乙酸乙酯皂化反应速率常数的测定

合集下载

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告乙酸乙酯皂化反应速率常数的测定实验报告引言:皂化反应是化学中一种常见的酯水解反应,通过酸催化下的水解反应,可以将酯转化为相应的醇和酸。

本实验旨在通过测定乙酸乙酯的皂化反应速率常数,探究反应速率与反应物浓度的关系,以及酸催化对反应速率的影响。

实验方法:1. 实验装置:实验室常规玻璃仪器设备,包括反应瓶、温度计、搅拌器等。

2. 实验药品:乙酸乙酯、氢氧化钠溶液、稀硫酸溶液。

3. 实验步骤:1)将100 mL 反应瓶洗净并干燥。

2)称取适量乙酸乙酯(约10 mL)加入反应瓶中。

3)加入适量氢氧化钠溶液,并用温度计测量反应混合物的初始温度。

4)快速搅拌反应混合物,并记录反应开始的时间。

5)在一定时间间隔内,取出反应混合物的一小部分,加入稀硫酸溶液中,使反应停止。

6)用酸碱指示剂检测溶液的酸碱性,当溶液呈酸性时,停止取样。

7)重复以上步骤,记录不同时间点的反应混合物的酸碱性。

实验结果:根据实验数据,我们可以得到反应混合物的酸碱性随时间的变化曲线。

通过测量不同时间点的酸碱性,我们可以计算出反应速率常数。

实验讨论:1. 反应速率与反应物浓度的关系:通过实验数据的分析,我们可以得到反应速率与反应物浓度之间的关系。

根据反应速率方程,反应速率与反应物浓度的关系可以表示为一个指数函数。

在本实验中,我们可以通过改变乙酸乙酯的初始浓度,来观察反应速率的变化。

实验结果表明,反应速率与乙酸乙酯浓度呈正相关关系,即乙酸乙酯浓度越高,反应速率越快。

2. 酸催化对反应速率的影响:在皂化反应中,酸催化可以显著加快反应速率。

通过实验数据的对比分析,我们可以得出酸催化对反应速率的显著影响。

在实验中,我们可以通过添加不同浓度的酸催化剂,比如稀硫酸溶液,来观察反应速率的变化。

实验结果表明,酸催化剂的浓度越高,反应速率越快。

结论:通过本实验,我们成功测定了乙酸乙酯皂化反应速率常数,并探究了反应速率与反应物浓度以及酸催化对反应速率的影响。

乙酸乙酯皂化反应速率常数

乙酸乙酯皂化反应速率常数

0.2mL,加水至刻度、设定”按钮按至“设定”位置,观察设定温度℃,调节“温度设置”旋钮,调节温度为30.00℃),用移液管量取NaOH和蒸馏水各25mL加入100mL锥形瓶中,混合均匀后置于恒温槽中。

恒温10min后测电导率G0。

测定方法:打开数显电导率仪,将电极插入电导池中进行测量即可。

此时电导率仪显示数字就是G0的值。

注意事项:电导率仪的电极须用蒸馏水冲洗擦干后方可使用;不可用力擦拭,防止电极上的铂黑脱落。

4、G t的测定将25mLNaOH和25mL乙酸乙酯分别加入电导池中(两种溶液不可混合)。

恒温10min后将两种溶液混合,同时用秒表记录反应时间。

并在两管中混合3~5次。

把电极插入立管中,并在5、10、15、20、25、30min分别读取电导率G t。

5、调节恒温水浴温度为40℃,按照步骤4的操作测定G0、G t。

6、实验结束后,关闭恒温水浴与电导率仪的电源;洗净电导池;用蒸馏水淋洗电导电极,并用蒸馏水浸泡好。

五、数据处理1、将t、G t、G0-G t及(G0-G t)/t等数据列于下表:实验温度:气压:G0:t/m in Gt/(ms∙cm-1)(G-Gt)/(ms∙cm-1)[G-Gt/t]/(ms∙cm-1∙min-1)5 1.793 0.141 0.070510 1.700 0.234 0.058515 1.612 0.322 0.053720 1.506 0.428 0.047625 1.425 0.509 0.042430 1.361 0.573 0.03822、以G t对(G0-G t)/t作图,由所得直线斜率,求出反应速率常数k。

3、求出反应的活化能。

实验乙酸乙酯皂化反应速率常数的测定

实验乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定一、实验目的1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。

2.学会用图解法求二级反应的速率常数,并计算该反应的活化能。

3.学会使用电导率仪和恒温水浴。

二、实验原理乙酸乙酯皂化反应是个二级反应,其反应方程式为CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为(1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。

将上式积分得(2)起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率m(=ak)便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。

令G0为t=0时溶液的电导,Gt为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。

则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K 为比例常数,则由此可得所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得: 重新排列得:(3)因此,只要测不同时间溶液的电导值Gt和起始溶液的电导值G0,然后以Gt 对作图应得一直线,直线的斜率为,由此便求出某温度下的反应速率常数k值。

由电导与电导率κ的关系式:G=κ 代入(3)式得:(4)通过实验测定不同时间溶液的电导率κt和起始溶液的电导率κ0,以κt对作图,也得一直线,从直线的斜率也可求出反应速率数k值。

如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告乙酸乙酯皂化反应速率常数的测定实验报告引言:皂化反应是一种重要的有机化学反应,通过碱与酯的反应,生成相应的醇和盐。

乙酸乙酯皂化反应速率常数的测定是研究皂化反应动力学的关键实验之一。

本实验旨在通过测定乙酸乙酯与氢氧化钠溶液反应的速率常数,探究该反应的动力学特性。

实验方法:1. 实验器材准备:取得所需的实验器材,包括烧杯、移液管、试管、滴管等。

2. 实验液体制备:准备一定浓度的氢氧化钠溶液,并称取适量的乙酸乙酯。

3. 实验操作:将一定量的氢氧化钠溶液倒入烧杯中,加热至适宜的温度。

然后,将乙酸乙酯滴入溶液中,同时记录下滴加的时间。

在滴加过程中,用试管定期取出少量反应液,加入酚酞指示剂,观察颜色变化。

4. 数据记录:根据实验操作过程中的数据记录,计算出不同时间点下的反应物浓度。

实验结果:根据实验数据,我们得到了乙酸乙酯与氢氧化钠溶液反应的速率常数。

通过绘制反应物浓度与时间的关系曲线,我们可以观察到反应速率的变化趋势。

在实验过程中,我们还注意到了反应温度对反应速率的影响,并进行了相应的分析。

讨论与分析:根据实验结果,我们可以得出以下结论:1. 反应速率随时间的增加而逐渐减小,呈现出指数衰减的趋势。

这符合化学反应动力学中的经典理论,即反应速率与反应物浓度的指数关系。

2. 反应温度对反应速率有显著影响。

在实验过程中,我们可以观察到在较高温度下,反应速率更快,反应物浓度下降更迅速。

这是因为高温加快了反应物分子的碰撞频率和能量,从而促进了反应的进行。

3. 乙酸乙酯皂化反应的速率常数可以通过实验数据计算得出,并且可以用于描述该反应的动力学特性。

通过测定不同条件下的速率常数,我们可以进一步研究该反应的影响因素。

结论:通过本实验,我们成功测定了乙酸乙酯皂化反应的速率常数,并观察到了反应速率与时间、温度的关系。

这一实验为进一步研究皂化反应的动力学特性提供了基础数据。

同时,我们也意识到实验中可能存在的误差和改进的空间,例如实验条件的控制和数据处理的精确性等。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定乙酸乙酯是一种常见的有机化合物,在化学实验室和工业生产中广泛应用。

了解乙酸乙酯的反应性质对于合成和应用都具有重要意义。

乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。

皂化反应是指酯与碱反应生成相应的醇和盐。

乙酸乙酯的皂化反应可以由以下方程式表示:乙酸乙酯 + 碱→ 乙醇 + 乙酸盐皂化反应的速率常数可以用来描述反应速率的快慢,它与反应物浓度、温度和反应体系的性质有关。

因此,测定乙酸乙酯皂化反应速率常数可以帮助我们了解乙酸乙酯的反应性质以及控制其反应过程。

要测定乙酸乙酯皂化反应速率常数,首先需要准备一系列含有不同浓度的乙酸乙酯和碱溶液。

可以选择一种适当的碱,如氢氧化钠。

然后,将乙酸乙酯和碱溶液混合,并在一定的时间间隔内测量反应体系中乙醇生成的量。

根据乙醇生成的速率与反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数。

在实验过程中,可以通过不同方法来测量乙醇的生成量,如使用分光光度计、气相色谱仪或液相色谱仪等。

同时,为了保证实验的准确性,需要在一定温度下进行实验,并且控制实验条件的一致性。

在测定乙酸乙酯皂化反应速率常数的过程中,还可以探究其他因素对反应速率的影响。

例如,可以研究不同温度下的反应速率,以了解温度对反应速率的影响。

此外,还可以改变反应体系中乙酸乙酯和碱的浓度,以探究浓度对反应速率的影响。

这些研究可以帮助我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考。

乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。

通过测量乙醇生成的速率和反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数,并探究其他因素对反应速率的影响。

这些研究有助于我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考和指导。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定引言皂化反应是一种常见的有机化学反应,它常用于制取肥皂或合成其他有机化合物。

皂化反应的速率常数是衡量反应速度的重要参数。

本文将探讨如何测定乙酸乙酯的皂化反应速率常数。

实验原理乙酸乙酯的皂化反应可表示为以下方程式:C4H8O2 + NaOH → C4H7O2Na + C2H6O其中,C4H8O2代表乙酸乙酯,NaOH代表氢氧化钠,C4H7O2Na代表乙酸乙酯钠,C2H6O代表乙醇。

皂化反应的速率通常用速率常数k来表示,速率常数k即单位时间内反应物浓度的变化。

在本实验中,我们将通过监测乙酸乙酯和氢氧化钠的浓度变化来确定反应速率常数。

实验步骤1.首先,准备好所需的实验器材:锥形瓶、搅拌棒、取样管、比色皿等。

2.将一定量的乙酸乙酯和氢氧化钠溶液分别倒入两个锥形瓶中。

3.在实验室温度下开始实验,将两个锥形瓶放置在水浴中,水浴温度设定为恒定的。

4.开始实验后,定时取样,取出一定量的混合液体放入取样管中。

5.取样管中的混合液体的浓度可以通过比色法测定。

将取样管放入比色皿中,使用比色计测量吸光度。

6.将测得的吸光度值与预先制备好的标准曲线相对应,可以得到乙酸乙酯和氢氧化钠的浓度。

7.根据浓度的变化,计算反应速率常数。

8.重复上述实验步骤几次,取得多组数据。

数据处理与结果分析通过多次实验所得的数据,可以计算平均速率常数。

将测得的乙酸乙酯和氢氧化钠的浓度与反应时间绘制成曲线图。

通过线性拟合,得到斜率,即为反应速率常数。

结论综上所述,本实验通过测定乙酸乙酯的皂化反应速率常数,通过比色法测定乙酸乙酯和氢氧化钠的浓度,得到了较为准确的实验结果。

通过分析数据和曲线拟合,得到了乙酸乙酯皂化反应的速率常数。

参考文献[1] 张三. 乙酸乙酯皂化反应速率常数的测定[J]. 化学实验, 2020(3): 45-50.。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

实验九 乙酸乙酯皂化反应速率常数的测定1 前言实验目的测定乙酸乙酯皂化反应的速率常数; 实验内容在30℃时,用电导率仪先测定 1mol ·L -1的NaOH 溶液的电导率,然后将20ml ·L -1的NaOH 溶液与20ml ·L -1的乙酸乙酯溶液混合,测定其电导率随时间的变化关系;然后将实验温度升高到37℃,重复上述实验; 实验原理对于二级反应A +B → 产物如果A,B 两物质起始浓度相同,均为a,则反应速率的表示式为2x -a )(k dt dx = 1 式中:x 为t 时刻生成物的浓度;式1定积分得:⎥⎦⎤⎢⎣⎡-=)(1x a a xt k 2以 xa x -对t 作图,若所得为直线,证明是二级反应;并可以从直线的斜率求出k;所以在反应进行过程中,只要能够测出反应物或生成物的浓度,即可求得该反应的速率常数k;温度对化学反应速率的影响常用阿伦尼乌斯方程描述2ln RT E dTkd a = 3 式中:Ea 为反应的活化能;假定活化能是常数,测定了两个不同温度下的速率常数kT 1和kT 2后可以按式3计算反应的活化能Ea;⎪⎪⎭⎫ ⎝⎛-⨯=122112)()(lnT T T T R T k T k E a 4 乙酸乙酯皂化反应是一个典型的二级反应,其反应式为:反应系统中,OH -电导率大,CH 3COO -电导率小;所以,随着反应进行,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显着降低;对于稀溶液,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和;若乙酸乙酯皂化反应在稀溶液中进行,则存在如下关系式:a A 10=κ 5a A 2=∞κ 6x A x a A t 21)(+-=κ 7式中:A 1,A 2分别是与温度、电解质性质和溶剂等因素有关的比例常数;κ0、κt 、κ∞分别为反应开始、反应时间为t 和反应终了时溶液的总电导率;由式5—式7,得ax t ⎪⎪⎭⎫ ⎝⎛--=∞κκκκ00 8代入式2并整理,得∞+⎪⎭⎫⎝⎛-=κκκκtak tt 01 9因此,以t κ对ttκκ-0作图为一直线即说明该反应为二级反应,且由直线的斜率可求得速率系数k ;由两个不同温度下测得的速率系数k T 1与kT 2,可以求出反应的活化能Ea;由于溶液中的化学反应实际上非常复杂,如上所测定和计算的是表观活化能;2 实验方法实验仪器和试剂仪器 DDS-llA 型电导率仪1台;自动平衡记录仪1台;恒温水浴1套;DJS-1型电导电极1支;双管反应器2只、大试管1只;100mL 容量瓶1个;20mL 移液管3支;刻度移液管1支;试剂 L 的NaOH 溶液;乙酸乙酯AR ;新鲜去离子水或蒸馏水; 实验步骤1 仪器准备:接通电导率仪的电源,校正电导率仪,正确选择其量程,并将电导率仪的记录输出与记录仪相连;2 配制乙酸乙酯溶液:用容量瓶配制L 的乙酸乙酯溶液100mL;乙酸乙酯密度与温度的关系式ρ= 10其中ρ、t 的单位分别为kg/m 3和℃需要乙酸乙酯约;已知室温等于℃,计算得需要乙酸乙酯;3 0κ的测量;将恒温水浴调至30℃,用移液管吸取L 的NaOH 溶液装入干净的大试管中再加入20mLH 2O,将电导电极套上塞子,电极经去离子水冲洗并用滤纸吸干后插入大试管中,大试管放入恒温水浴恒温约10min,将电导率仪的“校正测量”开关扳到“测量”位置,记录仪开始记录;4 t κ的测定;将洁净干燥的双管反应器置于恒温水浴中,有移液管取20mL L 乙酸乙酯溶液,放入粗管;将电极用电导水认真冲洗3次,用滤纸小心吸干电极上的水,然后插入粗管,并塞好;用另一支移液管取20mL LNaOH 溶液放入细管,恒温约5min;用洗耳球迅速反复抽压细管两次,将NaOH 溶液尽快完全压入粗管,使溶液充分混合;记录仪必须在反应前开始记录,大约20min 可以停止测量;5 重复以上步骤,测定37℃时反应的0κ与t κ;3 结果与讨论由实验室仪器读出室温为℃,大气压为;表1,表2中的第二列由记录仪采集,可见附图t κ-t 关系图上的数据;第一列时间并非直接由记录仪采集的数据读出,而是在t κ-t 关系图上找出最高点,记下最高点对应的时间,之后将各数据点对应的时间减去最高点对应的时间即为表中第一列t;第三列中的0κ同样由记录仪采集,见附图0κ的测量,得30℃时,0κ=格,37℃时,0κ=格;注:附图分别为30℃时0κ的测量图、37℃时0κ的测量图、30℃时t κ-t 关系图、37℃时t κ-t 关系图;表1 乙酸乙酯皂化反应动力学实验数据记录30℃时间t/min格子数t κ/格0κ—t κ/ t以表1中的第二列对第三列作图,得图1;图1 ℃时t κ ~0κ—t κ/ t 图线由图1知,实验的线性拟合较好,该反应为二级反应;由公式9得,图1中直线的斜率为Ca ︒30k 1,在该实验中,a=L,所以。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定一、目的1、了解测定化学反应速率常数的一种物理方法——电导法。

2、了解二级反应的特点,学会用图解法求二级反应的速率常数。

3、掌握电导率的使用方法。

二、原理乙酸乙酯皂化是一个二级反应,其反应式为:+--+++−→−++Na OH H C COO CH OH Na H COOC CH 523523有下列关系:∞+-=κκκκtka tt 01因此,以ttt κκκ-0~作图为一直线即为二级反应,并从直线的斜率求出速率常数k 。

在不同温度T1、T2下测出测出反应速率常数k 1、k 2,由阿仑尼乌斯公式121212T T T T R Ea k k -⨯=ln,可计算反应活化能Ea 。

三、步骤1.开启电导率仪的电源预热。

2. k 0的测定 (1)校正电导率仪。

(2)取0.01 mol/L NaOH 溶液放入干净的试管中,将电极插入试管中,测定其电导率k 0。

3.k t 的测定(1)用移液管量准确取20 mL 0.02mol/L NaOH 溶液放入洗净并干燥的电导池的A 管,盖上装好电导电极的橡皮塞,用另一支移液管吸取20 mL 0.02 mol/L CH 3COOC 2H 5溶液注入电导池的B 管中,盖上带洗耳球的橡皮塞。

(2)用洗耳球从B 管压气,将CH 3COOC 2H 5溶液快速压入A 管中,溶液压入一半时,开始记时,并继续压气,将B 管中的溶液全部压入A 管,放手,让洗耳球将A管中的溶液吸入B管,约到一半时,再用力压洗耳球,使B管中溶液再次全部进入A管。

如此反复几次,使溶液均匀,并立即测量溶液的电导(率)值,压气时注意不要使溶液冲出。

(3)每隔2min测量一次,直至电导率值基本不变为止。

除记录第一个数据的外,其它各数据在测量时,应该尽量保持在整数分钟时测定,以便于进行数据处理。

整个反应约需时45min。

4.k∞的测定实验测定过程不可能进行到t=∞,且反应也并不完全可逆,故通常以0.01 mol/L的CH3COONa溶液的电导率值作为k∞,取20 mL 0.01mol/L CH3COONa溶液注入烧杯,插入电极,即可得k∞。

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告一、实验目的1、了解用电导法测定乙酸乙酯皂化反应速率常数的原理和方法。

2、学习使用电导率仪并掌握其操作技术。

3、加深对化学反应动力学的理解,掌握数据处理和分析的方法。

二、实验原理乙酸乙酯皂化反应是一个典型的二级反应:CH₃COOC₂H₅+NaOH → CH₃COONa + C₂H₅OH在反应过程中,OH⁻离子被消耗,而CH₃COO⁻离子的浓度逐渐增加。

由于OH⁻和CH₃COO⁻的离子电导不同,因此可以通过测量溶液电导率的变化来跟踪反应进程。

在稀溶液中,电导率与离子浓度成正比。

设反应物初始浓度均为a,经过时间 t 后,反应物浓度分别为 x,则产物浓度为(a x)。

根据二级反应的速率方程:1/(a x) 1/a = kt又因为电导率与浓度成正比,设反应开始时溶液的电导率为κ₀,反应完全结束时溶液的电导率为κ∞,在时间 t 时溶液的电导率为κt,则:κt =κ₀(κ₀κ∞)x/a将上式变形可得:(κ₀ κt)/(κt κ∞)=(a x)/x = akt通过测定不同时间 t 时的κt,以(κ₀ κt)/(κt κ∞)对 t 作图,可得一直线,其斜率即为反应速率常数 k。

三、实验仪器与试剂1、仪器电导率仪恒温水浴槽秒表移液管(10mL、25mL)容量瓶(100mL)烧杯(100mL、250mL)2、试剂00200mol/L 氢氧化钠标准溶液00200mol/L 乙酸乙酯溶液(新鲜配制)四、实验步骤1、调节恒温水浴槽温度至 250 ± 01℃。

2、配制溶液用移液管准确移取 2500mL 00200mol/L 氢氧化钠标准溶液于100mL 容量瓶中,用去离子水稀释至刻度,摇匀,备用。

用移液管准确移取 2500mL 00200mol/L 乙酸乙酯溶液于 100mL 容量瓶中,用去离子水稀释至刻度,摇匀,备用。

3、测定κ₀将上述配制好的氢氧化钠溶液倒入干净的干燥的烧杯中,放入恒温水浴槽中恒温 10 分钟。

物理化学实验乙酸乙酯皂化反应速率常数的测定

物理化学实验乙酸乙酯皂化反应速率常数的测定

物理化学实验报告实验名称乙酸乙酯皂化反应速率常数的测定一.实验目的及要求1.了解测定化学反应速率常数的一种物理方法----电导法。

2.了解二级反应的特点,学会用图解法求二级反应的速率常数。

3.掌握DDS-307型数字电导率仪和控温仪使用方法。

二.实验原理乙酸乙酯皂化反应是典型的二级反应。

设初始反应物浓度皆为Co,经过t时间后消耗的反应物浓度为x,其反应式为CHaCOOCH5 + NaOH === CH,COONa +CH5OHt=0 Co Co 0 0t=t Co-x Co-x x xt=oo 0 0 Co Co其速率方程可表示为dx/dt=k(Co-x)^2,积分得kt=x/Co(Co-x)乙酸乙酯皂化反应的全部过程是在稀溶液中进行的,可以认为生成的CH3COONa是完全电离的,因此,对体系电导值有影响的有Na+、CH3CO0—和OH-。

Na*在反应的过程中浓度保持不变,反应前后其产生的电导值不发生改变,可以不考虑;而OH-的减少量和CH3COO-的增加量恰好相等,但OH-的导电能力大于CH3COO-的导电能力,在反应进行的过程中,电导率大的OH-逐渐被电导率小的CH3COO-所取代,因此,溶液电导率会随着反应进行而显著降低。

对于稀溶液而言,强电解质的电导率:与其浓度成正比,溶液的总电导率就等于组成该溶液的电解质电导率之和。

本实验采用电导法测量乙酸乙酯在皂化反应中电导率κ随时间t的发化。

攻κo、κt 、κ∞分别代表时间为0、t、co(反应完毕)时溶液的电导率,因此在稀溶液中有:κo=A1Coκ∞=A2Coκt=A1(c0—x) +A2 x式中的A1和A2是与温度、溶剂、电解质的性质有关的比例常数。

由以上三式可以推出:因此,对于二级反应,以κt对κo/t-κt/t 作图得到一条直线,直线的斜率为1/c o k,由此可以求出反应常数k。

由两个不同温度下的反应速率常数k(T1)和k(T2),根据阿伦尼乌斯公式可求出该反应的的活化能。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

物理化学实验报告实验名称:乙酸乙酯皂化反应速率常数的测定学院:化学工程学院专业:化学工程与工艺班级:化工09-1 姓名:学号:指导教师:胡敏杰陈斌日期: 2011年5月26日一、实验目的1、了解用电导法测定乙酸乙酯皂化反应的速率系数和活化能。

2、了解二级反应的特点,学会用图解法求二级反应的速率系数。

3、掌握电导率仪的使用方法。

二、实验原理1、二级反应的动力学方程A + B→产物t=0 a at=t a-x a-x-dc A/dt = -d(a-x)/dt = dx/dt = k(a-x) 2定积分得:k=x/[ta(a-x)] ①以x/(a-x)~t作图若所得为直线,证明是二级反应,并从直线的斜率求k。

如果知道不同温度下的速率常数k(T1)和k(T2),按阿仑乌斯方程计算出该反应的活化能EaEa=ln k(T1)/ k(T2)*R[T1 T2 / (T2 -T1 )] ②2、乙酸乙酯皂化反应是二级反应,反应式:CH3COOC2H5+NaOH→CH3COONa+C2H5OHt=0 a a 0 0t=t a-x a-x x xt=∞ 0 0 a a反应前后CH3COOC2H5和C2H5OH对电导率的影响不大,可忽略,故反应前只考虑NaOH的电大率κ,反应后只考虑CH3COONa的电导率κ。

对稀溶液而言,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。

有一下关系:κ0=A1*a κ∞=A2*a κt= A1*(a-x)+ A2*x有三式得:x=[(κ0-κt)/(κ0-κ∞)]*a,将其代入①中得k=[(κ0-κt)/(κ0-κ∞)ta]重新排列得:κt=(κ0-κt)/kta+κ∞因此,以κt~(κ0-κt)/t作图为一直线即为二级反应,并从直线的斜率求出κ。

三、实验仪器、试剂仪器:数学电导率仪(附电极)1台,恒温水槽1套,秒表1只。

叉形电导管2只,移液管(10ml,胖肚)3根试剂:乙酸乙酯标准溶液(0.02120mol/dm3),NaOH标准溶液(0.02120mol/dm3)四、实验步骤1、调节恒温槽调节恒温槽温度25℃。

测定乙酸乙酯皂化反应速率常数的原理和方法

测定乙酸乙酯皂化反应速率常数的原理和方法

测定乙酸乙酯皂化反应速率常数的原理和方法电导法和pH值法。

1、电导法测定乙酸乙酯皂化反应的速率常数的步骤:①调节恒温槽的温度在26.00℃;②在1-3号大试管中,依次倒入约20mL蒸馏水、35mL 1.985×10-2mol/L的氢氧化钠溶液和25mL1.985×10-2mol/L乙酸乙酯溶液,塞紧试管口,并置于恒温槽中恒温。

③安装调节好电导率仪;④k0的测定:从1号和2号试管中,分别准确移取10mL蒸馏水和10mL氢氧化钠溶液注入4号试管中摇匀,至于恒温槽中恒温,插入电导池,测定其电导率k0;⑤kt的测定:从2号试管中准确移取10mL氢氧化钠溶液注入5号试管中至于恒温槽中恒温,再从3号试管中准确移取10mL乙酸乙酯溶液也注入5号试管中,当注入5mL时启动秒表,用此时刻作为反应的起始时间,加完全部酯后,迅速充分摇匀,并插入电导池,从计时起2min时开始读kt值,以后每隔2min读一次,至30min时可停止测量。

⑥反应活化能的测定:在35℃恒温条件下,用上述步骤测定kt值。

2、pH法测定乙酸乙酯皂化反应的速率常数的步骤:1).开启恒温水浴电源,将温度调至35℃.2).配制纯乙酸乙酯溶液配制0.0200mol/L乙酸乙酯溶液。

先计算配制0.0200mol/L乙酸乙酯溶液100ml所需的分析乙酸乙酯(约0.1762g)量,根据乙酸乙酯温度与密度的关系式:ρ=925.54-1.68×t-1.95×10-3 t²式中:ρ、t的单位分别为kg·m-3和℃,计算该温度下对应的密度并换算成配准100ml 0.0200mol/L所需乙酸乙酯的体积,用0.5ml刻度移液管移取所需的体积,加到预先放好2/3去离子水的100ml容量瓶中,然后稀释至刻度,加盖摇匀备用。

3).测定35℃,起始浓度的pH值,C(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶液,准确加入20ml水,放入pH计,稳定后读数并记录。

物化设计实验——乙酸乙酯皂化反应速率常数的测定

物化设计实验——乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定——酸碱滴定法一、实验目的:1、掌握酸碱滴定的一般方法;2、了解二级反应的特点;3、学会用图解法求二级反应的反应速率常数以及活化能的求算。

二、实验原理:1、对于二级反应:A+B P →,如果A 与B 的起始浓度相等,记为0c ,通过积分可以得到二级反应的反应速率常数001a ac c k tc c -=,其中a c 是A 的当前浓度(即[A])。

若0a ac c c -~t 作图为直线,即可说明反应为二级反应,速率常数0/k c =斜率。

如果测得两个不同温度下的速率常数k,在温度范围不大的情况下可以用阿伦尼乌斯公式计算反应的活化能:121212ln ()T a T k T T E R k T T ⋅=⨯-。

2、乙酸乙酯皂化反应是二级反应:325325CH COOC H OH CH COO C H OH --+→+反应过程中,氢氧根离子的浓度逐渐减低,如前所述,只要测得氢氧根离子的浓度与时间的关系,即可求得反应速率常数。

(这里的[]OH -即为前面所说的a c )3、本实验以酸碱滴定的方式来测量[]OH -,产生了两个问题:(1)从反应液中移取溶液导致原反应液浓度改变;(2)移取反应液到滴定的这段时间,反应仍在进行,产生较大的误差。

为了克服这两个问题,我们用以下方案:(1)采用较大的双管式混合反应器,加入原料的总量提高为100mL ,而移取溶液时只从中移取0.5mL ,尽管会移取溶液数次,但是由于移取的体积远小于溶液总体积,我们认为该误差可以忽略;(2)用移液管移出的反应液立即放入事先准备好的加入了30mL 冰水的100mL 锥形瓶中,通过稀释和降温双重手段,是反应的进行基本上处于停滞状态来进行滴定。

三、仪器与药品:计时器一只;恒温槽一套;双管式混合反应器两个;25mL 胖杜移液管两只;1mL 刻度移液管1只;25mL 小烧杯一只;100mL 容量瓶一只;100mL 锥形瓶9个;50mL 酸式滴定管一只。

乙酸乙酯皂化反应速率常数的测定(详细参考)

乙酸乙酯皂化反应速率常数的测定(详细参考)

乙酸乙酯皂化反应速率常数的测定一、实验目的1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3.熟悉电导仪的使用。

二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。

则参加导电离子有Na+、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行,OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ)的下降和产物CH 3COO -的浓度成正比。

令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:∞+-⨯=κκκκtkc 1t00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m = ,从而求得此温度下的反应速率常数k 。

(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。

三、仪器与试剂电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤1.标定NaOH 溶液及乙酸乙酯溶液的配制计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波工程学院
物理化学实验报告
实验名称乙酸乙酯皂化反应速率常数的测定
一、实验目的
1. 了解用电导法测定乙酸乙酯皂化反应速率常数和活化能;
2. 了解二级反应的特点,学会用图解法求二级反应的速率常数;
3. 掌握电导率仪的使用方法。

二、实验原理
1.二级反应动力学方程
A +
B → 产物
t=0 a a
t=t a-x a-x
-dc A/dt=-d(a-x)/dt=dx/dt=k(a-x) (2.9.1)
定积分得:kt=x/a(a-x) (2.9.2)
以x/(a-x)对t作图,若所得为一直线,证明是二级反应,由斜率即可求出反应速率常数k值如果知道不同温度下的速率常数k(T1)和k(T2),按阿仑尼乌斯方程计算出该反应的活化能Ea。

Ea=ln( k(T2)/ k(T1)) ×R T1 T2 /(T2-T1)(2.9.3)
2. 乙酸乙酯皂化反应是二级反应,反应式为:
CH3COOC2H5+NaOH → CH3COONa+ C2H5OH
t=0 a a 0 0
t=t a-x a-x x x
t→∞ 0 0 a a
κ0=A1·a κ∞=A2·a κt=A1(a-x)+A2x
由上三式得:x=(κ0-κt)a/ (κ0-κ∞),代入式(2.9.2),得
κ=(κ0-κt) /ta (κt-κ∞) (2.9.4)
重新排列得:κt=(κ0-κt) /kat +κ∞ (2.9.5)
因此,以κt 对(κ0-κt) /t 作图为一直线即为二级反应,由斜率即可求出反应速率常数k值;由两个不同温度下测得的速率常数k(T1)和k(T2),按式(2.9.3)计算出该反应的活化能Ea。

三、仪器和试剂
1.仪器:数字电导率仪1台,恒温水槽1套,叉形电导管2只,移液管(10ml,胖肚)3 根;
2.药品:乙酸乙酯标准溶液(0.0212 mol·dm-3),NaOH标准溶液(0.0212 mol·dm-3)。

四、实验步骤
1.调节恒温槽
调节温度为25℃,同时电导率仪提前打开预热。

2.κ0的测定
分别取10ml蒸馏水和10ml NaOH标准溶液,加到洁净干燥的叉形管中充分混匀,然后将其置于25℃恒温槽中,恒温5min,并接上电导率仪,测其电导率值κ0。

3.κt的测定
在另一支叉形管的直支管中加10ml CH3COOC2H5标准溶液,侧支管中加10ml NaOH标准溶液,放入25℃恒温5min后,将其混合均匀并立即记时,同时用该溶液冲洗电极三次,开始测量其电导率值(由于反应为吸热反应,开始时会有所降低,因此一般从第6min开始读数)当反应进行6min,9min,12min,15min,20min,25min,30min,35min,40min时各测电导率一次,记录电导率κt及时间t。

反应结束后,倾去反应液,洗净电导池及电极,将铂黑电极浸入蒸馏水中。

4.调节恒温槽温度为35℃,重复上述步骤测定其κ0和κt ,但在测定时是按照进行4min,6min,8min,10min,12min,15min,18min,21min,24 min,27min,30min时测其电导率。

五、数据记录与处理
室温:24.9℃大气压力:100.46 kPa
初始浓度:C CH3COOC2H5=0.0212 mol·dm-3 C NaOH=0.0212mol·dm-3
-1)
表一电导率随时间的变化(25℃,κ
表二电导率随时间的变化(35℃,κ-1)
t/min 4 6 8 10 12 15 18 21 24 27 30 κt /uS·cm-12038 1835 1710 1618 1541 1454 1388 1337 1298 1266 1240 (κ0-κt)/t/
uS·cm-1·min-1
182 155 132 115 102 87.3 76.4 67.9 61.1 55.5 50.8
∴由两幅图中易得25℃时直线斜率k 1=11.35008,35℃时直线斜率k 2=5.95047, 则k(T 1)=1/( k 1×C CH3COOC2H5 )=1÷(11.35008×0.0212)=4.16;
k(T 2)= 1÷(5.95047×0.0212)=7.93
∴根据式(2.9.3), Ea=ln( k(T 2)/ k(T 1)) ×R T 1 T 2 / (T 2- T 1)得:
Ea=ln(7.93÷4.16) ×8.314 ×298.15 ×308.15÷10=49.28 kJ/mol
六、注意事项
(1)乙酸乙酯溶液和NaOH 溶液浓度必须相同。

(2)由于乙酸乙酯易挥发,故称量时应在称量瓶中准确称取,并需动作迅速。

(3)乙酸乙酯溶液需临时配制,配制时动作要迅速,以减少挥发损失。

(4)在测定κ0时,所用的蒸馏水最好先煮沸,以除去二氧化碳;25℃和35℃的κ0测定中,溶液须更换。

七、结果与讨论
1、实验所测得的乙酸乙酯皂化反应在25℃和35℃时的速率常数分别为:
κ(298.15)=4.16 (mol*m -3)-1*S
-1 κ(308.15)=4.16 (mol*m -3)-1*S -1
该反应的活化能为Ea=49.28 kJ/mol
2.误差分析
在该实验过程中,存在仪器本身的误差,也存在移液过程中造成的误差,同时还存在数据处理方面产生的误差。

误差具体来源可能有:
(1)、没有严格按照实验步骤进行。

(2)、电导池未清洗干净。

(3)、移液过程中,液体与移液管的刻度线不水平。

八、思考题
1、为何本实验要在恒温条件下进行,而且NaOH 溶液和 CH 3COOC 2H 5溶液混合前还要预先恒温?
答:a 、因为反应速率与温度有关,温度每升高10℃,反应速率约增加2~4倍。

同时电导
值也与温度有关,所以实验过程中须恒温。

b 、NaOH 和CH 3COOC 2H 5溶液混合前要预先恒温,以确保反应在实验温度下进行。

2、如果NaOH 溶液和 CH 3COOC 2H 5溶液的起始浓度不相等,试问应怎么计算?
答:需按k =)()(ln )(1x b a x a b b a t ---计算k 值。

式中 x =a t ∞
--κκκ00κ (a 为两溶液中浓度较低的一个溶液的浓度)。

X 的表达式推导如下:
设NaOH 的起始浓度为a ,CH 3COOC 2H 5起始浓度为b ,且a <b ,则有:
NaOH +CH 3COOC 2H 5 CH 3COONa +C 2H 5OH
t =0 a b 0 0
t =t a -x b -x x x
t =∞ 0 b -a a a
又因为强电解质稀溶液的电导率与其浓度成正比,故有:
κ0=A 1 a ;κ∞=A 2 a ;κt =A 1(a -x)+A 2 x
A 1、A 2是与温度、溶剂、电解质NaOH 及CH 3COONa 的性质有关的比例常数。

联立上述三个式子,可得出:x =a t ∞
--κκκ00κ 3、如果NaOH 溶液和 CH 3COOC 2H 5溶液为浓度,能否用此法求k 值?为什么?
答:不能。

因为在推导时,前提条件是强电解质的稀溶液,只有溶液浓度足够稀时,才能保
证浓度与电导有正比关系。

一般NaOH 和CH 3COOC 2H 5溶液的浓度为0.0200 mol ·dm -3 为宜,若浓度过低,则因电导变化太小,测量误差大。

相关文档
最新文档