核反应堆物理分析复习重点

合集下载

核反应堆物理分析复习重点

核反应堆物理分析复习重点

l t s td
d
a 0 v0
核反应堆物理分析 慢化时间
ts
Eth
E0
s dE v E
(在 10 到 10 秒量级)
-4
-6
热中子反应堆中,中子的平均寿命主要由热中子的平均寿期即扩散时间决定。 7、无吸收介质内在慢化区能谱近似服从 1/E 分布或称之为费米谱分布。 8、有效共振积分: I I i a ( E ) ( E )dE
qr E f f r
f r
3.12 10
10
W m3
18、裂变产物:非对称性:对称裂变产额小,非对称裂变产额大。 19、裂变中子能谱 :裂变中子的最概然能量稍低于 1Mev。
20、瞬发中子(prompt neutrons):伴随着裂变产生而没有可测延迟的中子,占 99%。 缓发中子(delayed neutrons):裂变碎片衰变过程中发射出来的中子,<1%。 缓发中子先驱核: 在衰变过程中产生的,最终能够产生缓发中子的核(碎片) 。 21、有效增值因数 K eff :
2
第五章 分群扩散方程 1、两步近似法求群常数: <1>制作与具体反应堆能谱无关的多群微观常数 <2>根据具体反应堆栅格的几何材料组成,在多群常数库的基础上,来计算其具体的中子能谱和少群常
核反应堆物理分析 数。
2、内外迭代法求多群扩散方程: 内迭代:又称为源迭代通过源迭代求特征值的迭代过程 外迭代:对源迭代过程中出现的扩散方程进行具体数值求解的过程 第六章 栅格的非均匀效应与均匀化群常数的计算 1、空间自屏效应:热中子进入燃料块后,首先为块外层的燃料所吸收, 造成燃料快内部的热中子通量密度比外层的要低,结果使燃料里层 的燃料核未能充分有效地吸收中子,即外层燃料核对内层燃料核 起了屏蔽作用,称为空间自屏效应。 缺点:热中子利用系数 f 减小,燃料得不到充分利用 2、解释右图(6-2)

核反应堆物理分析--考试重点复习资料及公式整理

核反应堆物理分析--考试重点复习资料及公式整理

核反应堆物理复习分析资料整理中子核反应类型:势散射、直接相互作用、复合核的形成微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。

宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率。

中子通量:表示单位体积内所有中子在单位时间内穿行距离的总和。

核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。

截面随中子能量的变化规律:1)低能区(E<1eV),吸收截面随中子能量减小而增大,大致与中子的速度成反比,亦称吸收截面的1/v区。

2)中能区(1eV<E<10keV),在此能区许多重元素核的截面出现了许多峰值,这些峰一般称为共振峰。

3)快中子区(E>10keV),截面一般都很小,通常小于10靶,而且截面随能量变化也趋于平滑。

中子循环:快中子倍增系数ε:由一个初始裂变中子所得到的,慢化到U-238裂变阈能以下的平均中子数。

逃脱共振几率P:慢化过程中逃脱共振吸收的中子所占的份额。

热中子利用系数f:(燃料吸收的热中子数)/(被吸收的全部热中子数,包括被燃料,慢化剂,冷却剂,结构材料等所有物质吸收的热衷子数)。

有效裂变中子数η:燃料每吸收一个热中子所产生的平均裂变中子数。

快中子不泄漏几率Vs:快中子没有泄漏出堆芯的几率。

热中子不泄漏几率Vd:热中子在扩散过程中没有泄漏出堆芯的几率。

四因子公式:=εPfη六因子公式:K=εPfηVsVd直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。

中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。

非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。

核反应堆物理分析复习总结

核反应堆物理分析复习总结

第七章
• 核燃料中重同位素成分随时间的变化(重 同位素的燃耗链及裂变产物链、核燃料中 重同位素的燃耗方程、燃耗方程的解) 裂 变产物中毒(氙-135中毒、钐-149中毒、其 它裂变产物中毒) 反应性随时间的变化与 燃耗深度,核燃料的转换与增殖(转换与 增殖、几种动力堆的燃料循环、核燃料管 理)
第八章
第九章
• 缓发中子的作用,点堆中子动力学,阶跃 扰动时的点堆模型动态方程的解,反应堆 周期(反应堆周期、不同反应性引入时反 应堆的响应特征),点堆动态方程的数值 解法。

第三章
• 单能中子扩散方程(斐克定律、单能扩散 方程的建立、扩散方程的边界条件、斐克 定律和扩散理论的适用范围),非增殖介 质内中子扩散方程的解,扩散长度、慢化 慢长度、徙动长度。
第四章
• 均匀裸堆的单群理论(均匀裸堆的单群扩 散方程及其解、热中子反应堆的临界条件、 各种几何形状的裸堆的几何曲率和中子通 量密度分布、反应堆曲率和临界计算任务、 单群理论的修正),有反射层反应堆的单 群扩散理论(反射层的作用、一侧带有反 射层的反应堆、反射层节省),中子通量 密度分布不均匀系数和中子通量密度分布 展平的概念。
• 反应性温度系数(反应性温度系数及其对核反 应堆稳定性的影响、燃料温度系数、慢化剂温 度系数、其它反应性系数、温度系数的计算), 反应性控制的任务和方式(反应性控制中所用 的几个物理量、反应性控制的任务、反应性控 制的方式),控制棒控制(控制棒作用和一般 考虑、控制棒价值的计算控制棒插入深度对控 制棒价值和功率分布的影响、控制棒间的干涉 效应、控制棒插入不同深度对堆芯功率分布的 影响),可燃毒物控制(可燃毒物的作用、可 燃毒物的分布及其对反应性的影响、可燃毒物 的计算),化学补偿控制。
核反应堆物理分析

核反应堆物理-复习重点--答案汇总-图文

核反应堆物理-复习重点--答案汇总-图文

核反应堆物理-复习重点--答案汇总-图文第一章核反应堆的核物理基础(6学时)1. 什么是核能?包括哪两种类型?核能的优点和缺点是什么?核能:原子核结构发生变化时释放出的能量,主要包括裂变能和聚变能。

优点:1)污染小:2)需要燃料少;3)重量轻、体积小、不需要空气,装一炉料可运行很长时间。

缺点:1)次锕系核素具有几百万年的半衰期,且具有毒性,需要妥善保存;2)裂变产物带有强的放射性,但在300年之内可以衰变到和天然易裂变核素处于同一放射性水平上;3)需要考虑排除剩余发热。

2. 核反应堆的定义。

核反应堆可按哪些进行分类,可划分为哪些类型?属于哪种类型的核反应堆?核反应堆:一种能以可控方式产生自持链式裂变反应的装置。

核反应堆分类:分类的着眼点 A.用途名称和特征 A1 动力堆:发电,供热,作为推进动力 A2 生产堆:生产钚-239或氚A3 研究试验堆 A4 特殊用途堆 3. 原子核基本性质。

核素:具有确定质子数Z和核子数A的原子核。

同位素:质子数Z相同而中子数N不同的核素。

同量素:质量数A相同,而质子数Z和中子数N各不相同的核素。

同中子数:只有中子数N相同的核素。

原子核能级:最低能量状态叫做基态,比基态高的能量状态称激发态。

激发态是不稳定的,会自发跃迁到基态,并以放出射线的形式释放出多余的能量。

核力的基本特点: 1)核力的短程性 2)核力的饱和性 3)核力与电荷无关 4. 原子核的衰变。

包括:放射性同位素、核衰变、衰变常数、半衰期、平均寿命的定义;理解衰变常数的物理意义;核衰变的主要类型、反应式、衰变过程,穿透能力和电离能力。

放射性同位素:不稳定的同位素,会自发进行衰变,称为放射性同位素。

核衰变:有些元素的原子核是不稳定的,它能自发而有规律地改变其结构转变为另一种原子核,这种现象称为核衰变,也称放射性衰变。

衰变常数:它是单位时间内衰变几率的一种量度;物理意义是单位时间内的衰变几率,标志着衰变的快慢。

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析核反应堆物理是核科学与技术中的重要核心内容,对于核能产业的发展和核安全的保障具有至关重要的作用。

本文将从核反应堆物理的基本概念、反应堆参数的描述、物质的相变与核反应堆物理的关系、核反应堆稳定性和安全性等方面进行解析,以帮助考研核科学与技术的学习者更好地复习核反应堆物理知识。

一、核反应堆物理基本概念核反应堆物理研究的对象是核反应的发生和发展规律,其中重要概念包括核裂变、核聚变、裂变能和聚变能等。

核裂变是指原子核分裂成两个或多个较轻的碎片核的过程,核聚变则是多个核聚集成一个较重的新核的过程。

裂变能和聚变能则是裂变和聚变过程中释放出的能量。

二、反应堆参数的描述反应堆物理中,反应堆的参数主要包括功率、中子速度分布、反应性和利用系数等。

功率是指单位时间内的核反应能量,中子速度分布描述从高速中子到低速中子的能量分布情况。

反应性是指反应堆的反应强度和稳定性的度量,而利用系数则是评价反应堆燃料的利用率。

三、物质的相变与核反应堆物理的关系物质的相变是指物质由一种状态转变为另一种状态的过程,核反应堆物理中也涉及到物质的相变问题。

例如,液态金属钠在不同温度下会发生相变,这对于燃料棒的冷却剂起到重要的影响。

物质的相变还与反应堆的热力学性质和动力学过程有关。

四、核反应堆稳定性和安全性核反应堆的稳定性和安全性是核科学与技术中关注的重点,也是核能产业的发展所必需的。

稳定性主要指反应堆在长时间运行的稳定性,而安全性则是指在各种异常情况下保持反应堆的安全运行,防止核事故的发生。

为了达到这一目标,需要进行反应堆的设计和运行控制,以及建立相应的监测和保护系统。

综上所述,核反应堆物理是核科学与技术中的重要内容,对核能产业的发展和核安全的保障至关重要。

通过对核反应堆物理的基本概念、反应堆参数的描述、物质的相变与核反应堆物理的关系、核反应堆稳定性和安全性等方面的解析,有助于考研核科学与技术的学习者更好地理解和掌握核反应堆物理知识。

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料第一章1、在反应堆内中子与原子的相互作用方式主要有:势散射、直接相互作用和复合核的形成。

其中复合核的形成是中子和原子相互作用的最重要方式。

2、复合核的衰变分解的方式有:共振弹性散射、共振非弹性散射、辐射俘获和核裂变,可以概括为散射和吸收。

3、共振现象:但入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时,中子被靶核吸收而形成复合核的概率就显著增加,这种现象就叫作共振现象。

4、非弹性散射特点:只有当入射中子的动能高于靶核的第一激发态的能量时才能使靶核激发,也就是说,只有入射中子的能量高于某一数值时才能发生非弹性散射,由此可知,非弹性散射具有阈能的特点。

5、弹性散射特点:它可以分为共振弹性散射和势散射两种,区别在于前者经过复合核的形成过程,后者则没有。

在热中子反应堆内,对中子从高能慢化到低能的过程起主要作用的是弹性散射。

6、易裂变同位素:一些核素,如233U 、235U 、239Pu 和241Pu 等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的可能性较大,通常把它们称为易裂变同位素。

7、可裂变同位素:同位素232Th 、238U 和240Pu 等只有在能量高于某一阈值的中子作用下才发生裂变,通常把它们称为可裂变同位素。

8、中子束强度I :在单位时间内,通过垂直于中子飞行方向的单位面积的中子数量,记为I 。

9、单位体积中的原子核数N :计算公式为AN N ρ0=0N :阿伏加德罗常数,取值为6.0221367*1023/molρ:材料密度A :该元素的原子量10、微观截面σ:微观截面是表示平均一个给定能量的入射中子与一个靶核发生作用的概率大小的一种度量,通常用“巴恩”(b )作为单位,1b=10-28m 2。

11、核反应下标:s--散射;a--吸收;γ--辐射俘获;f--裂变;t--总核反应 12、靶内平行中子束强度:Nx e I x I σ-=0)(13、宏观截面∑:宏观截面是一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量,单位为m -1,公式为:σN =∑由几种元素组成的均匀混合物质的宏观截面x ∑:∑=∑ixi i x N σ14、富集度:某种元素在其同位素中的(原子)重量百分比。

20140622反应堆物理分析复习提纲1-5

20140622反应堆物理分析复习提纲1-5
1.12 丰度: 某种同位素的原子数目在该元素原子总数中所占的份额, 称为这种同位素的丰度。 1.13 富集度:某种同位素的重量在该元素总重量中所占的份额,称为这种同位素的富集度。 2、 中子与原子核发生相互作用的方式有三种: 2.1 势散射:弹性散射,散射前后动量动能守恒,所有能量中子都可以发生; 2.2 直接相互作用:直接与靶核内某个核子碰撞,使其从核里面发射出来,包括:中子留在 核内的反应(n,p) ,同时放出 射线;发射出一个中子(n,n)非弹性碰撞;有阈值; 2.3 复合核的形成;
中能区:重核——强烈共振;轻核——第一激发态能量高,中能区不出现共振,在高能区出 现; 高能区:共振峰间距变小,开始重叠,以致不可分辨,变化缓慢平滑。 散射截面: 非弹性散射截面:有阈能,阈能大小与质量数有关,质量数越大,阈能越低,低于阈能,截 面为 0; 弹性散射截面:多数元素与较低能量中子的散射都是弹性的, s 基本为常数;轻核和中等 质量核,低能中能为常数,高能区出现共振现象;重核,共振区出现共振弹性散射。 7、多普勒效应的概念以及对反应堆安全的影响 堆温度升高,铀 238 吸收共振峰展宽,使得更多中子被共振吸收;堆功率上升——燃料温度 上升——多普勒展宽使得更多中子被共振吸收——裂变链式反应减慢——堆功率下降。
3、微观截面的物理意义:平均一个给定能量的入射中子与一个靶核发生相互作用的概率大 小的一种度量:单位: m 2 ,常用单位“巴恩” ;宏观截面的物理意义:表征一个中子与单
位体积内的原子核发生相互作用的概率大小; 或者表征一个中子在穿行单位距离与核发生相 互作用的概率大小,单位 m 通常用cm ; 微观截面和宏观截面的计算: N ; 单元素材料单位体积内的原子核数 N
新生一代中子数 直属上一代中子数

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料第一章1、在反应堆内中子与原子的相互作用方式主要有:势散射、直接相互作用和复合核的形成。

其中复合核的形成是中子和原子相互作用的最重要方式。

2、复合核的衰变分解的方式有:共振弹性散射、共振非弹性散射、辐射俘获和核裂变,可以概括为散射和吸收。

3、共振现象:但入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时,中子被靶核吸收而形成复合核的概率就显著增加,这种现象就叫作共振现象。

4、非弹性散射特点:只有当入射中子的动能高于靶核的第一激发态的能量时才能使靶核激发,也就是说,只有入射中子的能量高于某一数值时才能发生非弹性散射,由此可知,非弹性散射具有阈能的特点。

5、弹性散射特点:它可以分为共振弹性散射和势散射两种,区别在于前者经过复合核的形成过程,后者则没有。

在热中子反应堆内,对中子从高能慢化到低能的过程起主要作用的是弹性散射。

6、易裂变同位素:一些核素,如233U 、235U 、239Pu 和241Pu 等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的可能性较大,通常把它们称为易裂变同位素。

7、可裂变同位素:同位素232Th 、238U 和240Pu 等只有在能量高于某一阈值的中子作用下才发生裂变,通常把它们称为可裂变同位素。

8、中子束强度I :在单位时间内,通过垂直于中子飞行方向的单位面积的中子数量,记为I 。

9、单位体积中的原子核数N :计算公式为AN N ρ0=0N :阿伏加德罗常数,取值为6.0221367*1023/molρ:材料密度A :该元素的原子量10、微观截面σ:微观截面是表示平均一个给定能量的入射中子与一个靶核发生作用的概率大小的一种度量,通常用“巴恩”(b )作为单位,1b=10-28m 2。

11、核反应下标:s--散射;a--吸收;γ--辐射俘获;f--裂变;t--总核反应 12、靶内平行中子束强度:Nx e I x I σ-=0)(13、宏观截面∑:宏观截面是一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量,单位为m -1,公式为:σN =∑由几种元素组成的均匀混合物质的宏观截面x ∑:∑=∑ixi i x N σ14、富集度:某种元素在其同位素中的(原子)重量百分比。

反应堆物理知识点归纳(1)

反应堆物理知识点归纳(1)

复习总结(1)主讲教师:李伟热中子反应堆中,中子反应堆中的核反应n 微观截面随能量的变化规律q 吸收截面n 低能区:大多数核素的满足1/v 律n 中能区:重核将出现强烈的共振现象q 235U的裂变截面nn 低能区:随着中子能量增加,减小n 中能区:出现共振现象n 高能区:下降到几个barn()a E s ()235583.50.0253f b eV s =()f E sc()E由裂变碎片(缓发中子先驱核)在衰变过程中释放10.71tr=S 23s =S216T Mr =A不均匀均匀反应堆的临界理论n 反射层节省q 堆芯加上反射层后,堆芯临界尺寸的减少量。

n 反射层影响1.反射层对中子吸收较弱;2.对泄漏到反射层内中子的慢化反应性的变化n 核燃料温度系数qDoppler 效应保证了核燃料温度系数为负值n 慢化剂温度系数q温度升高→慢化剂密度下降n Σa 减小→对中子的吸收减弱,f增加nΣs 减小→慢化能力减弱,p减小q 水铀比q 化学补偿毒物的影响n硼浓度过高会导致慢化剂温度系数为正设计时,水铀比应选在欠慢化区135Xe中毒135Xe产生和消失的途径nq产生:裂变直接产生,135I衰变产生q消失:发生吸收反应,自身衰变对通量(功率)变化非常敏感!135Xe 中毒n 停堆后135Xe 中毒引入的负反应性q 碘坑发生的条件:q强迫停堆11212.7610cm s --F >´×135Xe中毒n功率变化时135Xe中毒引入的负反应性浓度随时间的变化方程引入的负反应性F。

核反应堆热工分析复习

核反应堆热工分析复习

第一部分名词解释第二章堆的热源及其分布1、衰变热: 对反应堆而言, 衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。

第三章裂变能近似分布: 总能200MCV 168是裂变产物的动能 5是裂变中子动能 7是瞬发R射线能量 13是缓发B和R射线能量同时还有过剩中子引起的辐射俘获反应。

第四章堆芯功率分布和因素: 径向贝塞尔函数轴向余弦函数 1燃料布置 2控制棒 3水隙和空泡第五章堆的传热过程2、积分热导率: 把对温度的积分作为一个整体看待, 称之为积分热导率。

3、燃料元件的导热: 指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。

4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换, 即热量由包壳的外表面传递给冷却剂的过程。

5、自然对流: 指由流体内部密度梯度所引起的流体的运动, 而密度梯度通常是由于流体本身的温度场所引起的。

6、大容积沸腾: 指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。

7、流动沸腾: 也称为对流沸腾, 通常是指流体流经加热通道时产生的沸腾。

8、沸腾曲线: 壁面过热度()和热流密度的关系曲线通常称为沸腾曲线。

9、ONB点:即沸腾起始点, 大容积沸腾中开始产生气泡的点。

10、CHF点: 即临界热流密度或烧毁热流密度, 是热流密度上升达到最大的点。

Critical heat flux11、DNB点: 即偏离核态沸腾规律点, 是在烧毁点附件表现为q上升缓慢的核态沸腾的转折点H。

Departure from nuclear boiling12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增, 导致受热面的温度骤升。

达到沸腾临界时的热流密度称为临界热流密度。

13、快速烧毁: 由于受热面上逸出的气泡数量太多, 以至阻碍了液体的补充, 于是在加热面上形成一个蒸汽隔热层, 从而使传热性能恶化, 加热面的温度骤升;14、慢速烧毁: 高含汽量下, 当冷却剂的流型为环状流时, 如果由于沸腾而产生过分强烈的汽化, 液体层就会被破坏, 从而导致沸腾临界。

核反应堆物理复习纲要

核反应堆物理复习纲要

微观截面:一个中子和一个靶核发生反应的几率。

宏观截面:一个中子和单位体积靶核发生反应的几率。

停堆周期:全部无控制毒物都投入反应堆内时所具有的反应性。

堆芯寿期:一个新装料堆芯从开始运行到有效增殖因数降到1时,反应堆满功率运行的时间。

反应堆周期:反应堆内平均中子密度变化e倍所需的时间。

剩余反应性:堆芯没有任何控制毒物时的反应性。

瞬发临界:反应堆仅依靠瞬发中子就能达到临界的状态。

瞬发超临界:反应堆仅依靠瞬发中子就能达到超临界的状态。

多普勒效应(展宽):共振吸收截面随温度展宽的现象。

菲克定律:中子流密度J与通量密度成正比。

控制棒微分价值:控制棒移动一步或单位距离所引起的反应性变化。

控制棒积分价值:控制棒从一参考位置移动到某一高度时,所引入的反应性。

控制棒的(反应性)价值:堆芯在有控制棒和没有控制棒时的反应性之差。

1、在热中子反应堆中为什么要使用慢化剂?慢化剂的工作原理是什么?并举出几种常用的慢化剂。

①反应堆内产生的中子能量相当高,其平均值约为2MeV;而微观裂变截面在热能区较大,热中子反应堆内的裂变反应基本上都是发生在这一能区,所以在热中子反应堆中使用慢化剂。

②在热中子反应堆中,慢化过程中弹性散射起主要作用,因为裂变中子经过与慢化剂和其他材料核的几次碰撞,中子能量便很快降低到非弹性散射的阈能一下,这是中子的慢化主要靠中子与慢化剂核的弹性散射进行。

③水、重水、石墨等。

2、缓发中子是如何产生的?在反应堆动力学分析计算中,份额不足1%的缓发中子与份额超过99%的瞬发中子相比是否可以忽略不计?为什么?①缓发中子是在裂变碎片衰变过程中发射出来的,占裂变中子的不到1%②缓发中子不可以忽略不计③缓发中子份额虽然很少,但它的发射时间较长,缓发效应大大增加了两代中子之间的平均时间间隔,从而滞缓了中子密度的变化率。

反应堆的控制实际上正是利用了缓发中子的作用才得以实现的。

3、解释碘坑现象和强迫停堆时间。

船用反应堆要求不能出现强迫停堆现象,请问在设计上应如何考虑。

第一章:核反应堆物理分析

第一章:核反应堆物理分析
-1.91304275 mN 1/2
一.中子的产生 分为三大类:同位素中子源,反应堆中子源,加速 器中子源。 1、同位素中子源:利用核素衰变放出的射线,经 ( ,n ) 或 ( ,n ) 核反应产生中子。优点是体积小,方便。 缺点是强度低,能谱复杂。而且,必须注意其活度 随时间指数减小:
I I0e t
241
10 5 10 5 10 5 10 4 108
源尺度:几cm


Am-Be
239
Am

Pu-Be
244
Pu Cm
106
Cm-Be
1.06×

常用的 -Be 源结构
双层钢壳防泄漏
不锈钢
放射性反应芯
发射体+靶物质
典型 Be(,n) 源的双层壳结构
2)

-中子源
基于两个反应:
中子的散射
中子与原子核发生散射反应时,中子改变了飞行方向和飞行 速度。 能量比较高的中子经过与原子核的多次散射反应,其能量会 逐步减少,这种过程称为中子的慢化。 散射反应有两种不同的机制。 一种称为弹性散射。在弹性散射前后,中子——原子核体系 的能量和动量都是守恒的。任何能量的中子都可以与原子核发生 弹性散射。 另一种称为非弹性散射。中子与原子核发生非弹性散射,实 际上包括两个过程。 ①中子被原子核吸收,形成一个复合核。 ②但这个复合核处于不稳定激发态,很快它就会又放出一个中 子,并且放出射线,回到稳定的基态。
计算单位体积内原子核数N
2.2.2
平均自由程 λ(mean free path):
如把中子在介质中运动时,与原子核连续两次相互作 用之间穿行的平均距离叫做平均自由程λ。
显然:平均自由程表示的是中子在介质中运动时,平

技术类《核反应堆物理》第1部分-核反应堆物理基础

技术类《核反应堆物理》第1部分-核反应堆物理基础

知识点
1)
了解原子质量单位的定义,了解原子的组成、中子和质子的特点。
2)
能够说出原子结构的基本特点:整个原子核是电中性的;原子的 质量主要集中在原子核上。
3)
能够说出核素和同位素的定义,同位素有什么特性。
4)
理解在原子核中存在核力,核力的特点。
物质的组成
原子核的组成
原子核的组成
1u= (1.6605655±0.00000 86)×10-27kg。因而以 kg为单位的 Mp=1.672648×1027kg, Mn=1.674954×1027kg。由此可见,中子 稍稍重于质子。
提供大量的能量以及新的核素。
反应堆是
一个强大的各种粒子(中子、α粒子、β粒子和γ粒子)辐照场。
反应堆堆芯中有燃料、慢化剂、结构材料和控制材料等。 反应堆一旦运行后,堆内中子要与这些材料的原子核发生 各种类型的相互作用,产生新核,发生一系列的放射性衰 变现象。
反应堆运行是建立在中子与堆内物质相互作用的基础上。
N0e1
该式表明,平均寿命是原子核数量降为 所需要的时间。
N0 /e
放射性活度
➢ 放射性同位素样品在单位时间内衰变的次数,即 为该同位素样品的活度(A)。
A(t) N(t)
➢单位:贝可勒尔,简称贝可(Bq) ➢(1居里)1Ci=3.7x1010/s=3.7x1010Bq ➢因此,半衰期也可以定义为某同位素活度(A)降为一半 所需要的时间。
热中子轰击235U,原子核分裂成两个碎片;而238U不能产生 裂变反应,它俘获中子后生成239U,经过两次β-衰变而转化为 239Pu; 235U和238U具有不同的核特性,但化学性质却很相似
质量数 铀234 铀235 铀238

核反应堆物理分析总结-1

核反应堆物理分析总结-1
第一章:核反应堆的核物理基础 第二章:单速中子扩散理论 第三章:中子慢化与慢化能谱 第四章:均匀反应堆的临界理论 第六章:反应性随时间的变化 第七章:温度效应与反应性控制 第八章:核反应堆动力学
第一章:核反应堆的核物理基础
核反应堆是一种能以可控方式产生自持链式裂变 反应的装置。 它由核燃料、冷却剂、慢化剂、结构材料和吸收 剂等材料组成。 链式核反应(nuclear chain reaction):核反 应产物之一能引起同类的反应,从而使该反应能链式 地进行的核反应。根据一次反应所直接引起的反应次 数平均小于、等于或大于1,链式反应可分为次临界的、 临界的或超临界的三种。
Fission fragment kinetic energy Neutrons
Prompt gamma rays Fission product gamma rays Beta particles Neutrinos Total
7 7 5 10 200
平均每次裂变的衰变功率
停堆余 热排出
(1)换算关系:
中子的分类
中子的能量不同,它与原子核相互作 用的方式、几率也就不同。 在反应堆物理分析中通常按中子能量把 它们分为: (i)快中子(0.1兆电子伏以上); (ii)超热中子(1电子伏到0.1兆电子伏); (iii)热中子(1电子伏以下)。
中子与原子核相互作用

中子与原子核的相互作用过程有三种:势散射、直接
E2 E1 E0
激发态
E=EB+EC
若E正好在复合核的 某一激发能级附近, 则复合核形成的几率 很大,称之为“共振 吸收”。
基态 复合核能量
复合核量子能级
温度升高时,增加了238U对中子的吸收几率,负效应。

《核反应堆物理分析》公式整理

《核反应堆物理分析》公式整理

第1章—核反应堆物理分析中子按能量分为三类: 快中子(E ﹥0.1 MeV),中能中子(1eV ﹤E ﹤0.1 MeV),热中子(E ﹤1eV).共振弹性散射 A Z X + 01n → [A+1Z X]* → A Z X + 01n 势散射 A Z X + 01n → A Z X + 01n 辐射俘获是最常见的吸收反应.反应式为 A Z X + 01n → [A+1Z X]* → A+1Z X + γ235U 裂变反应的反应式 23592U + 01n → [23692U]* → A1Z1X + A2Z2X +ν01n微观截面 ΔI=-σIN Δx /I I IIN x N xσ-∆-∆==∆∆ 宏观截面 Σ= σN 单位体积内的原子核数 0N N Aρ=中子穿过x 长的路程未发生核反应,而在x 和 x+dx 之间发生首次核反应的概率P(x)dx= e -Σx Σdx核反应率定义为 R nv =∑ 单位是 中子∕m 3⋅s 中子通量密度nv ϕ=总的中子通量密度Φ 0()()()n E v E dE E dE ϕ∞∞Φ==⎰⎰平均宏观截面或平均截面为 ()()()EEE E dERE dEϕϕ∆∆∑∑==Φ⎰⎰辐射俘获截面和裂变截面之比称为俘获--裂变之比用α表示 fγσασ=有效裂变中子数 1f f a f γνσνσνησσσα===++ 有效增殖因数 eff k =+系统内中子的产生率系统内中子的总消失(吸收泄漏)率四因子公式 s deff n pf k k nεη∞ΛΛ==Λ k pf εη∞=中子的不泄露概率 Λ=+系统内中子的吸收率系统内中子的吸收率系统内中子的泄露率热中子利用系数 f =燃料吸收的热中子被吸收的热中子总数第2章-中子慢化和慢化能谱211A A α-⎛⎫= ⎪+⎝⎭在L 系中,散射中子能量分布函数 []'1(1)(1)cos 2c E E ααθ=++- 能量分布函数与散射角分布函数一一对应 (')'()c cf E E dE f d θθ→=在C 系内碰撞后中子散射角在θc 附近d θc 内的概率:2d 2(sin )sin d ()42c c r rd f d r θπθθθθθθπ===对应圆环面积球面积能量均布定律 ()(1)dE f E E dE Eα'''→=--平均对数能降 2(1)11ln 1ln 121A A A A αξαα-+⎛⎫=+=- ⎪--⎝⎭当A>10时可采用以下近似 223A ξ≈+L 系内的平均散射角余弦0μ001223c c d Aπμθθ==⎰慢化剂的慢化能力 ξ∑s 慢化比 ξ∑s /∑a 由E 0慢化到E th 所需的慢化时间t S()thE s s E E dE t v E λλξ⎤=-=-⎰热中子平均寿命为 00()11()()a d a a E t E vE v v λ===∑∑(吸收截面满足1/v 律的介质)中子的平均寿命 s d l t t =+ 慢化密度 0(,)(,)()(,)s EEq r E dE r E f E E r E dE ϕ∞''''=∑→⎰⎰(,)(,)(,)(,)(,)(1)(1)EE Eas s EE E r E r E dE E E q r E dE r E r E dE E Eααϕαϕαα''''∑-''''==∑''--⎰⎰⎰ 稳态无限介质内的中子慢化方程为 ()()()()()(Et s E E E E f E E dE S E ϕϕ∞''''∑=∑→+⎰无吸收单核素无限介质情况 ()()()()(1)Es t EE E E E dE Eαϕϕα''∑'∑='-⎰无限介质弱吸收情况dE 内被吸收的中子数 ()()()a dq q E q E dE E dE ϕ=--=∑0()exp()E a Es dE q E S E ξ'∑=-'∑⎰逃脱共振俘获概率00()()()exp()E aE s E q E dE p E S E ξ'∑==-'∑⎰第j 个共振峰的有效共振积分 ,*() ()jj AE I E E dE γσφ≡⎰逃脱共振俘获概率i p 等于 1exp A iA i i s s N I N p I ξξ⎡⎤=-=-⎢⎥∑∑⎣⎦整个共振区的有效共振积分 ()()ia EiI I E E dE σϕ∆==∑⎰热中子能谱具有麦克斯韦谱的分布形式 /1/23/22()()n E kT n N E e E kT ππ-=中子温度 ()(1)a M n M SkT T T Cξ∑=+∑ 核反应率守恒原则,热中子平均截面为()()()(()(ccc c E E E E E N E vdEE N E N E vdEN E σσσ==⎰⎰⎰⎰若吸收截面a 服从“1/v”律(a a E σσ=若吸收截面不服从“1/v ”变化,须引入一个修正因子n ga n σ=第3章-中子扩散理论菲克定律 J D φ=-∇ 3sD λ=01s tr λλμ=- 023Aμ= 001()46z s J z ϕϕ-∂=+∑∂ 001()46z s J z ϕϕ∂=∑∂+- 01()3z z z s J J J zφ+-∂=-=-∑∂ 33ssx y z J J i J j J k grad λλφφ=++=-=-∇中子数守恒(中子数平衡)(,)(S)(L)(A)Vdn r t dV dt =--⎰产生率泄漏率吸收率 中子连续方程 (,)(,)(,)(,)a n r t S r t r t divJ r t tϕ∂=-∑-∂如果斐克定律成立,得单能中子扩散方程 21(,)(,)(,)(,)a r t S r t D r t r t v tϕϕϕ∂=+∇-∑∂ 设中子通量密度不随时间变化,得稳态单能中子扩散方程 2()()()0a D r r S r ϕϕ∇-∑+= 直线外推距离 trd 0.7104l = 扩散长度 220011363(1)3(1)a tr a s a a s D L r λλλλμμ=====∑-∑∑-慢化长度L1 2221111112110100ln 3th a tr E D D L L E ϕϕϕϕξ∇-∑=∇-=→==∑∑∑ L 21 称为中子年龄,用τth 表示, 即为慢化长度。

核反应堆物理分析 (2)

核反应堆物理分析 (2)

核反应堆物理分析
核反应堆物理分析涉及核反应堆的设计、运行和安全性等方面的问题。

1. 反应堆设计:物理分析包括确定反应堆的类型(如热中子堆、快中子堆)、反应堆堆芯结构(如燃料组件、调节剂、冷却剂)、燃料选型等。

物理分析可以使用各种数学模型和计算方法,如扩散理论、输运理论、蒙特卡罗方法等,来优化反应堆设计并实现理论上的最佳性能。

2. 反应堆运行:物理分析对反应堆运行过程中的核反应、中子输运和燃料消耗等进行模拟和分析。

这些分析可用于确定最佳的控制棒位置、调节剂、冷却剂流量等参数,以实现稳定的反应堆功率和温度。

3. 反应堆安全性:物理分析在反应堆的安全性评估和安全控制中起着重要作用。

分析方法包括事故响应分析、热工和水力分析、灾变分析等。

物理分析可以帮助确定适当的
安全控制措施,以确保核反应堆在任何条件下都能保持稳定和安全的运行。

总之,核反应堆物理分析是核能领域的关键技术之一,它为核反应堆的设计、运行和安全性提供了重要的支持和指导。

北京市考研核工程与核技术应用复习资料核反应堆物理

北京市考研核工程与核技术应用复习资料核反应堆物理

北京市考研核工程与核技术应用复习资料核反应堆物理核反应堆物理是核工程与核技术应用专业中的重要内容,它涉及到核反应堆的结构、原理、燃料、控制和安全等方面的知识。

在准备考研时,对于核反应堆物理的复习资料的整理和掌握尤为重要。

本文将从核反应堆物理的基本概念、原理、燃料、控制和安全等方面进行论述,以帮助考生完善复习资料。

一、核反应堆物理的基本概念核反应堆是一种利用核裂变或核聚变反应释放出的能量来产生热能或电能的装置。

它由燃料、冷却剂、反应堆壳体、控制装置和安全装置等组成。

核反应堆物理研究的主要内容是核裂变反应的链式反应和反应堆内各物质的相互作用。

核反应堆物理的主要目标是实现链式反应的可控制性和安全性。

要实现这些目标,需要研究和掌握核反应堆的关键参数,如中子速度、中子通量分布、反应率等。

通过对这些参数的分析和调控,可以实现核反应堆的稳定工作和安全运行。

二、核反应堆物理的原理核反应堆物理的原理主要涉及到中子的产生、传输和吸收过程。

在核反应堆中,中子由裂变反应或其他核反应释放出来,并在燃料和冷却剂中传输。

在传输过程中,中子会与燃料和冷却剂发生相互作用,从而影响中子的能量和速度。

通过研究和掌握这些相互作用的规律,可以实现核反应堆的控制和安全运行。

核反应堆物理的原理还包括中子的衰减和吸收过程。

在核反应堆中,中子在传输过程中会发生衰减,即中子的数目会逐渐减少。

同时,中子还会被燃料、冷却剂和其他物质吸收,使得中子的能量和速度发生变化。

通过研究和掌握这些过程的规律,可以实现核反应堆的控制和安全运行。

三、核反应堆物理的燃料核反应堆的燃料一般是铀、钚等核燃料。

这些核燃料在核反应堆中发生裂变反应,释放出大量的能量。

在燃料的选择和设计中,需要考虑其裂变性能、裂变产物的生成和燃料堆积等因素,以保证核反应堆的工作效率和安全性。

核反应堆的燃料还需要考虑其放射性和核废料的处置等问题。

核反应堆燃料在裂变反应过程中会产生大量的放射性物质和核废料,对环境和人类健康都具有一定的影响。

核反应堆物理复习提纲

核反应堆物理复习提纲
燃料核吸收的热中子总数
PF:快中子慢化不泄漏概率;PT:热中子扩散不泄漏概率;keff:有效增殖 因数。令 P=PFPT,则 P 表示中子在慢化、扩散过程中不泄漏概率。 keff 两种定义式:keff=堆堆内内上一一代代裂裂变变中中子子数总数,keff=中子的消中失子率的(产吸生收率+泄漏)。 六因子公式:keff=εpfηPFPT,将 P=PFPT 代入得五因子公式:keff=εpfηP,如
裂变放出的能量 Ef=200MeV。 24.停堆后的衰变热功率表如下表所示。
表中数据表明,停堆后 1s 由裂变产物衰变而释放的衰变热稍大于反应 堆运行功率的 6%。对于短的冷却时间,只要运行时间长于 30d 左右,则 Pd/P 基本上与运行时间无关。其原因是半衰期较短的裂变产物很快地达到 了它们的饱和值,当然也首先衰变。往后的衰变热由半衰期较长的裂变产 物产生,它们在停堆时的数量取决于反应堆的运行时间。
3∑s
9.费米年龄τ:τ在数值上等于中子由产生地点(该处年龄为 0)到年龄为τ
的地点所穿行(净矢量)距离均方值的1,即
6
τ=1
6
rs2。
慢化长度 Ll是中子在慢化过程中飞行的净矢量(或直飞)距离的一种量度,
数值等于费米年龄τ的平方根。单位时间单位体积内快中子与原子核发生散
射的次数为∑sΦl,一个源中子从初始能量 E0 慢化到 Eth 以下需要的平均碰 撞次数为1ξ lnEEt0h,定义移出截面∑l:快中子变成热中子的概率,那么单位时 间单位体积内慢化为热中子的数量为∑lΦl=1ξ∑lnsEΦEt0lh,∑l=lnξ∑EEts0h,则 Ll=√D∑ll , Ll 影响反应堆中快中子的泄漏,Ll 越大,快中子泄漏到反应堆外几率越大。
v

核反应堆物理知识点总结

核反应堆物理知识点总结

核反应堆物理知识点总结核反应堆的基本原理核反应堆是通过核裂变或核聚变反应释放能量,实现能量的控制和转换。

核反应堆中的燃料通常是放射性同位素,如铀、钚等。

在裂变反应中,这些放射性同位素被中子轰击后裂变成两个或更多的裂变产物,伴随着大量的能量释放;在聚变反应中,两个轻核子融合成一个重核子,同样伴随着释放大量的能量。

裂变反应的示意图如下所示,以铀-235为例:铀-235 + 中子→ 钒-141 + 锶-92 + 3中子 + 能量聚变反应的示意图如下所示,以氘与氚核聚变产生氦和中子为例:氘 + 氚→ 氦 + 中子 + 能量核反应堆的结构核反应堆通常由反应堆压力容器、燃料组件、控制棒、冷却剂、反应堆堆芯、反应堆容器等部件组成。

其中,反应堆压力容器是核反应堆的主要设备之一,用于容纳反应堆的燃料组件和控制棒,同时提供辐射屏蔽和冷却外壳。

燃料组件是反应堆的核心部件,包含了核燃料和结构材料,用于裂变或聚变反应产生能量。

控制棒是用来调节核反应堆功率的设备,通常由吸中子材料组成,可以调整中子通量,控制核裂变反应的速率。

冷却剂则是用来带走反应堆核心区的热量,防止核反应堆过热。

核反应堆的工作原理核反应堆的工作原理主要包括裂变链式反应、控制反应堆功率、调节中子通量、冷却反应堆核心等几个方面。

首先,核反应堆的工作是通过裂变链式反应来释放能量的。

在核反应堆中,加速中子被注入燃料组件,引发铀或钚等放射性同位素的核裂变,并释放更多的中子,在一连串的核裂变中,释放出巨大的能量。

其次,为了控制核反应堆的功率,需要调节中子通量。

一般情况下,核反应堆的功率是通过控制棒来调节的,控制棒的进出深度会影响中子的散射,从而调节核反应堆的功率。

最后,为了防止核反应堆过热,需要冷却反应堆核心。

核反应堆中通过冷却系统可以带走核反应堆核心的热量,防止核反应堆过热。

核反应堆的安全控制核反应堆的安全控制是核能工程的重要一环,主要包括核反应堆冷却系统设计、核反应堆辐射屏蔽设计、控制系统设计等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


0
实验室坐标系中:
0
1 2 0
2 0 A cos c 1
A2 2 A cos c 1
sin c dc
2 3A
物理意义:平均散射角余弦的大小表示了散射各向异性的程度。在实验室系平均散射角余弦随着靶核质 量数的减小而增大,靶核的质量越小,中子散射后各向异性(向前运动)的概率就越大。 5、慢化剂的选择: 慢化剂应为轻元素(具有大的平均对数能降 ξ) 、较大的散射截面、小的吸收截面。 慢化剂的慢化能力:ξΣs 慢化比:ξΣs / Σa 6、中子的平均寿命:快中子自裂变产生到慢化成为热中子,直到最后被俘获的平均时间。 -2 -4 1 其中:扩散时间 (10 到秒 10 量级) , t (E)



E 4( E E0 )
核反应堆物理分析 以吸收为主的共振:
散射共振:
s (E) 0
E0 2 n 4( E E0 ) R p 2 E 4( E E0 )
15、多普勒效应:由于靶核的热运动,对于本来具有单一能量 E0 的中子,从它和核的相互作用来看,中子 与靶核的相对能量有一个范围展宽,使共振截面曲线的共振峰宽度展宽而共振峰峰值降 低。 16、多普勒展宽:由于靶核的热运动随温度的增加而增加,所以中子—核相对能量的展开范围也随温度而 增大。因此,共振峰的展宽随温度的上升而加大,同时伴随着峰值高度的进一步降低。 这一现象叫做多普勒展宽 17、反应堆的功率:

i
E

有效共振积分反映了共振峰对中子的吸收能力; 有效共振积分的值只与该共振峰的性质有关,与吸收剂的密度无关 有效共振积分的用途:计算逃脱共振几率;计算包含共振峰的能区的平均截面。 9、热中子的能谱是硬化后的麦克斯韦分布。 热中子的平均能量和最概然能量都要比介质原子核的平均能量和最概然能量高,这种现象称为热中子能谱 的“硬化” 10、热中子反应堆内中子的近似能谱分布 高能区(E>0.1 MeV) :裂变中子能谱。 慢化区(1eV<E<0.1 MeV):弱吸收介质,1/E 规律变化(费米谱)。 热能区(1eV<E) :(硬化的)麦克斯韦谱。

V
S (r , t )dV
V V

S
J (r , t ) ndS J (r , t )dV divJ (r , t )dV
a
4、中子的吸收率: 吸收率

V
(r , t )dV
1
2
5、扩散长度与泄漏率的关系: 点中子源 L2 r 2 平面中子源: L x 2 6 扩散长度 L 的大小直接影响堆内热中子的泄露。 L 愈大,则热中子自产生地点到被吸收地点所移动的直 线平均距离也愈大,因而热中子泄露到反应堆外的概率也就愈大。
6、 宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行 单位距离与核发生反应的概率。单位:1/m 7、 平均自由程 λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。或:平均每 飞行λ距离发生一次碰撞。 λ= 1/ 8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值) 。 9、中子通量密度:表示 1 立方米内所有的中子在 1 秒钟内穿行距离的总和。 10、中子能谱分布:在核反应堆内,中子并不具有同一速度 v 或能量 E,中子数关于能量 E 的分布称为中子 能谱分布。 11、平均截面(等效截面) : 12、截面随中子能量的变化: 一、微观吸收截面: ① 低能区(E<1eV) : :中、重核在低能区有共振吸收现象 ② 高能区(1eV<E<keV) : 重核:随着中子能量的增加,共振峰间距变小,共振峰开始重叠,以致不再能够分辨。因此随 E 的 变化,虽有一定起伏,但变得缓慢平滑了,而且数值甚小,一般只有几个靶。 轻核:一般要兆电子伏范围内才出现共振现象,且其共振峰宽而低。 二、微观散射截面: 弹性散射截面 σe :多数元素与较低能量中子的散射都是弹性的。基本上为常数,截面值一般为几 靶。 轻核、中等核:近似为常数; 重核:在共振能区将出现共振弹性散射。 非弹性散射截面 σin :有阈能的特点,质量数愈大,阈能愈低 三、微观裂变截面: (与重核的吸收截面的变化规律类似) ① 热能区(E<1eV) :裂变截面随中子能量减小而增加,且其截面值很大。 ② 共振区(1eV<E<keV) :出现共振峰 ③ 快中子区(E>keV) :裂变截面中子能量的增加而下降到几靶。 13、描述共振截面变化特性的三个共振参数: 共振能:E0 ; 峰值截面:σ0; 能级宽度 Γ:等于在共振截面曲线上,当 σ= σ0/2 时所对应的能量宽度。 14、单能级布赖特-维格纳公式: r E0 2 辐射俘获共振: r (E) 0 2 2
核反应堆物理分析 第一章 核反应堆的核物理基础 1、 反应堆:能够实现可控、自续链式核反应的装置。 2、 反应堆物理:研究反应堆内中子行为的科学。有时称 neutronics。或:研究、设计反应堆使得裂变反 应所产生的中子与俘获反应及泄露所损失的中子相平衡。 3、 在反应堆物理中, 除非对于能量非常低的中子, 都将中子视为粒子, 不考虑其波动性及中子的不稳定性。 4、 反应堆内,按中子与原子核的相互作用方式可分为三大类:势散射、直接相互作用和复合核的形成; 按中子与原子核的相互作用可分为两大类:散射和吸收。 5、 σ : 微 观 截 面 表 示 平 均 一 个 入 射 中 子 与 一 个 靶 核 发 生 相 互 作 用 的 几 率 大 小 的 一 种 量 度 ,
第三章 中子扩散理论 1、斐克定律的理解释: 左边的中子通量密度高,所以左边的中子散射碰撞几率大,因此中子散射到右 边的比散射到左边的多,结果产生了一个沿 x 正方向流动的净中子流。且 x=0 两侧中子通量密度的梯度 越大,中子流也越大。 2、中子的产生率 S: 产生率 3、中子的泄漏率 L: 泄露率
l t s td
d
a 0 v0
核反应堆物理分析 慢化时间
ts
Eth
E0
s dE v E
(在 10 到 10 秒量级)
-4
-6
热中子反应堆中,中子的平均寿命主要由热中子的平均寿期即扩散时间决定。 7、无吸收介质内在慢化区能谱近似服从 1/E 分布或称之为费米谱分布。 8、有效共振积分: I I i a ( E ) ( E )dE
Keff
新生一代中子数 直属上一代中子数
Keff
系统内中子的产生率 系统内中子的总消失(吸收+泄露)率
K eff 取值与反应堆状态的关系:次临界系统(<1);临界系统(=1) ;超临界系统(>1) 。
第二章 中子的慢化和慢化能谱 1、慢化过程中起主要作用的是弹性散射: 因为非弹性散射具有阈能的特点(轻核(常作为慢化剂) :几个 MeV;中重核:0.1MeV 重核:5 ×104eV) 2、一次碰撞中中子可能损失的最大能量: (1-à)E 2 3、平均对数能降: 当 A>10 时 2 A 4、平均散射角余弦: 3 1 质心系中: c cos c f (c )dc cos c sin c dc 0
2
1
6、徙动面积: M 2 L2 th
1 2 2 (rs rd ) 6
:M 为徙动长度
2
热中子反应堆的修正单群理论:用徙动面积代替 L ,便可初步考虑慢化过程对中子泄露的影响,是计 算精度得到改善。 7、会求解非增值介质内中子的扩散方程(P72) 。 第四章 均匀反应堆的临界理论 1、会求解无反射层均匀裸堆的单群扩散方程(中子通量密度、临界方程 P87—P98) 2、反应堆的曲率:几何曲率、材料曲率及其相对大小与反应堆状态的关系 几何曲率 Bg2:满足波动方程的最小特征值,对于裸堆,其与反应堆的几何形状及尺寸大小有关,而与
L2
若 B 2 B 2 这时 k<1 ,反应堆处于次临界状态。 g m 3、反应堆的三类临界计算任务: 第一类问题:给定反应堆材料成分,确定它的临界尺寸。 第二类问题:给定反应堆的形状及尺寸,确定临界时应堆的材料成分。 k k 1 第三类问题:给定反应堆的材料成分和几何尺寸,确定堆芯的有效增值因子或反应性。 keff 2 或 1 L2 Bg k 通常称为反应性。对于临界反应堆,=0; 若>0,超临界; <0,反应堆处于次临界。 | |表示反应堆偏离临界状态的程度。 4、反射层的作用:<1>减少芯部中子的泄漏,从而减小芯部的临界体积和质量,节省一部分核燃料。 <2>提高反应堆的平均输出功率,这是由于反射层的存在,芯部中子通量密度分布比裸堆 的中子通量密度分布更加平坦。 5、反射层材料的选择:<1>反射层材料散射截面要大,有利于逃出芯部的中子反射回来; <2>反射层材料吸收截面要小,减少对中子的吸收; <3>良好的慢化能力,以便有返回堆芯的中子具有较低能量。 良好的慢化材料通常也是良好的反射层材料。热中子堆常用的反射层材料有: H2O, D2O, 石墨等。 6、会求解一侧带有反射层的中子扩散方程(P101--106) 7、反射层节省:芯部加上反射层所引起的临界尺寸的减少量通常可以用反射层节省表示。 H H 球形反应堆: R0 R 圆柱形反应堆: R R, z ( 0 ) r 0 2 2 8、热中子通量密度分布不均匀系数/功率峰因子:芯部内热中子通量密度的最大值与热中子通量密度的平 均 max 值之比,用 KH 表示: K H 1 圆柱形裸堆:
qr E f f r
f r
3.12 10
10
W m3
18、裂变产物:非对称性:对称裂变产额小,非对称裂变产额大。 19、裂变中子能谱 :裂变中子的最概然能量稍低于 1Mev。
20、瞬发中子(prompt neutrons):伴随着裂变产生而没有可测延迟的中子,占 99%。 缓发中子(delayed neutrons):裂变碎片衰变过程中发射出来的中子,<1%。 缓发中子先驱核: 在衰变过程中产生的,最终能够产生缓发中子的核(碎片) 。 21、有效增值因数 K eff :
相关文档
最新文档