世界数学十大未解难题希尔伯特23个问题未解决的问题

合集下载

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题1900年,德国数学家希尔伯特在巴黎第二国际数学家大会上提出了一系列数学难题,这些难题被称为希尔伯特问题。

这些问题不仅激发了数学领域的研究热情,也极大地推动了数学领域的发展。

这些问题的提出标志着数学史上的重大事件之一,对于当时的数学界以及后来的数学发展都有着深远的影响。

希尔伯特问题一共有23个,分别涉及到了数学的各个方面,包括数论、拓扑学、代数学、分析和几何学等领域。

这些问题虽然在当时被认为是难以解决的难题,但同时也为数学家们提供了巨大的研究动力和研究方向。

在希尔伯特问题提出后的近一个世纪中,数学家们一直在努力研究和探索这些问题,为数学领域的发展做出了重要贡献。

希尔伯特问题中的一些问题至今仍然没有解决,而另一些问题则已经在后来的研究中得到了解决。

例如希尔伯特第一问题和第二问题是相对较容易得到解答的,它们分别是关于质数分布和质数假设的。

而另一些问题则包括了一些数学界最著名的未解之谜,例如黎曼猜想和千禧年七大难题之一希尔伯特第七问题——黎曼假设。

希尔伯特问题的提出和探索不仅对数学的发展有着深远的影响,同时也激发了广大数学爱好者对数学知识的热情。

这些问题的提出不仅极大地丰富了数学领域的研究内容,同时也为数学的发展提供了新的思路和方法。

希尔伯特问题的产生和研究过程本身也成为了数学领域的一大奇迹,吸引了无数数学家们的关注和探索。

除了数学界,希尔伯特问题的提出和研究也对其他领域产生了深远的影响。

例如在计算机领域,希尔伯特问题的研究成果对算法和计算复杂性理论有着一定的启发作用。

同时,在物理学、经济学和生物学等领域,希尔伯特问题的研究也为这些领域的发展提供了一定的参考和借鉴。

总的来说,希尔伯特问题的提出和研究对于数学领域和其他相关领域的发展都产生了深远的影响。

这些问题的提出激发了数学界的研究热情,同时也为数学研究提供了新的方向和方法。

希尔伯特问题被称为是数学界的长期难题,其研究的深入必将为数学领域的发展带来新的突破。

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。

在这具有历史意义的演讲中,首先他提出许多重要的思想:正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。

正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。

” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。

只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。

”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。

就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。

即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。

数学的相容性问题至今未解决。

3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。

4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。

希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订] 希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。

在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。

正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。

” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。

只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。

”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。

就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况1 连续统假设公理化集合论 1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。

即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。

数学的相容性问题至今未解决。

3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。

4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。

希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。

希尔伯特个数学问题大数学难题

希尔伯特个数学问题大数学难题

希尔伯特个数学问题大数学难题Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界数学十大未解难题

世界数学十大未解难题

世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况希尔伯特23个数学问题及其解决情况已有95 次阅读2011-10-3 21:02|个人分类:Mathematics&Statistics|系统分类:科研笔记|关键词:数学世纪亚历山大希尔伯特全世界希尔伯特(HilbertD.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。

他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。

希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。

希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。

他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。

1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的“希尔伯特23个问题”。

1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。

当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。

1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。

由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况:(1)康托的连续统基数问题。

1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。

1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF 集合论公理系统的无矛盾性。

1963年,美国数学家科恩(P.Choen)证明连续统假设与ZF公理彼此独立。

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题希尔伯特的二十三个数学问题1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。

①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。

②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。

数学相容性问题尚未解决。

③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。

④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。

⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。

⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。

至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。

⑦某些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。

⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。

一般情况下的黎曼猜想仍待解决。

哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。

⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。

⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。

11 系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。

12 阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。

在这具有历史意义的演讲中,首先他提出许多重要的思想:正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。

正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。

” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。

只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。

”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。

就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。

即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。

数学的相容性问题至今未解决。

3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn给出了肯定的解答。

4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。

希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。

全世界最难的数学题

全世界最难的数学题

全世界最难的数学题历史上最难的数学问题之一是“希尔伯特的第十问题”,它是大卫·希尔伯特在1900年提出的23个问题之一。

该问题问的是:是否存在一个通用的算法,能够判断任何给定的多项式方程式是否有整数解。

然而,在1970年,这个问题被证明是无解的。

这意味着没有一个通用的算法可以决定每一个多项式的可解性。

这个结果是由苏联数学家尤里·马蒂亚谢维奇和美国数学家朱莉娅·罗宾逊以及德国数学家希尔伯特·普特拿姆和马丁·戴维斯共同提出的。

除此之外,有一组世界上最难并且最有名的数学问题通常被称为“米勒尼夫挑战”,即“千禧年大奖难题”。

这是七个数学问题,分别是:1. 庞加莱猜想(已解决)- 关于在没有穿孔的情况下将三维空间闭合成一个连续的表面的问题。

格里戈里·佩雷尔曼在2003年解决了这个问题。

2. 黎曼猜想- 断言所有具有某种性质的复数的黎曼ζ函数非平凡零点都具有实部为1/2。

这个猜想至今未证明。

3. P vs NP问题- 关于计算机科学中的问题分类和计算难度的问题。

4. 纳维-斯托克斯方程的存在和光滑性- 涉及流体力学中描述流体内部运动的方程组。

5. 杨-米尔斯理论- 物理学理论,其中的数学问题涉及理解空间中的量子场。

6. 霍奇猜想- 关于代数几何中复代数簇上的某些主要类的理论。

7. 伯奇和斯维尼顿-迪耶尔猜想- 泛称一系列关于算术代数几何中的问题。

这些问题大多未解决,提出的目的是为了激励数学领域的进步和解决重要的理论问题。

对于任何一个能成功解决这些千禧年大奖难题的人,克莱数学研究所(Clay Mathematics Institute,CMI)将颁发一百万美元的奖金。

希尔伯特23个数学难题

希尔伯特23个数学难题

希尔伯特23个数学难题1. 哥德巴赫猜想:任意大于2的偶数都可以表示成两个质数之和。

2. 佩尔方程:找出满足 x² - ny² = 1 的自然数解,其中 n 是一个给定的正整数。

3. 费尔马小定理:如果 p 是一个质数,那么对于任意整数 a,a^p - a 都是 p 的倍数。

4. 黎曼猜想:所有非平凡的自然数零点都位于复平面上的某一直线上,即 "黎曼 Zeta 函数的非平凡零点的实部等于 1/2"。

5. 庞加莱猜想:任何大于1的整数都可以表示成至多四个自然数的平方和。

6. 费马大定理:对于任意大于2的整数 n,方程 x^n + y^n = z^n 没有正整数解。

7. 罗宾逊算术:是否存在一个算术表达式,可表示为解 x^n + y^n = z^n,其中 n、x、y、z 都是多项式函数?8. 连续平面切片问题:一个单位区间上的无限个单位半径圆,是否一定能够被切割为有限个片,从而使得每个片的周长之和无上限?9. 康托对角线证明了无穷的数量比可数的数量更多,这一论断是否成立?10. 佛馬定理:给定一个序列 a0, a1, a2, ...,是否存在一个多项式 P(x) ,使得对于所有 n,P(n)和 a(n) 在整数环上取得相等的值?11. 黑洞信息悖论:如果一个物体掉入黑洞的话,它的信息会丢失吗?12. 度量空间完备性:对于一个给定的度量空间,是否所有的柯西序列都收敛于该空间的内点?13. 矩阵剖析:对于一个给定的方块矩阵,是否可以逐步剖析为若干个小方块,而每个小方块都可以分解为若干个更小的方块?14. 程序终止:是否存在一个通用的算法,可以判断任意给定程序是否会在有限的步骤内终止?15. 旅行推销员问题:对于给定的城市和距离,是否存在一个最短的闭合路径,使得旅行推销员途经每个城市一次,然后返回起点?16. 负二次定理:是否存在一个实数 a,满足 a * a = -1 ?17. 确定性因素分解:是否存在一个确定性的多项式时间算法,用于将大整数因式分解?18. 最短超球面问题:给定一组点,是否可以找到一个最小的超球面,将这些点全部覆盖?19. 生物学中的形态发生:如何解释、理解和预测生物体的形态发生过程?20. 难以判定的问题:是否存在一个问题,无法通过任何算法,以有限步骤确定其答案的正确性?21. 最大连续子序列和问题:给定一个整数序列,找出具有最大和的连续子序列。

高中数学 希尔伯特的23个数学问题的现状素材

高中数学 希尔伯特的23个数学问题的现状素材

希尔伯特的23个数学问题的现状在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。

他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。

这23个问题通称“希尔伯特问题”,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。

他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。

希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。

(1)康托的连续统基数问题。

1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。

1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。

1963年,美国数学家科思(P.Choen)证明连续统假设与ZF公理彼此独立。

因而,连续统假设不能用ZF公理加以证明。

在这个意义下,问题已获解决。

(2)算术公理系统的无矛盾性。

欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。

希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。

根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。

(3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。

问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德思(M.Dehn)1900年已解决。

(4)两点间以直线为距离最短线问题。

此问题提的一般。

满足此性质的几何很多,因而需要加以某些限制条件。

1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。

希尔伯特的23个问题

希尔伯特的23个问题

04 问题四:物理学的公理基 础
问题的表述
希尔伯特提出的问题四,主要关注物理学的基础公理。他 希望找到一组基本的公理,能够作为物理学理论的基石, 并使得整个物理学理论体系严密、一致和完备。
这个问题涉及到物理学的基本概念和原理,如空间、时间、 物质、力等,以及它们之间的关系和推导。
希尔伯特希望通过公理化方法,将物理学理论建立在坚实 的逻辑基础上,避免理论内部的矛盾和冲突,并使得理论 具有更好的预测和解释能力。
对于一般的域F,克罗内克假设仍然是一个开放的问题。目前的研究主要 集中在代数几何和代数数论领域,通过研究代数曲线、代数曲面和高维 代数簇的几何结构和性质,来探讨克罗内克假设的可能性。
尽管克罗内克假设尚未得到完全解决,但它的研究对于代数几何和代数 数论的发展有着重要的意义,有助于深入理解代数的结构和性质。
问题的研究历史
自希尔伯特提出这个问题以来,许多数学家和物理学家都致力于研究这个问题,尝试建立物理学的基 本公理体系。
20世纪初,德国数学家赫尔曼·外尔和埃米·诺特等人在这方面做出了重要贡献,他们尝试将相对论和量 子力学等现代物理学理论建立在公理基础上。
然而,尽管取得了一些进展,但至今仍未能够完全解决这个问题。许多物理学家认为,完全公理化整个 物理学理论体系可能是不现实的,因为物理学理论的发展和变化是不断进行的。
总结词
希尔伯特问题五至今仍未得到完全解决,尽管已有一些进展和新的观点。
详细描述
近年来,数学界对希尔伯特问题五的关注度有所提高,新的数学工具和技术为解决这个 问题提供了新的可能性。然而,尽管取得了一些进展,但该问题仍未得到完全解决。
06 问题六:数学分析中的形 式主义系统
问题的表述
01
希尔伯特的第六问题询问的是:是否存在一种形式化的、有效 的证明方法,能够确定数学分析中的所有命题的真伪?

希尔伯特数学23个世界难题

希尔伯特数学23个世界难题

希尔伯特数学23个世界难题1900年德国数学家希尔伯特在巴黎第二届国际数学家代表会上提出23个重要的数学问题,称为希尔伯特数学问题﹝Hilbert'sMathematicalProblems﹞。

内容涉及现代数学大部份重要领域,目的是为新世纪的数学开展提供目标和预测成果,结果大大推动了20世纪数学的开展。

该23个问题的简介如下:1.连续统假设。

2.算术公理体系的兼容性。

3.只根据合同公理证明底面积相等、高相等的两个四面体有相等的体积是不可能的。

即不能将这两个等体积的四面体剖分为假设干相同的小多面体。

4.直线作为两点间最短距离的几何结构的研究。

5.拓扑群成为李群的条件。

6.物理学各分支的公理化。

7.某些数的无理性与超越性。

8.素数问题。

包括黎曼猜想、哥德巴赫猜想等问题。

9.一般互反律的证明。

10.丢番图方程可解性的判别。

11.一般代数数域的二次型论。

12.类域的构成问题。

具体为阿贝尔域上的克罗内克定理推广到作意代数有理域。

13.不可能用只有两个变量的函数解一般的七次方程。

14.证明某类完全函数系的有限性。

15.舒伯特计数演算的严格根底。

16.代数曲线与曲面的拓扑研究。

17.正定形式的平方表示式。

18.由全等多面体构造空间。

19.正那么变分问题的解是否一定解析。

20.一般边值问题。

21.具有给定单值群的线性微分方程的存在性。

22.用自守函数将解析关系单值化。

23.开展变分学的方法。

希尔伯特数学23个世界难题

希尔伯特数学23个世界难题

希尔伯特数学23个世界难题1900年德国数学家希尔伯特在巴黎第二届国际数学家代表会上提出23个重要的数学问题,称为希尔伯特数学问题﹝Hilbert'sMathematicalProblems﹞。

内容涉及现代数学大部份重要领域,目的是为新世纪的数学发展提供目标和预测成果,结果大大推动了20世纪数学的发展。

该23个问题的简介如下:1.连续统假设。

2.算术公理体系的兼容性。

3.只根据合同公理证明底面积相等、高相等的两个四面体有相等的体积是不可能的。

即不能将这两个等体积的四面体剖分为若干相同的小多面体。

4.直线作为两点间最短距离的几何结构的研究。

5.拓扑群成为李群的条件。

6.物理学各分支的公理化。

7.某些数的无理性与超越性。

8.素数问题。

包括黎曼猜想、哥德巴赫猜想等问题。

9.一般互反律的证明。

10.丢番图方程可解性的判别。

11.一般代数数域的二次型论。

12.类域的构成问题。

具体为阿贝尔域上的克罗内克定理推广到作意代数有理域。

13.不可能用只有两个变量的函数解一般的七次方程。

14.证明某类完全函数系的有限性。

15.舒伯特计数演算的严格基础。

16.代数曲线与曲面的拓扑研究。

17.正定形式的平方表示式。

18.由全等多面体构造空间。

19.正则变分问题的解是否一定解析。

20.一般边值问题。

21.具有给定单值群的线性微分方程的存在性。

22.用自守函数将解析关系单值化。

23.发展变分学的方法。

20世纪数学家应当努力解决的23个数学问题

20世纪数学家应当努力解决的23个数学问题

在20世纪初期,数学家大卫·希尔伯特提出了23个他认为是最重要的数学问题,这些问题被称为希尔伯特的23个问题。

这些问题包含了许多不同领域的数学,如代数、几何、分析等,被认为是当时数学界最棘手和最有挑战性的问题。

数学家们纷纷投入研究,但许多问题至今仍未得到圆满解决。

在本文中,我们将深入探讨希尔伯特的23个问题,并从不同角度展开阐述,帮助您更加全面地了解这些数学难题。

1. 斐波那契猜想希尔伯特的第5个问题是关于斐波那契数列的猜想。

斐波那契数列是指每个数字等于前两个数字之和的数列,如1, 1, 2, 3, 5, 8, 13, 21等。

希尔伯特猜想,斐波那契数列中相邻两个数之间的最大公约数是1。

这个问题涉及到数字理论和算术的深入研究,目前仍待解决。

2. 黎曼猜想另一个备受关注的问题是黎曼猜想,这是希尔伯特的第8个问题。

黎曼猜想涉及到复变函数的性质,特别是与质数分布相关的复变函数。

许多数学家致力于试图证明或者反驳黎曼猜想,但至今尚未有定论。

3. 洛伦兹方程组和纳维-斯托克斯方程希尔伯特的第6个问题涉及到经典物理学中的流体力学方程,即洛伦兹方程组和纳维-斯托克斯方程。

这两个方程组描述了流体的运动规律,对理解大气、海洋、宇宙等流体运动具有重要意义。

然而,这两个方程组的数学性质至今仍未完全理解。

4. 黏性流体力学的数学理论希尔伯特的第16个问题涉及到黏性流体力学的数学理论,这是一个非常具有挑战性的问题。

黏性流体力学是描述流体运动的数学模型,对于工程、地质、气象等领域具有重要意义。

虽然在一些简化的情况下可以得到解析解,但在一般情况下仍是一个未解决的难题。

5. 素数假设我们提到希尔伯特的第7个问题,即素数假设。

素数在数论中具有重要地位,而素数假设涉及到素数分布的规律性。

虽然数学家们已经证明了一些关于素数分布的结论,但素数假设仍未得到圆满解决。

以上只是希尔伯特的23个问题中的几个代表性问题,这些问题涉及到数学的各个领域,对于数学家们来说是一场挑战,同时也是一次思想的盛宴。

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题1900年,德国数学家大卫·希尔伯特在国际数学家大会上提出了二十三个数学难题,这些难题被称为希尔伯特的23个问题。

这些问题涉及了数学的各个领域,从代数到分析,从几何到数论,从数学逻辑到拓扑等等。

希尔伯特希望通过这些问题的研究,推动数学的发展,解决一些重要的数学难题,促进数学与其他科学的交叉研究。

希尔伯特提出的23个问题中,最著名的是他的第一问题:连续统一的函数。

在这个问题中,希尔伯特问道,是否存在一个连续函数,可以将所有的整数映射到实数上去。

这个问题牵涉到了数学的基础理论,深刻地影响了数学的发展。

后来,通过对这个问题的研究,数学家们逐渐发展出了拓扑学的基本概念和方法,使得这个问题得到了更加深入和完善的解答。

除了第一问题,希尔伯特的23个问题中还有很多其他具有重要意义的问题。

比如第二个问题:是否存在一个确定性的算法,可以判断任意给定的二次方程是否有整数解。

这个问题涉及了数论和算法的复杂性理论,对计算机科学的发展起到了重要的推动作用。

另一个著名的问题是第七个问题:黎曼猜想。

这个问题是关于黎曼ζ函数的性质的猜想,涉及了复变函数的研究,对数论的发展有着重要的影响。

至今,黎曼猜想仍然是数学界的一个重要未解问题,解决它将对数论和几何拓扑学有着深远的影响。

希尔伯特的23个问题不仅对于数学的发展具有重要的意义,也深刻地影响了20世纪整个数学界的研究方向和发展轨迹。

许多数学家为了解决这些问题,进行了深入的研究,取得了众多重要的成果。

这些问题激发了无数数学家的智慧和创造力,推动了数学的发展,并促进了数学与其他科学领域的交叉融合。

然而,虽然希尔伯特的23个问题引起了广泛的关注,但并不是所有的问题都得到了解决。

一些问题已经在之后的几十年中被证明是不可解的,比如第十五个问题:希尔伯特方程是否有一个通解。

而一些问题,如黎曼猜想,至今仍然没有得到最终的证明。

虽然希尔伯特的23个问题本身遗留下许多未解之谜,但它们对于数学的发展起到了重要的推动作用。

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况(1)康托的连续统基数问题。

1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。

1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。

1963年,美国数学家科思(P.Choen)证明连续统假设与ZF公理彼此独立。

因而,连续统假设不能用ZF公理加以证明。

在这个意义下,问题已获解决。

(2)算术公理系统的无矛盾性。

欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。

希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。

根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。

(3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。

问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德思(M.Dehn)1900年已解决。

(4)两点间以直线为距离最短线问题。

此问题提的一般。

满足此性质的几何很多,因而需要加以某些限制条件。

1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。

(5)拓扑学成为李群的条件(拓扑群)。

这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。

1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决。

1953年,日本的山迈英彦已得到完全肯定的结果。

(6)对数学起重要作用的物理学的公理化。

1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。

后来,在量子力学、量子场论方面取得成功。

但对物理学各个分支能否全盘公理化,很多人有怀疑。

(7)某些数的超越性的证明。

需证:如果α是代数数,β是无理数的代数数,那么αβ一定是超越数或至少是无理数(例如,2√2和eπ)。

苏联的盖尔封特(Gelfond)1 929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界数学十大未解难题希尔伯特23个问题未解决的问题世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P (多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

我们说,苹果表面是“单连通的”,而轮胎面不是。

大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。

这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

四:黎曼(Riemann)假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。

这样的数称为素数;它们在纯数学及其应用中都起着重要作用。

在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。

著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。

这点已经对于开始的1,500,000,000个解验证过。

证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

五:杨-米尔斯(Yang-Mills)存在性和质量缺口量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。

大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。

尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。

在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。

数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。

虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。

挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。

欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。

事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。

当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。

特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

八:几何尺规作图问题这里所说的“几何尺规作图问题”是指作图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。

“几何尺规作图问题”包括以下四个问题1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

4.做正十七边形。

以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。

第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

九:哥德巴赫猜想公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。

200年过去了,没有人证明它。

哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

【哥德巴赫猜想最新最好的成果是中国数学家陈景润的陈氏定理,通俗地讲:哥德巴赫猜想如果简称“1+1”,如今解决的是“1+2”。

但是这样说使得许多大众容易产生误会。

】十:四色猜想1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。

四色猜想的计算机证明,轰动了世界。

希尔伯特23问题里尚未解决的问题:1、问题1连续统假设。

全体正整数(被称为可数集)的基数和实数集合(被称为连续统)的基数c之间没有其它基数。

背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪。

1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的。

所以,至今未有人知道,此假设到底是对还是错。

2、问题2 算术公理相容性。

背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭。

3、问题7 某些数的无理性和超越性。

背景此题为希尔伯特第7问题中的一个特例。

已经证明了e^π的超越性,却至今未有人证明e+π的超越性。

4、问题8 素数问题。

证明:ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …(s属于复数域)所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2。

背景:此即黎曼猜想。

也就是希尔伯特第8问题。

美国数学家用计算机算了ζ(s)函数前300万个零点确实符合猜想。

希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。

引申的问题是:素数的表达公式?素数的本质是什么?5、问题11 系数为任意代数数的二次型。

背景:德国和法国数学家在60年代曾取得重大进展。

6、问题12 阿贝尔域上的克罗内克定理在任意代数有理域上的推广。

背景:此问题只有些零散的结果,离彻底解决还十分遥远。

7、问题13 仅用二元函数解一般7次代数方程的不可能性。

背景:1957苏联数学家解决了连续函数情形。

如要求是解析函数则此问题尚未完全解决。

8、问题15 舒伯特计数演算的严格基础。

背景:代数簌交点的个数问题。

和代数几何学有关。

9、问题16 代数曲线和曲面的拓扑。

要求代数曲线含有闭的分枝曲线的最大数目。

和微分方程的极限环的最多个数和相对位置。

10、问题18 用全等多面体来构造空间。

无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决。

11、问题20 一般边值问题。

偏微分方程的边值问题,正在蓬勃发展。

12、问题23 变分法的进一步发展。

世界数学十大未解难题/希尔伯特23个问题未解决的问题本文链接地址:/s/blog_875e470b01013vh5.html?tj =1。

相关文档
最新文档