最新四年级奥数-找规律(教案含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:规律性问题
教学目标
1、学会从简单问题入手找规律
2、能够利用数论、几何等专题解周期性问题
3、归纳找规律问题的解题思想
知识点拨
一、知识点说明
同学们在探索某一类事物的性质或它们之间的关系的时候,经常从观察具体事物入手,通过分析、猜测、验证,找出这类事物的一般属性。这种“从特殊到一般的推理方法”,叫做归纳法,或者称之为找规律,很多人也称之为周期问题。
二、考点总结
找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。这是为了考验我们是否能在最短时间里找到数字间的奥秘,即是在考察我们的数感和归纳能力,这种能力不是与生俱来的,是和我们日常积累分不开的,正所谓见多识广吧。所以找规律这类题目,需要同学们养成细观察、勤思考的习惯,不断提高归纳能力。
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.
三、提炼思想
找规律是奥数里最重要的思想之一,很多难题都是靠这种方法解决的,要求我们能够观察数列或数表中每一个数自身的特征(如奇偶性,整除性,是否为质或者合数等等)、相邻数之间的差或商的变化特征(常见的有等差数列,等比数列,斐波那契数列,复合数列等等),有时候还需要考虑连续多个数之间的和差倍关系,甚至对于某个自然数的余数数列等
等,所以同学们要好好的体会这种思想方法,争取在奥数的学习中能够克服难题,取得进步。
例题精讲
模块一、数论部分
【例1】下面各列数中都有一个“与众不同”的数,请将它们找出来:
(1)3,5,7,11,15,19,23,……
(2)6,12,3,27,21,10,15,30,……
(3)2,5,10,16,22,28,32,38,24,……
(4)2,3,5,8,12,16,23,30,……
【解析】这四个与众不同的数依次是:15,10,5,16。因为:(1)除了15其余都是质数;
(2)除了10其余都是3的倍数;(3)除了5其余都是偶数;(4)相邻两数之间
的差依次是1,2,3,4,5,6,……,成等差数列。注:本题答案不唯一,只要
学生说明白道理就算正确。
【例2】在下面的一串数中,从第五个数起,每个数都是它前面四个数字之和的个位数字,那么在这串数中,能否出现相邻的四个数依次是2,0,0,8 ?
1,9,9,9,8,5,1,3,7,6,7,3,3,9,2,7,1,9,9,6,……
【解析】运用奇偶性进行分析,这些数的奇偶性依次是:奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,……四个奇数一个偶数循环
出现,而2,0,0,8均为偶数,必定不会出现在相邻的位置上。
【例3】数列1,1,2,3,5,8,13,21,34,……一共2005项,其中共有多少个是6的倍数?
这串数从第三个起,每个数都是它前面两个数的和,所以这是一个菲波那契数列,这串数除以6的余数依次是:1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,……,注意:计算余数的时候不用把原数计算出来,可以直接用菲波那契数列的规律计算余数,如前两个数是5,2,则下一个数是(5+2)÷6的余数为1 。余数数列从第一个起,每24个循环一次,每一次循环中有两个数是6的倍数,而2005 =24×83+13,所以这2005个数中一共有2×83+1=167个是6的倍数
模块二、几何部分
【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个
数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.
【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增
多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.
【巩固】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】 观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→
两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:
【巩固】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.
【解析】 第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,
第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:
练习1. 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样
的图形?
【解析】 (方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行
图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形
.
(4)(1)
?
(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出 “?”处应是圆形.
练习2.
练习3. 观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含多少个点?
(2)第(10)个点群中包含多少个点?
(3)前十个点群中,所有点的总数是多少?
【解析】 (1)数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可以看出,在
每相邻的两个数中,后一个数都比前一个数大3.因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).
(2)列表,依次写出各点群的点数,
可知第(10)个点群包含有28个点.
(3)
(4) 前十个点群,所有点的总数是:
1+4+7+10+13+16+19+22+25+28=145(个)
练习4. 下面是两个按照一定规律排列的数字三角形,请根据规律填上空缺的数:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1 1 10 10 5 1
1 6 15 15 6 1
(1)
1 2 4 3 6 9 4 8 12 16 5 10 15 25 6 12 18 24 30 36 7 21 28 35 42 49 (2)
【解析】 【解析】 (1)这个是著明的“杨辉三角”,其最本质的特征是,它的两条斜边都是由数字
1