光电二极管伏安特性曲线
光电检测复习资料..

光电检测复习资料..简答题1、光电探测器常见的噪声有哪⼏类?分别简要说明。
(1)热噪声:由载流⼦热运动引起的电流起伏或电压起伏成为热噪声,热噪声功率与温度有关( 2)散粒噪声:随机起伏所形成的噪声(3)产⽣--复合噪声:载流⼦浓度起伏引起半导体电导率的起伏,在外加电压下,电导率的起伏是输出电流中带有产⽣--复合噪声(4)1/f噪声:这种噪声功率谱近似与频率成反⽐(5)温度噪声:是由于器件本⾝温度变化引起的噪声2、光电⼆极管与⼀般⼆极管相⽐有什么相同点和不同点?相同点:都是基于PN结的光伏效应⽽⼯作的不同点:(1)就制作衬底材料的掺杂浓度⽽⾔,⼀般⼆极管要⽐光电⼆极管浓度较⾼(2)光电⼆极管的电阻率⽐⼀般⼆极管要⾼(3)普通⼆极管在反向电压作⽤时处于截⽌状态,只能流过微弱的反向电流,光电⼆极管是在反向电压作⽤下⼯作的,(4)光电⼆极管在设计和制作时尽量使PN结的⾯积相对较⼤,以便接收⼊射光。
3、简述光电三极管的⼯作原理。
光电三极管的⼯作原理分为两个过程:⼀是光电转换;⼆是光电流放⼤。
就是将两个pn结组合起来使⽤。
以NPN型光电三极管为例,基极和集电极之间处于反偏状态,内建电场由集电极指向基极。
光照射p区,产⽣光⽣载流⼦对,电⼦漂移到集电极,空⽳留在基极,使基极与发射极之间电位升⾼,发射极便有⼤量电⼦经基极流向集电极,最后形成光电流。
光照越强,由此形成的光电流越4、简述声光相互作⽤中产⽣布喇格衍射的条件以及布喇格衍射的特点。
产⽣布喇格衍射条件:声波频率较⾼,声光作⽤长度L较⼤,光束与声波波⾯间以⼀定的⾓度斜⼊射。
特点:衍射光各⾼级次衍射光将互相抵消,只出现0级和+1级(或 1级)衍射光,合理选择参数,并使超声场⾜够强,可使⼊射光能量⼏乎全部转移到+1级(或-1级)5、什么是热释电效应?热释电器件为什么不能⼯作在直流状态?热释电效应:热释电晶体吸收光辐射温度改变,温度的变化引起了热电晶体的⾃发极化强度的变化,从⽽在晶体的特定⽅向上引起表⾯电荷的变化,这就是热释电效应。
二极管的伏安特性及主要参数电子元器件

二极管的伏安特性及主要参数 - 电子元器件1、伏安特性表达式二极管是一个非线性器件,其伏安特性的数学表达式为当,且时,;当,且时,。
在室温下,。
由此可看出二极管具有单向导电的特性。
2、伏安特性曲线二极管的伏安特性曲线如图1所示。
图 1 二极管的伏安特性曲线正向特性:小于死区电压(硅管是0.5V,锗管是0.1V)时,。
正向部分的开头阶段电流增加的比较慢。
在电流比较大时,二极管两端的电压随电流变化很小,称为导通电压(硅管:0.7V,锗管:0.3V)。
反向特性:当反向电压,且小于时,,反向饱和电流很小。
当反向电压的确定值达到后,反向电流会突然增大,二极管反向击穿。
击穿后,当反向电流在很大范围内变化时,二极管两端的电压几乎不变,击穿后的反向特性有稳压性。
击穿电压低于4伏的击穿主要是齐纳击穿;击穿电压大于6伏的击穿为雪崩击穿;击穿电压介于4伏与6伏之间时,两种击穿都可能发生,也可能同时发生。
二极管发生反向击穿时,假如回路中的限流电阻能将反向电流限制在允许的范围内,二极管不会损坏。
当反向电压降低后,管子仍可以恢复到原来的状态,这就是电击穿。
假如限流电阻太小,使反向电流超过其允许值,则二极管会发生热击穿,造成永久性损坏。
3、温度对二极管特性的影响温度上升时,二极管的正向伏安特性曲线左移,正向压降减小;温度每上升1℃,正向电压降将降低2~2.5mV。
二极管的反向饱和电流也随温度的转变而转变,当温度每上升10 ℃左右时,反向饱和电流将将增大一倍。
击穿电压也受温度的影响,击穿电压小于4伏时,有负的温度系数;击穿电压大于6伏时,有正的温度系数;击穿电压介于4伏与6伏之间时,温度系数较小。
4、主要参数二极管的主要参数有:①额定整流电流IF ;②反向击穿电压U(BR);③最高允许反向工作电压UR;④反向电流IR;⑤正向电压降UF;⑥最高工作频率fM。
实验22 APD光电二极管特性测

实验22 APD光电二极管特性测试一、实验目的1、掌握APD光电二极管的工作原理2、掌握APD光电二极管的基本特性3、掌握APD光电二极管基本特性测试方法二、实验内容1、APD光电二极管暗电流测试实验2、APD光电二极管光电流测试实验3、APD光电二极管伏安特性测试实验4、APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验三、APD工作原理雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。
雪崩光电二极管能够获得内部增益是基于碰撞电离效应。
当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。
碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。
图1为APD的一种结构。
外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。
APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。
图4的结构为拉通型APD的结构。
从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。
尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。
当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。
I区很宽,可以充分吸收光子,提高光电转换效率。
【精选】实验二光敏二极管特性实验

实验二光敏二极管特性实验一:实验原理:光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。
无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。
当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。
光敏二极管结构见图(6)。
二:实验所需部件:光敏二极管、稳压电源、负载电阻、遮光罩、光源、电压表(自备4 1/2位万用表).、微安表三:实验步骤:按图(7)接线,注意光敏二极管是工作在反向工作电压的。
由于硅光敏二极管的反向工作电流非常小,所以应提高工作电压,可用稳压电源上的+10V。
1、暗电流测试用遮光罩盖住光电器件模板,电路中反向工作电压接±12V,打开电源,微安表显示的电流值即为暗电流,或用4 1/2位万用表200mV档测得负载电阻RL上的压降V暗,则暗电流L暗=V暗/RL。
一般锗光敏二极管的暗电流要大于硅光敏二极管暗电流数十倍。
可在试件插座上更换其他光敏二极管进行测试比较。
2、光电流测试:取走遮光罩,读出微安表上的电流值,或是用4 1/2位万用表200mv档测得RL上的压降V光,光电流L光=V光/RL。
3、灵敏度测试:改变仪器照射光源强度及相对于光敏器件的距离,观察光电流的变化情况。
4、光谱特性测试:不同材料制成的光敏二极管对不同波长的入射光反应灵敏度是不同的。
由图(8)可以看出,硅光敏二极管和锗光敏二极管的响应峰值约在80~100μm,试用附件中的红外发射管、各色发光LED、光源光、激光光源照射光敏二极管,测得光电流并加以比较。
图(8)光敏管的伏安特性曲线图(9)光敏二极管的光谱特性曲线注意事项:本实验中暗电流测试最高反向工作电压受仪器电压条件限制定为±12V (24V),硅光敏二极管暗电流很小,不易测得。
光敏管的应用-----光控电路一:实验目的:了解光敏管在控制电路中的具体应用。
光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。
二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。
光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。
光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。
从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。
从对光的响应来分,有用于紫外光、红外光等种类。
不同种类的光敏二极管,具胡不同的光电特性和检测性能。
例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。
这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。
又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。
因此,在使用光敏二极管进要了解其类型及性能是非常重要的。
用示波器显示发光二极管的伏安特性曲线

用示波器显示发光二极管的伏安特性曲线实验目的:用示波器的X-Y方式显示发光二极管的伏安特性曲线(温度)仪器与用具:示波器、发光二极管、开关、电流表、电压表、稳压电源、变阻器、标准电阻预习报告:一:实验原理:发光二极管的正向电流与电压、反向电流与电压之间的关系可用I~V特性曲线表示,如图给出了发光管的伏安特性曲线及其符号。
从图中可以看出,给二极管两端加以正向电压,二极管表现为一个低阻值的非线性电阻,当正向电压较小时,正向电流几乎为零,只有当正向电压超过死区电压(一般硅管约为0.5V,锗管约为0.1V)时,正向电流才明显增大,当正向管压降达到导通时(一般硅管约为0.6~0.7V,锗管约为0.2~0.3V),管子才处在正向导通状态。
迅速增大的电流值有一最大限度,这个最大限度称为二极管的最大正向电流。
给二极管两端加以反向电压,二极管表现为一个高阻值电阻。
当反向电压较小时,反向电流很小,当反向电压超过反向击穿电压(一般在几十伏以上)后,反向电流会突然增大,二极管处于击穿状态。
如右图,在a、b端接上交流电压(其最大输出电压的有效值一般为6~8V左右,并能随时调节)若接上直流电压,屏幕上只显示正向特征曲线。
在A、B之间测出的是近似加在待测元件R0的电压,在C、B间的是电阻R的电压,这个电压正比于R0的电流强度。
因而将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象。
我们希望显示图形从原点往右是X轴正向往上是Y轴的正向,在Y轴加正向电压时,光点往上走,和习惯相同,但对X轴取向,不同示波器有不同情况,连接电路时,根据图形显示情况,可以改变电路的连接方式,使二极管正确的显示。
为了正确的显示波形,示波器的Y轴输入和X轴输入要有公共端。
在测二极管伏安特性时,有时受实验室现有仪器设备本身结构的限制,可能示波器Y轴信号被短路,因此在实际电路设计中,取B点作为接地点。
半导体发光二极管测试国标(精)

基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。
1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。
由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。
通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。
图 1 LED伏安特性曲线LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。
2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。
(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。
变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。
如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。
_h:^E8(_ d图 2 积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。
图3 辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。
而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。
(2)光强和光强分布特性图4 LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。
因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。
实验一光电探测原理实验

福建师范大学物理与光电信息科技学院光电检测技术实验-实验一1 实验一光电探测原理实验一、内容简介光电探测原理实验箱,是本公司为适合光电子、信息工程、物理等专业教学内容的需要,最新推出的光电类教学实验装置。
本实验箱从了解和熟悉光电二极管和光电池的角度出发,讨论关于光电二极管和光电池的主要技术问题,主要知识点包括:光照度及其测量基本知识;光电池的结构、工作原理和光照特性及其应用;光电二极管的结构、工作原理和光照特性及其应用等。
本实验系统注重理论与实践的紧密结合,突出实用性,可作为光测控技术、光电子技术、光电子仪器仪表及精密仪器等专业本科生和研究生课堂实验与研究。
二、实验箱说明实验箱配备有0~12V 可调的直流电压源,可为光电二极管提供可以调节的偏置电压。
本实验箱还配有照度计、电压表和电流表,各表头显示单元和各种调节单元都放在面板上,而光源、照度计探头、硅光电池和硅光电二极管等不需要经常移动的器件都在实验箱里面固定,所有引出线都通过连线连接到面板上,学生做实验时只需要简单连线即可,连线、调节、观察和记录都很方便。
实验箱还配备10K 粗调电位器RP1和47K 多圈精密细调电位器RP2,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。
面板操作示意图:实验(一)光照度测试一、实验目的1、了解光照度基本知识;2、了解光照度测量基本原理;3、学会光照度的测量方法。
二、实验内容对光照度进行测量,观察现象。
三、预备知识1、光照度基本知识光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。
光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。
因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。
光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L 处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。
LED的特性参数

LED参数与特性LED(发光二极管)是利用化合物材料制成pn结的光电器件。
它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。
1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。
LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。
如图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。
(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。
V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。
(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。
当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。
由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。
1.2 C-V特性鉴于LED的芯片有9³9mil (250³250um),10³10mil,11³11mil (280³280um),12³12mil(300³300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。
C-V特性呈二次函数关系(如图2)。
由1MHZ交流信号用C-V特性测试仪测得。
1.3 最大允许功耗PF m当流过LED的电流为IF、管压降为UF则功率消耗为P=UF³IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。
发光二极管(LED)和LD

LED的应用
数字显示用显示器 利用LED进行数字显示, 有点矩阵型和字段型两种方 式。点矩阵型如图示,使 LED发光元件纵横按矩阵排 列,按需要显示的数字只让 相应的元件发光。为进行数 字显示,每个数字需要7行 5列的矩阵,共需35个元件。 除数字之外,还可显示英文 字符、罗马字符、日文假名 等,其视认性也很好。
LED的应用
光源 LED除用做显示器件外,还可用做各种装置、 系统的光源。如电视机、空调等的遥控器的光源。 在光电检测系统及光通信系统中,也可作为发射 光源来使用。当然在这两个领域中的应用有一定 限制,如由于LED相干长度短,不适合做为大量 程干涉仪的光源;在目前的数字光纤通信系统中, 由于光纤存在色散特性, LED的宽光谱将导致 脉冲的展宽,限制系统的通信容量, LED只适 合于低速率、短距离光纤通信系统。
LED的特点及应用
5、寿命长,基本上不需要维修。可作 为地板、马路、广场地面的信号光源, 是一个新的应用领域。
LED的应用
指示灯 在LED的应用中,首先应举出的是 各种类型的指示灯、信号灯, LED正在 成为指示灯的主要光源。LED的寿命在 数十万小时以上,为普通白炽灯的100倍 以上,而且具有功耗小、发光响应速度 快、亮度高、小型、耐振动等特点,在 各种应用中占有明显的优势.
LD的谐振腔
注入电流
解理面
有源区
解理面
L
R1 Z=0
增益介质
R2 Z=L
LD的阈值条件
光在谐振腔内往返一次不衰减的条件为:
gL L 1/ 2 ln 1 R1R2
式中R1,R2为谐振腔两个反射面的反射率, g为增益系数,L为谐振腔长, α为损耗系数。 端面损 内部损 总损耗 + 总增益 耗 耗
光敏电阻伏安特性、光敏二极管光照特性

1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出资料的表面,产生光电子发射称为外光电效应,或光电子发射效应,鉴于这类效应的光电器件有光电管、光电倍增管等。
电子其实不逸出资料表面的则是内光电效应。
光电导效应、光生伏殊效应则属于内光电效应。
即半导体资料的很多电学特征都因遇到光的照耀而发生变化。
光电效应往常分为外光电效应和内光电效应两大类,几乎大部分光电控制应用的传感器都是此类,往常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照耀到某些半导体资料上时,透过到资料内部的光子能量足够大,某些电子汲取光子的能量,从本来的约束态变为导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这类现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子走开价带跃入导带,价带中因为电子走开而产生空穴,在外电场作用下,电子和空穴参加电导,使电导增添。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,进而使电导增添。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏殊效应在无光照时,半导体 PN 结内部自建电场。
当光照耀在 PN结及其邻近时,在能量足够大的光子作用下,在结区及其邻近就产生少量载流子(电子、空穴对)。
载流子在结区外时,靠扩散进入结区;在结区中时,则因电场 E 的作用,电子漂移到 N 区,空穴漂移到 P 区。
结果使 N 区带负电荷, P 区带正电荷,产生附带电动势,此电动势称为光生电动势,此现象称为光生伏殊效应。
2、实验原理(1)光敏电阻利用拥有光电导效应的半导体资料制成的光敏传感器称为光敏电阻。
当前,光敏电阻应用的极为宽泛,可见光波段和大气透过的几个窗口都有合用的光敏电阻。
利用光敏电阻制成的光控开关在我们平时生活中随地可见。
当内光电效应发生时,光敏电阻电导率的改变量为:(1)在(1)式中, e 为电荷电量,为空穴浓度的改变量,为电子浓度的改变量,表示迁徙率。
晶体二极管的伏安特性曲线

晶体二极管的伏安特性曲线二极管最重要的特性就是单向导电性,这是由于在不同极性的外加电压下,内部载流子的不同的运动过程形成的,反映到外部电路就是加到二极管两端的电压和通过二极管的电流之间的关系,即二极管的伏安特性。
在电子技术中,常用伏安特性曲线来直观描述电子器件的特性。
根据图1的试验电路来测量,在不同的外加电压下,每转变一次RP的值就可测得一组电压和电流数据,在以电压为横坐标,电流为纵坐标的直角坐标系中描绘出来,就得到二极管的伏安特性曲线。
图1 测量晶体二极管伏安特性a) 正向特性b) 反向特性图2 2CZ54D伏安特性曲线图3 2AP7伏安特性曲线图2和图3分别表示硅二极管2CZ54D和锗二极管2AP7的伏安特性曲线,图中坐标的右上方是二极管正偏时,电压和电流的关系曲线,简称正向特性;坐标左下方是二极管反偏时电压和电流的关系曲线,简称反向特性。
下面我们以图1为例加以说明。
当二极管两端电压为零时,电流也为零,PN结为动态平衡状态,所以特性曲线从坐标原点0开头。
(一)正向特性1. 不导通区(也叫死区)当二极管承受正向电压时,开头的一段,由于外加电压较小,还不足以克服PN结内电场对载流子运动的阻挡作用,因此正向电流几乎为零,二极管呈现的电阻较大,曲线0A段比较平坦,我们把这一段称作不导通区或者死区。
与它相对应的电压叫死区电压,一般硅二极管约0.5伏,锗二极管约0.2伏(随二极管的材料和温度不同而不同)。
2. 导通区当正向电压上升到大于死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流增长很快,二极管正向导通。
导通后,正向电压微小的增大会引起正向电流急剧增大,AB 段特性曲线陡直,电压与电流的关系近似于线性,我们把AB 段称作导通区。
导通后二极管两端的正向电压称为正向压降(或管压降),也近似认为是导通电压。
一般硅二极管约为0.7伏,锗二极管为0.3伏。
由图可见,这个电压比较稳定,几乎不随流过的电流大小而变化。
光电二极管、光电三极管光照特性测试

二、实验原理与电路
1. 实验原理
光电控制系统一般由发光部分、接收部分和信号处 理部分组成。
本实验采用振荡电路产生的方波信号对红外发光管 进行调制,使之输出光脉冲信号,然后由光电三极 管接收,放大还原为电信号。
方波脉冲发生器使用555时基集成电路;光电接收 电路采用光电三极管组成的放大电路,本实验采用 3DU11型。
f 1.43 (R1 R2)C1
R1 R1 R2
3端为输出端,R3是限流电阻,避免由于电流过大 而烧坏红外发光管D,其输出信号为方波,占空比 为。
② 接收电路由光电三极管、放大驱动电路和负载组成。 由于外接负载的不同,所采用的放大电路的形式也很 多。
如果负载电流较小,可采用晶体管作放大器,输出端 直接带负载(如图2)。
③ 电流增益
电流增益定义为在一定的入射光通量和阳极电压下,阳极电
流与阴极电流的比值,也可以用阳极光照灵敏度与阴极
光照灵敏度的比值来确定,即:
或
G SA
SK
• 暗电流
当光电倍增管在完全黑暗的情况下工作时,阳极电路里仍然 会出现输出电流,称为暗电流。引起暗电流的因素有: 热电子发射、场致发射、放射性同位素的核辐射、光反 馈、离子反馈和极间漏电等。
相关器 信号输入 PSD输出
参考输入
输出
交流、直流噪声电压表表 交流输入
频率计 输入
宽带相移器 输入 同相输出
③ 奇次谐波能通过并抑制偶次谐波,传输函数和方波 的频谱一样,说明相关器是以参考信号频率为参数 的方波匹配滤波器。因此,能在噪声中或干扰中检 测和参考信号频率相同的方波或正弦波信号。输出 Vo与f/fR响应曲线如图3所示。
Vo
《光电检测技术》大学题集

《光电检测技术》题集一、选择题(每题2分,共20分)1.光电检测技术是基于哪种物理效应来实现非电量到电量的转换?()A. 压电效应B. 光电效应C. 磁电效应D. 热电效应2.在光电检测系统中,光电传感器的主要作用是什么?()A. 将光信号转换为电信号B. 将电信号转换为光信号C. 放大电信号D. 储存光信号3.下列哪种光电元件是利用外光电效应工作的?()A. 光电二极管B. 光电三极管C. 光电池D. 光敏电阻4.光电检测系统中,为了提高信噪比,常采用哪种技术?()A. 滤波B. 放大C. 调制与解调D. 编码与解码5.在光电耦合器中,光信号是如何传递的?()A. 直接通过导线传递B. 通过空气传递C. 通过光导纤维传递D. 通过发光元件和受光元件之间的空间传递6.下列哪项不是光电检测技术的优点?()A. 非接触式测量B. 高精度C. 易受环境干扰D. 响应速度快7.光电倍增管的主要特点是什么?()A. 高灵敏度B. 低噪声C. 无需外部电源D. 体积小,重量轻8.在光电检测系统中,为了消除背景光的影响,可以采取哪种措施?()A. 增加光源亮度B. 使用滤光片C. 提高检测器灵敏度D. 增大检测距离9.光电二极管在反向偏置时,其主要工作特性是什么?()A. 电阻增大B. 电容减小C. 光电流与入射光强成正比D. 输出电压稳定10.下列哪种光电传感器适用于测量快速变化的光信号?()A. 热释电传感器B. 光敏电阻C. 光电二极管D. 光电池二、填空题(每题2分,共20分)1.光电检测技术是______与______技术相结合的一种检测技术。
2.光电效应分为______、______和______三种类型。
3.在光电检测系统中,______是将光信号转换为电信号的关键元件。
4.光电倍增管的工作原理是基于______效应,具有极高的______。
5.为了提高光电检测系统的抗干扰能力,常采用______和______技术。
光耦伏安特性曲线的测量

光电耦合伏安特性曲线●实验原理:1、线性元器件的伏安特性曲线在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。
例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。
电流越大、温度越高,对应的灯丝电阻也越大。
一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。
该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。
当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。
电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。
线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。
该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。
非线性电阻的伏安特性在u-i平面上是一条曲线。
普通晶体二极管的特点是正向电阻和反向电阻区别很大。
正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。
上述两种二极管的伏安特性均具属于单调型。
电压与电流之间是单调函数。
二极管的特性参数主要有开启电压Uth,导通电压Uon,反向电流IR,反向击穿电压VBR以及最大整流电流IF。
2、非线性电阻元件特性曲线的逐点伏安测量法元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。
光电二极管02

课程论文
《 光电二极管 》
学院 专业 班级 姓名 学号 指导教师
计算机与信息工程学院 光信息科学与技术
09 光 信 张家文 200907040054 李林福
光电二极管
张家文
摘要:通过实验测量的方法分析光电二极管的伏安特性、暗电流、光电流及光照特性、光谱特性参数, 用测试参数进行数据处理和分析。 关键词:光电二极管 伏安特性 光电流 光谱特性
利用公式 I=U/R 可以算出光电流(U 是负载电阻 RL 两端的电压,I 光电流)
光照 红
橙
黄
绿
蓝
紫
白
U测
9.5V
8.2V
8.1V
4.9V
3.8V
5.3V
9.4V
光电流 0.095mA 0.082mA 0.081mA 0.049mA 0.038mA 0.053mA 0.094mA
不同颜色的光对应的波长为:
一、光电二极管的工作原理:
光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个 PN 结,和 普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN 结面积尽量做的大一 些,电极面积尽量小些,而且 PN 结的结深很浅,一般小于 1 微米。光电二极管是在反向 电压作用之下工作的。没有光照时,反向电流很小(一般小于 0.1 微安),称为暗电流。当 有光照时,携带能量的光子进入 PN 结后,把能量传给共价键上的束缚电子,使部分电子 挣脱共价键,从而产生电子---空穴对,称为光生载流子。它们在反向电压作用下参加漂移 运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。 光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载, 负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。光电二极管、光电三 极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个 PN 结, 不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换。
光电二极管光谱响应曲线

光电二极管光谱响应曲线光电二极管(Photodiode)作为一种利用内部光电效应来进行光电转换的器件,广泛应用于光电探测、光通信、光测量等领域。
其光谱响应曲线描述了在不同波长下光电二极管的响应情况,了解光电二极管的光谱响应曲线对于进行光电二极管的选择和应用十分重要。
在本文中,将详细介绍光电二极管的光谱响应曲线及其相关特性。
光电二极管的光谱响应曲线描述了在一定波长范围内,光电二极管的响应电流与入射光功率之间的关系。
一般来说,光电二极管的光谱响应曲线可分为两类:紫外-可见光电二极管和红外光电二极管。
紫外-可见光电二极管通常具有较高的响应度,适用于波长从200nm至1100nm的范围内。
而红外光电二极管则适用于波长大于1100nm的红外光区域。
紫外-可见光电二极管的光谱响应曲线通常在可见光范围内呈现较高的响应度。
例如,在400nm至1100nm波长范围内,一般光电二极管的响应度可以达到较高的水平。
光电二极管在短波长紫外光范围内具有更高的响应度,在长波长可见光范围内逐渐降低。
红外光电二极管的光谱响应曲线主要集中在1100nm至1800nm范围内。
在这个范围内,红外光电二极管具有较高的响应度,并能有效地检测红外光。
红外光电二极管的响应电流随着波长的增加而增加,直到达到最大值,然后逐渐减小。
光电二极管的光谱响应曲线不仅受到光电二极管的物理结构、材料特性等因素的影响,还受到外部环境因素的影响。
例如,温度、湿度、光强等因素都可能对光电二极管的光谱响应产生影响。
因此,在实际应用中,需要对光电二极管的工作环境进行合理的控制和调整,以确保其光谱响应曲线的准确性和稳定性。
此外,光电二极管的光谱响应曲线还可以用于确定光电二极管的探测灵敏度。
探测灵敏度是指光电二极管在特定波长下对光的敏感程度,一般用光电流和光功率的比值来表示。
通过光谱响应曲线可以确定光电二极管在不同波长下的响应度,从而确定其探测灵敏度。
总结来说,光电二极管的光谱响应曲线描述了光电二极管在不同波长下的响应情况。
实验二 光敏二极管特性实验

实验二 光敏二极管特性实验
实验目的:
1、熟悉光敏二极管的结构和光电转换原理; 2、掌握光敏二极管的暗电流及光电流的测试方法; 3、了解光敏二极管的特性,当光电管的工作偏压一定时,光电管输出 光电流与入射光的照度(或通量)的关系。 实验原理:
敏二极管是一种光生伏特器件,光敏二极管与半导体二极管在结构 上是类似的,也具有单向导电性。光敏二极管的伏安特性相当于向下平 移了的普通二极管,无光照时,有很小的饱和反向漏电流,即暗电流, 此时光敏二极管截止。当光敏二极管被光照时,满足条件h v≧Eg时, 则在结区产生的光生载流子将被内电场拉开,光生电子被拉向N区,光 生空穴被拉向P区,于是在外加电场的作用下形成了以少数载流子漂移 运动为主的光电流。显然,光电流比无光照时的反向饱和电流大得多, 如果光照越强,表示在同样条件下产生的光生载流子越多,光电流就越 大,反之,则光电流越小。光敏二极管工作原理见图2-1。
光电检测技术与应用重点计算题

计算题1、假设将人体作为黑体,正常人体体温为36.5°C 。
计算(1)正常人体所发出的辐射出射度;(2)正常人体的峰值辐射波长。
(斯忒藩-玻尔兹曼常数)(10670.5842K s J/m ⋅⋅⨯=-σ,维恩常数为2897.9μm )(1) 人体正常的绝对温度T=36.5+273=309.5(K),根据斯忒藩-玻尔兹曼辐射定律,正常人体所发出的辐射出射度为)/(3.5205.3091067.52484m W T M eb =⨯⨯==)(-σ(2) 由维恩位移定律,正常人体的峰值辐射波长为)(36.95.3099.28979.2897m T m μλ===2、用Si 光电二极管测缓变光辐射,伏安特性曲线如图1所示,在入射光最大功率为8μW 时,电压10V ,反向偏置电压为40V ,Si 光电二极管的灵敏度S=0.5μA/μW ,结电导为0.005μS ,求(1)画出光电二极管的应用电路图(2)计算二极管的临界电导(3)计算最大线性输出时的负载R L 。
解:根据公式''""'SP gu u g +=)(405.01010005.085.0""'''s u gu SP g μ=⨯+⨯=+=最大线性输出下,负载线正好通过M ’点"')"(u g G u V L =-135.0405.0104010'""=⨯-=⋅-=g u V u G LΩ⨯≈=6104.71LL G R3.答:PSD 是利用离子注入技术制成的一种可确定光的能量中心位置的结型光电器件,其特点是,(1)它对光斑的形状无严格要求,只与光的能量中心有关(2)光敏面上无须分割,消除了死区,可连续测量光斑位置,分辨率高。
(3)可同时检测位置和光强,PSD 器件输出总电流和入射光强有关,所以从总的电流可求得相应的入射光强. 工作原理:当光束入射到PSD 器件光敏层上距中心点的距离为x A 时,在入射位置上产生与入射辐射成正比的信号电荷,此电荷形成的光电流通过电阻p 型层分别由电极1与2输出。