的压缩性原位测试
3.3 土的压缩性原位测试
压缩模量 Es 是土在完全侧限的条件下得到的,为竖向正应 力与相应的正应变的比值。该参数将用于地基最终沉降量计 算的分层总和法、应力面积法等方法中。
四、体积压缩系数
五、土的回填再压缩曲线
一、土的压缩系数
二、土的压缩系数Cc 三、压缩模量
四、体积压缩系数
五、土的回填再压缩曲线
工程中还常用体积压缩系数 m 这一指标作为地基沉降的计算 参数,体积压缩系数在数值上 等于压缩模量的倒数,其表达 式为:
V
上式中, m 的单位为 Mpa-1 (或 KPa-1 ), m 值越大,土 的压缩性越高。
3.2土的压缩性室内测试方法
一、试验仪器
二、试验方法 三、试验结果
主要仪器为侧限压缩仪,如下图所 示
一、试验仪器
二、试验方法 三、试验结果 1. 用环刀切取土样,用天平称质量。 2. 将土样一次装入侧限压缩仪的容 器。 3. 加上杠杆,分级施加竖向压力 pi。 4. 用测微计(百分表)按一定时间 间隔测记每级荷载施加后的读数 ( ΔHi)。 5. 计算每级压力稳定后试验的孔隙 三、压缩模量
四、体积压缩系数
在某些工况下,土体可能在受荷 压 缩后又卸荷,如拆除老建筑后 五、土的回填再压缩曲线在原址上建造新建筑物。当需要 考虑现场的实际 加荷情况对土体 变形影响时,应进行土 的回弹再 压缩试验。
土力学第三篇
例题4 某厂房为框架结构,柱基底面为正方形, 边长 l=b=4.0m,基础埋深d=1.0m。上部结构传至基础 顶面的荷重P=1440kN。地基为粉质粘土,地下水位深 3.4m。土的压缩模量: 地下水位以上 Es1 5.5MPa ,地 下水位以下 Es2 6.5MPa ,试用“规范法”计算柱基 中点的沉降量。
2. 饱和土的渗流固结 (1) 饱和土的渗流固结
孔隙水排出;孔隙体积减小; 由孔隙水承担的压力转移到土骨架,成为有效应力。
(0
t u 0
3. 单向固结理论
单向固结是指土中的孔隙水只沿竖直方向渗流, 土体也只在竖向发生压缩。
(1) 单向固结微分方程及其解答
故受压层深度 zn 6m 。
cz
(8)计算各土层的压缩量
si
( 1
a e1
)i
zi
hi
(9)计算柱基最终沉降量
n
s si 16.3 12.9 9.0 6.1 44.3mm i 1
例题3 某厂房为框架结构,柱基底面为正方形, 边长 l=b=4.0m,基础埋深d=1.0m。上部结构传至基 础顶面的荷重P=1440kN。地基为粉质粘土,其天然
0 zi1
Aokaa zdz z i1 i1 0
故
si
Aaabb Esi
Aokbb Aokaa Esi
i zi
i1zi1
Esi
(3)si
1 (
Esi
i
zi
i
1
zi
)
1
=
1 Esi
( p0i zi
p0 i 1 zi 1 )
p0 Esi
(i zi
i 1 zi 1 )
n
(4)地基总沉降 s
土力学第三章
绪论0.3土力学的方法和内容绪论绪论土力学包括哪些内容?§3 土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算S≦[S]沉降具有时间效应-沉降速率第3章土的压缩性与基础沉降计算概述第3章土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算§3 土的压缩性与基础沉降计算3.1 压缩试验及压缩性指标砂土:一般不做压缩试验粘性土:固结(压缩)试验。
3.1.1 侧限压缩试验支架加压设备固结容器变形测量3.1.1 侧限压缩试验3.1.1 侧限压缩试验24hr3.1.1 侧限压缩试验i i3.1.2 压缩曲线3.1.2 压缩曲线3.1.3 压缩性指标3.1.3 压缩性指标3.1.3 压缩性指标 2.3.1.3 压缩性指标 2.μ第3章土的压缩性与基础沉降计算§3.1压缩试验及压缩性指标3.1.3 压缩性指标第3章土的压缩性与基础沉降计算§3 土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算3.2膨胀曲线、再压曲线与先期固结压力的概念3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线固结稳定卸荷瞬时不排水卸荷稳定初始状态3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.3 先期固结压力概念3.2.3 先期固结压力概念第3章土的压缩性与基础沉降计算3.3 天然粘性土层的固结状态3.3.1 粘性土的天然固结过程(水下沉积)3.3.2 天然粘性土层的三种固结状态N onsolidation U nder 原、现、未来地面现地面3.3.2 天然粘性土层的三种固结状态O 原、现、未来地面原地面h第3章土的压缩性与基础沉降计算§3.3 天然粘性土层的固结状态3.3.2 天然粘性土层的三种固结状态第3章土的压缩性与基础沉降计算§3.3 天然粘性土层的固结状态3.3.2 天然粘性土层的三种固结状态第3章土的压缩性与基础沉降计算3.4 先期固结压力及现场压缩曲线的确定3.4.1 先期固结压力的确定§3 土的压缩性与基础沉降计算3.4.1 先期固结压力的确定§3.4 先期固结压力及现场压缩曲线的确定第3章土的压缩性与基础沉降计算3.4.2 现场压缩曲线及其确定方法第3章土的压缩性与基础沉降计算§3.4 p c及现场压缩曲线的确定3.4.2 现场压缩曲线及其确定方法第3章土的压缩性与基础沉降计算3.5 基础最终沉降量计算第3章土的压缩性与基础沉降计算§3.5 基础最终沉降量计算3.5.1 用e-p曲线计算3.5.1 用e-p曲线计算3.5.1 用e-p曲线计算1) 确定计算断面、计算点。
土的压缩性与地基沉降计算
土的压缩性与地基沉降符号约定α1-2:土的压缩系数E s:土的压缩模量C c:压缩指数E0:土的变形模量μ:土的泊松比OCR:超固结比U:固结度一、土的压缩试验与压缩曲线室内侧限压缩试验(亦称固结试验)是研究土压缩性的最基本方法。
1、压缩曲线实验得到各级荷载p作用下对应的孔隙比e,从而可绘制出土的e-p曲线及e-lgp曲线:2、压缩系数在曲压缩试验所得的e-p曲线上,常以p1=100kPa、p2=200kPa及相对应的孔隙比e1和e2计算土的压缩系数:。
依α1-2可评价土的压缩性高低:为低压缩性土,为中压缩性土,为高压缩性土。
3、压缩模量土的压缩模量E s是表示土压缩性的又一指标,也采用室内侧限压缩试验获得,依E s可评价土的压缩性高低。
4、压缩指数在曲压缩试验所得的e-lgp曲线上,常出现直线段,直线段的斜率记作,称为压缩指数,在压力较大时为常数,不随压力变化而变化。
C c值越大,土的压缩性越高。
5、变形模量变形模量由现场静载试验确定。
,其中为土的泊松比。
二、基础沉降1、分层总和法计算最终沉降量分层总和法采用完全侧限条件下的压缩性指标计算沉降量,假定土层只发生竖向变形,不发生侧向变形。
求解步骤及注意事项:(1)分层:一般取0.4b或1~2m一层,地下水位线及土层界面应为分层界面;(2)求每一层顶面、底面的自重应力和附加应力,并分别求他们的平均值;(3)确定计算深度,对于一般土层,≤0.2;对于软土层,≤0.1。
(☆)(4)计算各层压缩量;(5)求和。
2、规范法计算最终沉降量略。
3、弹性理论法计算最终沉降量略。
三、地基变形与时间的关系1、地基最终沉降量的组成(1)瞬时沉降:加压之后即时发生的沉降,此时地基土只发生剪切变形,其体积还来不及变化。
(2)固结沉降:荷载作用下随着土孔隙中水分的逐渐挤出,孔隙体积相应减少而发生的沉降。
(3)次固结沉降:孔隙水压力消散后仍在继续缓慢进行的,由土骨架蠕变而引起的沉降。
Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法
• 四、例题分析
【例】某厂房柱下单独方形基础,已知基础底面积尺寸
为4m×4m,埋深d=1.0m,地基为粉质粘土,地下水位 距天然地面3.4m。上部荷重传至基础顶面F=1440kN,土
的关天计然算重资度料如=下16图.0。kN试/m分³,别饱用和分重层度总 sa和t=法17和.2规kN范/m法³,计有算
sc
n
c i1
E P c ci(zi
izi1 ) i1
式中:
sc——考虑回弹再压缩影响的地基变形
计算深度取至 基坑底面以下 5m,当基坑底 面在地下水位 以下时取10m
Eci——土的回弹再压缩模量,按相关试验确定
c——考虑回弹影响的沉降计算经验系数,取1.0
Pc——基坑底面以上土的自重应力,kPa
4.0 2.0 0.0840 31.6 65.9
5.6 2.8 0.0502 18.9 77.4 0.24
7.2 3.6 0.0326 12.3 89.0 0.14 7.2
6.确定沉降计算深度zn
根据σz = 0.2σc的确定原则,由计算结果,取zn=7.2m
7.最终沉降计算
根据e-σ曲线,计算各层的沉降量
分层总和法的基本思路是:将压缩 层范围内地基分层,计算每一分层的压 缩量,然后累加得总沉降量。
分层总和法有两种基本方法:e~p 曲线法和e~lgp曲线法。
基础最终沉降量Βιβλιοθήκη 算…3计算原理一般取基底中心点下地基附加应力来计算各分层土的竖向压缩量,认
为基础的平均沉降量s为各分层上竖向压缩量Dsi之和,即
2.分层总和法中附加应力计算应考虑土体在自重作用下的 固结程度,未完全固结的土应考虑由于固结引起的沉降量
相邻荷载对沉降量有较大的影响,在附加应力计算中应考 虑相邻荷载的作用
土力学与地基基础(一)X 课程 第三章 土的压缩性与地基沉降计算
第三章土的压缩性与地基沉降计算填空题:1、地下水位的升降会引起土中自重应力的变化,地下水位升高则引起土体中的有效自重应力__________,地下水位下降引起土体中的有效自重应力__________。
2、计算自重应力时,地下水位以下的重度应取__________。
3、为了简化计算,基底压力常近似按__________分布考虑。
4、某均质地基,已知其重度γ=17.6kN/m3,则地面下深度为3m处由上部土层所产生的竖向自重应力为__________kPa。
5、均布矩形荷载作用于地表,矩形荷载中心和角点的附加应力分别为σ0和σ1,则σ0和σ1的关系是__________。
6、在相同的压力作用下,饱和粘性土压缩稳定所需时间t1与饱和砂土压缩稳定所需时间t2的关系是__________。
7、若土的初始孔隙比为0.8,某应力增量下的压缩系数为0.3MPa-1,则土在该应力增量下的压缩模量等于__________。
8、按照土体前期固结压力与现有自重应力的关系,可将土分为正常固结土、__________和__________三大类。
9、从应力转化的观点出发,可以认为饱和土的渗透固结无非是:在有效应力原理控制下,土中孔隙压力消散和__________相应增长的过程。
10、在其他条件相同的情况下,固结系数增大,则土体完成固结所需时间的变化是__________。
11、常见的地基最终沉降量的计算方法有__________、__________和弹性力学法。
12、建筑物地基变形的特征有__________、__________、__________和__________四种类型。
选择题:1、自重应力在均匀土层中呈()分布。
(A)、折线(B)、曲线(C)、直线(D)、均匀2、地下水位升高会引起自重应力()。
(A)、增大(B)、减小(C)、不变(D)、不能确定3、某场地自上而下的土层分布为:第一层粉土,厚3m,重度Y为18kN/m3;第二层粘土,厚5m,重度为18.4kN/m3,饱和重度γsat=19.0kN/m3,地下水位距地表5m,则地表下6m 处的竖向自重应力等于()。
土力学第3章土的压缩性与地基沉降计算
pc p0
第14页/共27页
e
e
e
p
z z p0 pc
OCR 1 正常固结状态
p
p0 pc
pc p0 OCR 1
超固结状态
p
pc p0
pc p0 OCR 1
欠固结状态
第15页/共27页
先期固结压力 pc 的确定
Casagrande 法
1. 在e-lgp曲线上,找出曲 率半径最小的点A
3.1.3 土的回弹曲线与再压缩曲线 土的回弹曲线与再压缩曲线
在进行室内试验过程中,当土压力加到某一数值后,逐渐卸压,土样 将发生回弹,土体膨胀,孔隙比增大,若测得回弹稳定后的孔隙比, 则可绘制相应的孔隙比与压力的关系曲线称为回弹曲线。
第12页/共27页
3.1.4 应力历史对压缩性的影响
一、沉积土的应力历史
后,进行逐级加压固结(一
般按p=50kPa、100kPa、
200kPa、300kPa、400kPa
5级加荷),测定各级压力p
作用下土样的压缩稳定后的
孔隙比变化。
三联固结仪
第2页/共27页
• 压缩仪示意图
试验方法:侧限压缩试验
加压活塞 刚性护环
荷载 透水石 环刀
土样
注意:土样在竖直压 力作用下,由于环刀 和刚性护环的限制, 只产生竖向压缩,不 产生侧向变形
2. 作水平线m1
3. 作A点切线m2
4. 作m1,m2 的角分线m3
5. m3与试验曲线的直线段 交于点B
pc
6. B点对应开普顿在对大量资料
进行统计分析的基础上
提出了按塑性指数近似
•
确定pc 的公式可供参考。 式中, -土的不排水剪抗
土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)
1 5
Ai-16
2
C i-1σz0
△z
(2)计算原理
利用附加应力面积A的等代值计算地基任意 土层的沉降量,因此第i层沉降量为
si
Ai
Ai1 Esi
z(0)
Esi
( zi Ci
zi1Ci1)
根据分层总和法基本原理可得 地基沉降量的基本公式
s
n i1
si
n i1
(z 0) Esi
(
ziCi
△z
zi
zi-1
第i层 第n层
b C i-1
Ci
平均附加应力 系数曲线
s
ms
n
si
i 1
ms
n
i 1
z(0)
Esi
( zi Ci
zi1Ci1 )
2.地基总沉降量的计算
(2)计算原理
厚度为z均质地基土,在侧限条件下,压缩模量Es 不随深度变化,土层的压缩量为
分层总和法
si
zi
Esi
hi
按铁路桥涵地基和基础设计规范 计算地基沉降量-案例1
按《铁路桥涵地基和基础设计规范》计算地基沉降量-案例1
矩形基础长3.6m,宽2m,地面以上荷载重量F=900KN, 地基为均质黏土,重度γ=18KN/m3,e0=1.0;a=0.4MPa-1。 试按《铁路桥涵地基和基础设计规范》计算地基沉降量 (确定修正系数时,按σz0=σ0 确定)
分层总和法简介-作业1
1.分层总和法:将地基压缩层范围以内的土层划 分成若干薄层,分别计算每一薄层土的变形量, 最后总和起来,即得基础的沉降量。 2.地基最终沉降量:地基变形完全稳定时,地基 表面的最大竖向变形量。
分层总和法简介-作业1
土的压缩性及沉降计算
b.计算地基平均固结度u。 实际上,地基中各点的应力不等,故各点的固结度也不同。 对工程而言,常常需要计算地基的平均固结度
2.计算公式 ①当地基中附加应力上下均匀分布时 a.计算地基中某一点的固结度u 此时若荷载不大,土中应力与应变可采用直线关系。地基 中某一点的固结度为有效应力对总应力的比值:
压缩模量Es 土在完全侧限的条件下,竖向应力增量△P与相应的应变增量△的比值。反映了土体在无侧膨胀条件下抵抗压缩变形的能力,E值越大,说明了土的压缩性越小。
压缩指数Cc 在e-lg p曲线中可以看到,当压力较大时,e-lg p曲线接近直线。 将e-lg p曲线直线段的斜率用Cc来表示,称为压缩指数。 压缩指数Cc与压缩系数 a 不同,它在压力较大时为常数,不随压力变化而变化。 Cc值越大,土的压缩性越高,低压缩性土的Cc一般小于0.2,高压缩性土的Cc值一般大于0.4。
二、现场荷载试验 1.试验方法 现场载荷试验是在工程现场 通过千斤顶逐级对置于地基土 上的载荷板施加荷载,观测记 录沉降 量绘制成p-s曲线,即获得了地 基土载荷试验的结果。
加载由小到大分级进行,每级增加的压力值视土质软硬程度而定,
单向固结微分方程的建立 在土层任意深度z处,取一个微单元体进行分析。假定 单位时间内单元体内挤出的水量等于单元体压缩量. 推出 土的固结系数
单向固结微分方程解 根据图初始条件和边界条件:
固结度 固结度的概念 它表示地基在外荷载作用下,经历时间t所完成的固结 程度。沉降量St与最终沉降量S之比值,称之为固结度U,即:
一、计算假定
地基中划分的各薄层均在无侧向膨胀情况下产生竖向压缩变形。
基础沉降量按基础底面中心垂线上的附加应力进行计算。
对于每一薄层来说,从层顶到层底的应力是变化的,计算时均近似地取层顶和层底应力的平均值。
第三章 土的压缩性
上述因素中,建筑物荷载作用是主要外因,通过 土中孔隙的压缩这一内因发生实际效果。
(二)固结与固结度 饱和土由土粒和水组成,当其被压缩时,
随着孔隙体积的减少,土中孔隙水被排出。 在荷载作用下,饱和土体中产生超静孔隙
水压力,在排水条件下,随着时间发展,土 体中水被排出,超静孔隙水压力逐步消散, 土体中有效应力逐步增大,直至超静孔隙水 压力完全消散,这一过程称为固结。
分析地基土层发生变形的主要因素:其内因是土具有压缩 性;其外因主要是建筑物荷载的作用。因此,为计算地基土的 沉降,必须研究土的压缩性;同时研究在上部荷载作用下,地 基中的应力分布情况。
返回
第二节 土的压缩性
一、土的压缩性 (一)压缩性
土的压缩性:土在压力作用下体积缩小 的特性。
由于在一般的压力作用下,土粒(土的 固相)和水(土的液相)的压缩量与土的 总压缩量相比十分微小,故可近似认为土 粒和水是不可压缩的。
客观地分析:地基土层承受上部建筑物的荷载,必然会 产生变形,从而引起建筑物基础沉降。当建筑场地土质坚实时 ,地基的沉降较小,对工程正常使用没有影响。但若地基为软 弱土层且厚薄不均,或上部结构荷载轻重变化悬殊时,基础将 发生严重的沉降和不均匀沉降,其结果将使建筑物发生上述各 类事故,影响建筑物的正常使用与安全。
S和e的关系:面积为1单元的 土柱,受压过程中因侧限条件面积 不变,土体的高度与体积的数值相 等:
(ΔV=Vv1-Vv2=e1-e2
V=Vs+Vv1=1+e1)
s h1 h2 v e1 e2
h1
h1
v 1 e1
e e s (1 e )
2
1h
1
土的压缩与沉降—计算地基沉降量(工程岩土课件)
二、地基沉降量的组成
按土体变形机理,地基总沉降 S 可以分成三部分:初始沉降Sd,固结 沉降Sc和次固结沉降Ss,可用下式表示:
S =Sd十Sc十Ss (1)初始沉降(瞬时沉降)Sd
地基加载后瞬时发生的沉降。在靠近 基础边缘应力集中部位。地基中会有剪 应变产生。对于饱和或接近饱和的粘性 土,加载瞬间土中水来不及排出,在不 排水和恒体积状况下,剪应变引起的侧 向变形,从而造成瞬时沉降地基沉降量的概述 二 地基沉降量的组成 三 地基沉降量的计算方法
一、地基沉降量的概述
定义:地基土层在荷载作用下,不断产生压缩,直至压缩稳定后的沉 降量称为地基的最终沉降量。
原因:外因是建筑物荷载在地基中产生附加应力;内因是土的碎散性, 孔隙发生压缩变形,引起地基沉降。
分层总和法
• 3.方法与步骤 ①绘制地基和基础的剖面图; ②划分若干薄层;
分层厚hi≤0.4b或hi=1~2m, b为基础宽度;
分层总和法
• 3.方法与步骤
③计算各层的自重应力c 与附加应力z ,分别绘
在中心线左侧和右侧;
分层总和法
• 3.方法与步骤 ④确定沉降计算深度Zn;
取z =0.2 c (中、低压缩性 土)或 z =0.1 c (高压
因此,对分层总和法应根据地基土性进行修正,引入了沉 降经验系数,修正分层总和法,即《建筑地基基础设计规 范》推荐法。
(B)
分层总和法
• 2.基本假设: 地基土为均匀的、等向的半无限空间弹性体; 地基中划分的各薄层均在无侧向膨胀情况下产生竖向压缩变形; 计算深度因工程上附加应力扩散随深度而减少,计算到某一深度
土力学压缩性
第三章 土的压缩性和基础沉降计算
地基沉降计算的e~p曲线法
一、分层总和法简介实际计算地基土的压缩量时,只须考虑某一深度范围内内土层的压缩量,这一深度范围内的土层就称为“压缩层”。对于一般粘性土,当地基某深度的附加应力σz 与自重应力σs之比等于0.2时,该深度范围内的土层即为压缩层;对于软粘土,则以σz / σs=0.1为标准确定压缩层的厚度。
第12页/共68页
第三章 土的压缩性和基础沉降计算
(四)其它压缩性指标广义虎克定律:泊松比:0.3~0.4,饱和土在不排水条件下接近0.5变形模量与压缩模量之间的关系:
变形模量
土的类型
变形模量(kPa)
土的类型
变形模量(kPa)
泥炭
100-500
松砂
10000-20000
塑性粘土
500-4000
式中:e1,e2分别为p1,p2所对应的孔隙比。
第10页/共68页
第三章 土的压缩性和基础沉降计算
虽然压缩系数和压缩指数都是反映土的压缩性的指标,但两者有所不同。前者随所取的初始压力及压力增量的大小而异,而后者在较高的压力范围内是常数。为了研究土的卸载回弹和再压缩的特性,可以进行卸荷和再加荷的固结试验。
第21页/共68页
第三章 土的压缩性和基础沉降计算
分层总和法的基本思路是:将压缩层范围内地基分层,计算每一分层的压缩量,然后累加得总沉降量。分层总和法有两种基本方法:e~p曲线法和e~lgp曲线法。
第22页/共68页
第三章 土的压缩性和基础沉降计算
二、用e~p曲线法计算地基的最终沉降量(1)首先根据建筑物基础的形状,结合地基中土层性状,选择沉降计算点的位置;再按作用在基础上荷载的性质(中心、偏心或倾斜等情况),求出基底压力的大小和分布。
土的压缩性和地基沉降计算(第3章)(1)
利用分层总和法计算时,假设条件: (1) 地基是均质的、各向同性的半无限大的、线性的 变形体; (2) 在压力作用下,地基不产生侧向变形,因此可采 用侧限条件下的压缩性指标。 为了弥补由于忽略地基土的侧向变形而对计算 结果造成的误差,通常取基底中心点下的附加应 力进行计算,以基底中点处的沉降代表基础的平 均沉降。
2µ 2 β = 1− 1− µ
一般 0 < µ < 0.5 硬土
β ≤1
软土
ES ≥ E0
E0 和 β E 较接近
E0 >> β ES
土的工程性质的分类
α1~ 2
< 0.1MPa-1 或 Es>15MPa ,属低压缩性
土; 0.1≤
α1~ 2
<0.5MPa-1 或 4≤Es≤15MPa 时,
属中压缩性土;
附加应力系数面积 平均附加应力系数为 α
z A = ∫ Kdz p0 0
= α
Kdz ∫=
0
z
z
A p0 z
1 z A = S′= ∫ ε dz = σ z dz ∫ 0 Es 0 Es
z
_
上式表明z深度范围内附加应力系数K 的平均值,所以 α 称为 平均附加应力系数。 _ 几何意义:以z为高、 α p0 为底的矩形面积,是z深度内附 加应力分布曲线所包围的面积的等代面积。 地基沉降量的计算公式
z S ′ = α p0 Es
规范法的地基最终沉降量的计算公式如下:
p0 ψ s ∑ ( ziα i − zi −1α i −1 ) = = s ψ ss i =1 Esi
'
n
角点法
式中
s —按分层总和法计算的地基沉降量:
土的压缩性与地基沉降计算—土的压缩性(土力学课件)
荷载试验与变形模量-作业2
1.荷载试验的试坑宽度不应小于承压板宽度或直径的3倍。 2.荷载试验施加的第一级荷载是土层原始状态所受的自重应力, 整个加载过程加载等级至少为8级 3.荷载试验满足连续两个小时内,每小时沉降量小于0.1mm可 以施加下一级荷载
荷载试验与变形模量-作业2
4.荷载试验终止加载标准: ① 荷载板周围土体有明显隆起(砂类土)或出现裂纹(黏性土); ② 荷载增加很小,但沉降量却急骤增大,即 P—S曲线出现 陡降现象; ③ 在荷载不变的情况下,24h内沉降速率无减小的趋势; ④ 总沉降量已达0.3~0.4倍荷载板宽度(或直径)。
1.荷载试验
(7)终止加载标准:
③ 在荷载不变的 情况下,24h内 沉降速率无减小
的趋势;
④ 总沉降量已 达0.3~0.4倍荷 载板宽度(或直
径)。
1.荷载试验
(8)根据整理的资料绘制P-S曲线
P-S曲线的三个变形阶段 0
第一阶段 直线变形阶段(压密阶段)
pa
pK p
a
b
p<pa
s
c
1.荷载试验
解:根据压缩试验资料计算土体压缩量
s
e1 e2 1 e1
h1
=
0.980-0.845 1+0.980
2000=136
(mm)
土体压缩量的计算 -作业2
土体压缩量的计算-作业2
计算题
已知一土样厚为30mm,原始孔隙比e0= 0.765,当荷 载p1=0.1MPa时, e1=0.707,在0.1~0.2MPa荷载段内 的压缩系数 a0.1-0.2 =0.24MPa-1,求: (1)土样的无侧向膨胀压缩模量 ; (2)当荷载为0.2MPa时,土样的总变形量
3下 土的压缩性与地基沉降计算---例题
1
【解】(1)绘制柱基础剖面图与地基土的剖面图,如下图示。
2
(2)计算地基土的自重应力(注意:从地面算起)并绘分布曲 线于上图。 基础底面 地下水位处
地面下2b处
σcd= γd=16 ×1=16kPa σcw= 3.4γ=3.4 ×16=54.4kPa
σC8=3.4γ+4.6γ’ =92.1kPa
各分层的沉降计算结果列于下表。
6
(9)柱基中点总沉降量
s si 16.3 12.9 9.0 6.1 44.3mm
7
例 6 某厂房为框架结构,柱基础底面为正方形,边长l=b=4m, 基础埋置深度d=1.0m,上部结构传至基础顶面荷载P=1440kN 。地基为粉质粘土,土的天然重度为16.0kN/m3,地下水位深
各分层的压缩量列于下表中 (7)计算基础平均最终沉降量
14
分层总和法计算地基最终沉降
15
例 7 某厂房为框架结构,柱基础底面为正方形,边长 l=b=4m,基础埋置深度d=1.0m,上部结构传至基础顶 面荷载P=1440kN。地基为粉质粘土,土的天然重度为
16.0kN/m3,地下水位深3.4m,地下水位以下土的饱和
z(m) σc(kPa) 0 1.2 2.4 4.0 5.6 7.2 16 35.2 54.4 65.9 77.4 89.0
F=1440kN
3.4m d=1m
b=4m
3.计算基底压力
4.计算基底附加压力
G G Ad 320 kN
F G p 110 kPa A
p0 p d 94kPa
(2)柱基中点沉降量s,按下式计算:
p0 p0 p0 s s ( i z i i 1 z i 1 ) s ( z1 1 ) ( z 2 2 z1 1 ) Es 2 i 1 E si E s1 式中:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标 一、e - σ′曲线
e
1.0
a e '
压缩系数,KPa-1
a1-2常用作 比较土的压 缩性大小
0.9
0.8 e '
0.7
0.6 0 100 200 300 400
'(kPa )
土的类别 a1-2 (MPa-1)
高压缩性土
0.5
中压缩性土 0.1-0.5
侧限变形模量:
Es
z z
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 二、三轴压缩试验及其应力-应变关系(复习)
有机玻璃罩
轴向加压杆 顶帽 压力室
测定: 轴向应变 轴向应力 体变或孔隙水压力
橡皮膜
试
样
透水石 量测体变或
孔隙水压力
排水管
压力水
阀门
类型 固结排水 固结不排水 不固结不排水
z
v
e
1e1
e1e2 1e1
压缩前 p1 sz
e1
压缩后 p2szz
e2
SzHvHe11ee12H
(a)e-σ´曲线 (b)e-lgσ´曲线
§4土的压缩性与地基沉降计算
§4.3 地基的最终沉降量计算 一、单一土层一维压缩问题
2、计算公式
(a)e-σ´曲线
SzHvHe11ee12H
e1e2a(p 2p 1)
体应变主要是由于孔隙体积变化引起的; 剪应变主要是由于土颗粒的大小和排列形态变化引起的。
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 三、普遍应力-应变关系及本构模型
2.土的本构模型
1 3 f 1
E
线弹性-理想塑性 1
1 3 1 2
非线性弹性 1
1 3 4
1
32
弹塑性
1
§4土的压缩性与地基沉降计算
施加σ3时 固结 固结
不固结
施加σ1-σ3时 量测
排水
体变
不排水 孔隙水压力
不排水 孔隙水压力
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 二、三轴压缩试验及其应力-应变关系
应力应变关系 -以某种粘土固结排水试验为例
•与围压有关
பைடு நூலகம்
•非线性
•弹塑性 •剪胀性
v
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 §4.2 一维压缩性及其指标 §4.3 地基的最终沉降量计算 §4.4 饱和土体的渗流固结理论
§4土的压缩性与地基沉降计算 §4.3 地基的最终沉降量计算
p
t
可压缩层
σz=p
不可压缩层
S
S
最终沉降量S∞:
t∞时地基最终沉降稳定以后的 最大沉降量,不考虑沉降过程。
§4土的压缩性与地基沉降计算
第三章
土的压缩性与 地基沉降计算
§4土的压缩性与地基沉降计算
概述
土具有压缩性 荷载作用 地基发生沉降
荷载大小 土的压缩特性
一致沉降 差异沉降 (沉降量) (沉降差)
建筑物上部结构产生附加应力
地基厚度
土的特点 (碎散、三相)
沉降具有时间效应-沉降速率 影响结构物的安全和正常使用
§4土的压缩性与地基沉降计算 概述
d
基底
附加应力 沉降计算深度
§4土的压缩性与地基沉降计算
§4.3 地基的最终沉降量计算 二、地基最终沉降量分层总和法
2、计算步骤-情况1
(a)计算原地基中自重应力分布 (b)基底附加压力p0 (c)确定地基中附加应力z分布 (d)确定计算深度zn (e)地基分层Hi
§4.3 地基的最终沉降量计算 一、单一土层一维压缩问题
3、计算步骤
以公式 S e1 e2 H 为例
H/2
1e1
H/2
• 确定: H ;s;z z
• 测定: e-p曲线或者e-lgp曲线
• 查定: p1 sz
e1;
p2szz
e2
• 算定: S e1 e2 H 1 e1
sz
H 2
σ sz
p
γ,e1 σz=p H
(f) B点对应于先期固结压力p
p
1 3 2
D
'(lg)
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
四、原位压缩曲线及原位再压缩曲线
ab —— 沉积
a 正常固结土: bb’ —— 取样 b’cd —— 室内试验
e
b c
超固结土:
f
b 地下水位上升 土层剥蚀 冰川融化
引起卸载, 使土处于回弹状态
② 0.42e0时,土样不受到扰动影响。
e
e0
B
0.42e0
C
推定:
① 确定先期固结压力σp ② 过e0 作水平线与σp作用线交于B。由假定① 知,B点必然位于原状土的初始压缩曲线上;
③ 以0.42e0 在压缩曲线上确定C点,由假定② 知,C点也位于原状土的初始压缩曲线上;
④ 通过B、C两点的直线即为所求的位压缩曲线。
§4.3 地基的最终沉降量计算
一、单一土层一维压缩问题 二、地基最终沉降量分层总和法 三、地基沉降计算的若干问题
§4土的压缩性与地基沉降计算
§4.3 地基的最终沉降量计算 一、单一土层一维压缩问题
1、计算简图 p
H/2
sz
H 2
H/2
σ sz
γ,e1 σz=p H
侧限条件
SzHvH
e
e1
e2
Vs 1 Vs 1
低压缩性土
<0.1
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标 一、e - σ′曲线
单向压缩试验的各种参数的关系
指标
指标
a
a
1
mv
a/(1+e0)
Es
(1+e0)/a
mv
Es
mv(1+e0) 1
1/mv
(1+e0)/Es 1/Es 1
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
§4.2 一维压缩性及其指标
三、先期固结压力
先期固结压力:历史上所经受到的最大压力p(指有效应力)
s= z:自重压力 p= s:正常固结土 p> s:超固结土 p< s:欠固结土
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
超固结比: OCR p s
相同σs 时,一般OCR越大, 土越密实,压缩性越小
p0 = p - d
(c)确定地基中附加应力z分布
自重应力
σz从基底算起; σz是由基底附加应力 p-γd 引起的
(d)确定计算深度zn
① 一般土层:σz=0.2 σsz; ② 软粘土层:σz=0.1 σsz; ③ 一般房屋基础:Zn=B(2.5-0.4lnB); ④ 基岩或不可压缩土层。
p d p0
二、e - lgσ′曲线
e-σ′曲线缺点: 不能反映土的应力历史
1
e
Cc
特点:有一段较长的直线段
0.9
0.8 1 Ce
指标:
Cc
e (lg')
压缩指数
0.7
Ce 回弹指数(再压缩指数)
0.6
Ce << Cc,一般Ce≈0.1-0.2Cc
100
1000 '(kPa, lg)
§4土的压缩性与地基沉降计算
e0
D
B
0.42e0
s p
C
lg '
推定:
① 确定σs ,σp的作用线; ② 过e0作水平线与 σs作用线交于D点; ③ 过D点作斜率为Ce的直线,与σp作用 线交于B点,DB为原位再压缩曲线;
④ 过0.42e0 作水平线与e-lgσ’曲线 交于点C;
⑤ 过B和C点作直线即为原位压缩压缩曲 线。
§4土的压缩性与地基沉降计算
试验结果:
测定: 轴向应力 轴向变形
百分表
P
Se
e0
p2
p1
e1
e2 s2
s1
t s3
e3
t
透水石
传压板 水槽 环刀 内环
试样
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 一、侧限压缩试验及其应力-应变关系
应力应变关系-以某种粘土为例
z p
非线性 弹塑性
1 Ee
1 Es
z
e0 (1e0)
e
1.0
a e '
压缩系数,KPa-1,MPa-1
0.9
0.8 e
Es
' z
侧限压缩模量,KPa ,MPa 侧限变形模量
'
0.7 0.6
e
z
1 e0
0
100
200 300
400
'(kPa )
Es
1
e0 a
e0 e 1
孔隙 固体颗粒
mv
1 Es
a 1e0
体积压缩系数, KPa-1 ,MPa-1
e2
•可以区分正常固结土和超固结土
并分别进行计算。
正常固结土:
e
p 1 p 2 lg '
S1 ee1HCC1 H e1lg(p p1 2)
e1
A
B
超固结土(并假定p2>p):
SC e1 H e1lg p1 p C C1 H e1lg pp 2
e2
C
p 1 p p 2 lg '