成都列五中学七年级上学期期末数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都列五中学七年级上学期期末数学试题
一、选择题
1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90°
2.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =时,则x 的值为( ) A .14
-
B .116
C .
14
D .
12
3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77
D .139
4.下列因式分解正确的是() A .21(1)(1)x
x x +=+- B .()am an a m n +=- C .2
244(2)m m m +-=-
D .2
2(2)(1)a
a a a --=-+
5.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )
A .97
B .102
C .107
D .112
6.若x=﹣1
3
,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7
B .﹣1
C .9
D .7
7.在下边图形中,不是如图立体图形的视图是( )
A .
B .
C .
D .
8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n -
B .2(2m-n)
C .22m n -
D .2(2)m n -
9.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2
B .4
C .6
D .8
10.如图是由下列哪个立体图形展开得到的?( )
A .圆柱
B .三棱锥
C .三棱柱
D .四棱柱
11.点()5,3M 在第( )象限. A .第一象限
B .第二象限
C .第三象限
D .第四象限
12.当x=3,y=2时,代数式23
x y
-的值是( ) A .
43
B .2
C .0
D .3
13.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯ 14.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2 C .4 D .2 15.若2m ab -与162n a b -是同类项,则m n +=( )
A .3
B .4
C .5
D .7
二、填空题
16.已知关于x 的一元一次方程
320202020
x
x n +=+①与关于y 的一元一次方程32
32020(32)2020
y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
18.化简:2xy xy +=__________. 19.写出一个比4大的无理数:____________.
20.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.
22.如果一个数的平方根等于这个数本身,那么这个数是_____.
23.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.
24.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.
25.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.
26.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.
27.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.
28.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 29.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.
30.单项式()2
6
a bc -
的系数为______,次数为______.
三、压轴题
31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=1
2
AE,且此时点E为点A、B的“n节
点”,求n的值.
34.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6
a +|2b+12|+(c﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的1
3
?直接写出此时点P的坐
标.
35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点
A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.
(1)请你在图②的数轴上表示出A,B,C三点的位置.
(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.
①当t=2时,求AB和AC的长度;
②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
36.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.
(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,
①当x=__________秒时,PQ=1cm;
②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得
4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?
37.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个
单位的速度沿数轴向左匀速运动.
(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?
(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】
解:∵一个角的补角是130︒, ∴这个角为:50︒,
∴这个角的余角的度数是:40︒. 故选:B . 【点睛】
此题主要考查了余角和补角,正确把握相关定义是解题关键.
2.C
解析:C 【解析】 【分析】 利用max
{
}
2,,x x x 的定义分情况讨论即可求解.
【详解】 解:当max {
}
21
,,2
x x x =
时,x ≥0 x 1
2,解得:x =14
x >x >x 2,符合题意;
②x 2=12,解得:x =2
x >x 2,不合题意;
③x =
1
2
x >x 2,不合题意;
故只有x =
1
4
时,max }
21,2
x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
3.B
解析:B 【解析】 【分析】
首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】
解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .
4.D
解析:D 【解析】 【分析】
分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】
解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、2
2(2)(1)a
a a a --=-+,正确;
故选:D . 【点睛】
此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.
5.B
解析:B
【分析】
观察图形,正确数出个数,再进一步得出规律即可.
【详解】
摆成第一个“H”字需要2×3+1=7个棋子,
第二个“H”字需要棋子2×5+2=12个;
第三个“H”字需要2×7+3=17个棋子;
第n个图中,有2×(2n+1)+n=5n+2(个).
∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.
故B.
【点睛】
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.6.D
解析:D
【解析】
【分析】
将x与y的值代入原式即可求出答案.
【详解】
当x=﹣1
3
,y=4,
∴原式=﹣1+4+4=7
故选D.
【点睛】
本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.C
解析:C
【解析】
【分析】
直接利用简单组合体的三视图进而判断得出答案.
【详解】
解:A选项为该立体图形的俯视图,不合题意;
B选项为该立体图形的主视图,不合题意;
C选项不是如图立体图形的视图,符合题意;
D选项为该立体图形的左视图,不合题意.
故选:C.
【点睛】
此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.
8.C
【解析】
【分析】
根据题意可以用代数式表示m的2倍与n平方的差.
【详解】
用代数式表示“m的2倍与n平方的差”是:2m-n2,
故选:C.
【点睛】
本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.
9.D
解析:D
【解析】
【分析】
【详解】
解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
2015÷4=503…3,
∴22015的末位数字和23的末位数字相同,是8.
故选D.
【点睛】
本题考查数字类的规律探索.
10.C
解析:C
【解析】
【分析】
三棱柱的侧面展开图是长方形,底面是三角形.
【详解】
解:由图可得,该展开图是由三棱柱得到的,
故选:C.
【点睛】
此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
11.A
解析:A
【解析】
【分析】
根据平面直角坐标系中点的坐标特征判断即可.
【详解】
∵5>0,3>0,
∴点()5,3M 在第一象限.
故选A.
【点睛】
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.
12.A
解析:A
【解析】
【分析】
当x=3,y=2时,直接代入代数式即可得到结果.
【详解】
23x y -=2323⨯-=43
, 故选A
【点睛】
本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.
13.D
解析:D
【解析】
【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.
【详解】
150万=1500000=61.510⨯,
故选:D.
【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
14.C
解析:C
【解析】
【分析】
由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可.
【详解】
3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1)
=4;
故选C .
【点睛】
代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.
15.C
解析:C
【解析】
【分析】
根据同类项的概念求得m 、n 的值,代入m n +即可.
【详解】
解:∵2m ab -与162n a b -是同类项,
∴2m=6,n-1=1,
∴m=3,n=2,
则325m n +=+=.
故选:C .
【点睛】
本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.
二、填空题
16.y =﹣.
【解析】
【分析】
根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.
【详解】
解:∵关于x 的一元一次方程①的解为x =2020,
∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,
解
解析:y =﹣
20183. 【解析】
【分析】
根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.
【详解】
解:∵关于x 的一元一次方程
320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020
y y r --=--②中﹣(3y ﹣2)=2020,
解得:y =﹣20183
. 故答案为:y =﹣
20183. 【点睛】
此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.
17.-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.
【详解】
解:根据如图所示:
当输入的是的时候,,
此时结果
解析:-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.
【详解】
解:根据如图所示:
当输入的是1-的时候,1(3)21-⨯--=,
此时结果1>-需要将结果返回,
即:1(3)25⨯--=-,
此时结果1<-,直接输出即可,
故答案为:5-.
【点睛】
本题考查程序设计题,解题关键在于数的比较大小和读懂题意.
18..
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:
故填.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:23.xy xy xy +=
故填3xy .
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
19.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4
.
【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
20.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人), 故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键. 21.60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.
【详解】
解:,,
,
平分,
.
故答案为60.
【点睛】
解析:60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.
【详解】
解:ABC 90∠=,CBD 30∠=,
ABD 120∠∴=,
BP 平分ABD ∠,
ABP 60∠∴=.
故答案为60.
【点睛】
角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.
22.0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵±=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
解析:0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
23.从不同的方向观察同一物体时,看到的图形不一样.
【解析】
【分析】
根据三视图的观察角度,可得答案.
【详解】
根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,
“横看成岭侧成峰”从数
解析:从不同的方向观察同一物体时,看到的图形不一样.
【解析】
【分析】
根据三视图的观察角度,可得答案.
【详解】
根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,
“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.
故答案为:从不同的方向观察同一物体时,看到的图形不一样.
【点睛】
本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.24.2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.25.72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
解析:72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 26.8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.27.8cm或4cm
【解析】
【分析】
分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.
【详解】
①当C点在AB之间时,如图所示,
AC=AB-BC=6cm-2c
解析:8cm或4cm
【解析】
【分析】
分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.
【详解】
①当C点在AB之间时,如图所示,
AC=AB-BC=6cm-2cm=4cm
②当C在AB延长线时,如图所示,
AC=AB+BC=6cm+2cm=8cm
综上所述,A、C两点间的距离是8cm或4cm
故答案为:8cm或4cm.
【点睛】
本题考查线段的和差计算,分情况讨论是解题的关键.
28.正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考
解析:正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.29.40
【解析】
【分析】
由OA 恰好是
COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】
解:因为,OC 、OD 是
AOB 的两条三分线,所以 因为OA 恰好是
COD 的
解析:40
【解析】
【分析】
由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.
【详解】
解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=
因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,
当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=
当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,
综上所述将∠COD 顺时针最少旋转40︒.
故答案为:40︒
【点睛】
本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.
30.【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式的系数为;次数为2+1+1=4;
故答案为;4.
【点睛】
此
解析:1
6
-
【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式
()2
6
a bc
-的系数为
1
6
-;次数为2+1+1=4;
故答案为
1
6 -;4.
【点睛】
此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.
三、压轴题
31.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=
12∠AOC+12∠BOD -∠BOC=12
(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=
12(∠AOB+∠BOC+∠BOD )-∠BOC=12
(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=
12
(α+20°)-20°, ∴α=140°.
【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.
32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()11AOE AOC 1103t =22︒︒∴∠=
∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛
⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭
, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202
t t +=+,
解得4
t .
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,
∴n=AC+BC=2+6=8.
(2)如图所示:
∵点D是数轴上点A、B的“5节点”,
∴AC+BC=5,
∵AB=4,
∴C在点A的左侧或在点A的右侧,
设点D表示的数为x,则AC+BC=5,
∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E在BA延长线上时,
∵不能满足BE=1
2 AE,
∴该情况不符合题意,舍去;
②当点E在线段AB上时,可以满足BE=1
2
AE,如下图,
n=AE+BE=AB=4;
③当点E在AB延长线上时,
∵BE=
12
AE , ∴BE=AB=4, ∴点E 表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
【点睛】
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
34.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(8
3,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵6a +|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12
=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×4
12-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6).
综上所述:当t为2秒或13
3
秒时,△OPM的面积是长方形OBCD面积的
1
3
.此时点P的
坐标是(0,﹣4)或(8
3
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.
35.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变
【解析】
【分析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;
②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.
【详解】
(1)A,B,C三点的位置如图所示:
.
(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.
②3AC-4AB的值不变.
当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.
即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.
【点睛】
本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.36.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5
【解析】
【分析】
(1)先求出线段AB的长,然后根据线段中点的定义解答即可;
(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;
②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使
4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;
(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.
【详解】
(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.
∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).
(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.
②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣
mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.
(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;
②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.
综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.
【点睛】
本题考查了一元一次方程的应用.解题的关键是分类讨论.
37.(1)x=1;(2) x=-3或x=5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x=x-(-2),解出x的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
【详解】
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:
x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 38.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.。