人教版六年级上册第四单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级上册第四单元《圆》单元目标
常见的平面图形。低年级教学中虽然也出现过圆,但仅仅直观理解。本单元有圆的理解、圆的周长和圆的面积。在六年级下学期,我们还将学习圆柱和圆锥的知识。
从教材的编排体系能够看出,圆是一种曲线图形,而我们前面学习的是直线图形,所以圆的教学是学生理解曲线图形的开始。不论是内容本身,还是研究问题的方法,都有很大的变化。教材通过对圆的研究,渗透了曲线图形与直线图形的内在联系,体现了“化圆为方”、“化曲为直”的转化思想。另外,还增强了动手操作,为学生的自主探索留下了很大的空间。
二、教学目标
1、理解圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。
2、理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能准确地计算圆的周长与面积。
三、教学重难点
教学重点:掌握圆的基本特征,能准确地计算圆的周长与面积
教学难点:理解圆周率的意义,圆的周长和面积计算公式的推导过程
值得注意的是:圆的基本概念,尤其是圆周率的意义,是学生学习圆的周长和面积这部分知识的关键。学生在学习时,对圆的基本特征,通过直观教具的演示和操作,比较容易理解。但对圆周率的意义往往不能很好地从特殊推至一般,所以这是教学中的一个难点。另外,像圆这样的曲边图形的周长和面积计算,学生还是第一次接触到。引导学生使用转化的思想,通过自主探索推导出计算公式,对于学生来说是有很大难度的,所以一定要重视操作体验。
本单元可用8课时实行教学。其中圆的理解2课时,圆的周长3课时,圆的面积2课时,整理和复习1课时。
四、单元主体分析
1、结合具体情境和数学活动,引导学生感悟和理解圆的特征
(1)结合丰富的情景体会圆的曲线特征
教材给我们表现的主题图是城市广场的生活场景,里面包含了很多圆形的物体。教学时我是把它作为圆的起点来讲授,收集了很多圆形的图片,说明圆在生活中随处可见,应用非常广泛。接着能够让学生想办法在纸上画出一个圆,主要是让孩子感受圆的曲线特征。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。
(2)在操作的过程中感受圆的特征
在实行例2的教学时,教师能够让学生把前面已经画好的圆剪下来,反复对折,发现折痕相交于一点,引出圆心的概念。然后把圆心和圆上任意一点连起来,并通过画一画、量一量、折一折发现这样的线段有无数条,长度都相等,从而发现“从圆心到圆上任意一点的距离都相等”,直观感受圆的本质特征。然后看书自学,知道什么是半径,什么是直径。并通过小组活动探索出:在同一个圆内,半径和直径都有无数条,所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的。
教学画圆我觉得能够分三个步骤实行:第一步,让学生用圆规在纸上任意画圆,然后交流得出画圆的三个步骤:定圆心、定半径、旋转一周;第二步,按这三个步骤再画一个圆,并且感受到圆心和半径对确定圆的位置和大小的作用;第三步,按指定的半径或直径的长度画圆。
在练习时,“做一做”的第3题比较难,主要是它无法剪下来,不能折叠。教师能够利用正方形的对称性,比如连接正方形的两条对角线,它们的交点就是圆心,再由圆心来画出圆的直径。(3)在解释生活现象中体会圆的特征
理解圆以后,能够用圆的特征来解释生活中的一些现象。比如:套圈游戏时大家为什么喜欢站成圆形?又如:车轮为什么做成圆的?这主要是因为圆具有易滚动性,把车轴装在圆心的位置,也是因为从圆心到圆
上任意一点的距离都相等,这样滚动起来就比较平稳。在这样的情境中让孩子充分感受和体会圆的本质特征。
(4)探讨圆的轴对称特点
圆除了上述特征外,它还具有对称性,教材在这里第一次给出了轴对称图形的概念。例3主要是让学生在给出的两个圆内画出对称轴,从而发现圆也是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,它有无数条对称轴。
“做一做”第1题,我们能够用表格的形式将学过的轴对称图形和有几条对称轴列举出来,引导孩子来整理知识,沟通这些知识之间的联系,了解这些图形之间的区别。
2、在测量活动中,探索圆周率的意义及圆周长的计算方法。
(1)根据周长的意义测量圆的周长
教材首先创设了一个情境,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念,从而明确“围成圆一周的长度就是圆的周长”。接着让学生讨论:如何来测量一个圆的周长呢?因为在三年级学生已经学过如何测量一个一般图形的周长,所以这里老师能够放手让学生去自主活动。学生可能会想到在圆上作一个标记,然后把圆形硬纸板在尺上滚动一周,测出它的周长;还有一种方法呢就是用线将圆围绕一周,然后量出线的长度,就是圆的周长。这两种方法都渗透了“化曲为直”的思想。仅仅这两种方法在实际使用中往往有一定的局限性,例如要测量一个很大的湖的周长或者一个物体运动形成的圆的轨迹的长度就不是很现实,这样就要引导学生去寻求更为一般化的方法。
(2)探究“圆的周长与什么相关系,有什么关系”
这里能够引导孩子先大胆地实行猜想,包括实行类比。比如正方形的周长和它的边长相关,是它边长的4倍。那么圆的周长又与什么相关呢?到底存有什么样的倍数关系呢?根据孩子的猜想,教师再来实行有效的引导,能够让孩子课前剪几个大小不同的圆,测量出圆的直径,再用刚才的方法测出圆的周长,从而探索圆的直径和周长之间的关系,初步得出圆的周长总是直径的3倍多一些。这个测量过程中呢可能会有误差,有的学生可能得到三点一几倍,有的可能得到三点二几倍,个别的学生可能三倍还不到,这些都是正常的,我们要让学生感受到测量中总是存有误差的,没有必要去回避这个东西。但是我们能够通过测量次数多一些或者测量时更细心一点,使测量的误差相对来说小一些。
(3)在实验探究的基础上,得出圆周长的计算公式
在学生有了充分体验的基础上,教师再来介绍圆周率以及我国古代数学家祖冲之在探索圆周率方面的杰出成就。我觉得只有孩子充分地去操作、去体验,才会对圆周率的意义有一个充分的理解。圆周率理解以后,再让孩子归纳出圆周长的计算公式应该就比较容易了。
下面我们看64页的例1。第一个问题是求花坛的周长,这能够根据公式直接求出来。而第二个问题则要先求出小自行车车轮的周长,再求它转动的圈数。在例1教学后还能够补充一些变式练习,如已知圆的周长求直径或半径。关于例题的教学,我个人认为应该注意三点:①在学生能够熟练使用公式实行计算之前,最好先写公式再计算,熟练掌握以后能够不写。②π取两位小数3.14,已作为一般数值处理,计算结果不必再用“≈”表示。但在判断“周长是直径的多少倍”时仍应说“π倍”而不是“3.14倍”。③在计算圆的周长时,要根据“圆的周长是直径的3倍多一些”,鼓励学生通过估算,来检验计算的结果是否合理。教师在自己出题的时候,计算尽可能不要太繁杂,主要是看孩子对这个知识是否理解。
(4)练习处理
练习十五的第5题,这道题的教学老师应该让学生回顾以前所学的“植树问题”使学生明白,在一个封闭的圆上,分隔点的数目与分成的段数是相等的。第10题能够先用手指描一描,这个图形的周长是指什么。然后再计算它的周长,通过对计算结果的分析引导学生思考:为什么一个大半圆的长度等于两个小半圆的长度之和?能够这样想:因为圆的周长等于圆的直径乘以圆周率,所以我们在比较两个圆的长度的时候,我们只需要比较它们直径的长度就能够了。而这题中大半圆的直径恰好等于两个小半圆直径的长度之和,所以大半圆的长度就等于两个小半圆的长度之和。
3、经历探索圆面积计算公式的过程,体会“化曲为直”的思想