材料力学10十动荷载

合集下载

材料力学 第十章 动载荷

材料力学   第十章   动载荷

a t
max
m
max 2 m 2 a
min 0
r0
a
t
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:

a 0
max min m t
max min 0 max min a
第二节 交变应力的循环特性和应力幅值
应力循环:一点的应力由某一数值开始,经过一次完整的变 化又回到这一数值的一个过程。

a
m
T
1.最大应力: max
2.最小应力: min
min
max
t 5.循环特性:
3.平均应力:
m
max min
2
4.应力幅:
a
max min
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最大 应力值,记作 rN ( rN ) 。 无限寿命疲劳极限或持久极限 r : 当 max 不超过某一极限值,材料可以经受“无数次”应力 循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
疲劳失效特点 a、在交变应力下构件破坏时,最大应力不仅低于材料强 度极限和屈服极限,甚至低于比例极限; b、在交变应力作用下,构件破坏前,总是要经历若干次 应力重复;而且即使是塑性很好的材料,在经历若干次应力 重复后,也会像脆性材料一样突然断裂,断裂前没有明显的 塑性变形。 c、疲劳破坏的断口存在三个区域: 疲劳源区——在光滑区内有以微裂纹 起始点,又称为裂纹源(①区域)为中心 并逐渐扩展的弧形曲线; 疲劳扩展区——又称为光滑区(②区 域),有明显的纹条,类似被海浪冲击后 的海滩,它是由裂纹的传播所形成;

材料力学 第十章 动荷载

材料力学 第十章 动荷载

(Dynamic Loading) 二、转动构件的动应力
(Dynamic stress of the rotating member)
例题3 一平均直径为D的薄圆环,绕通过其圆心且垂于环平面的轴 作等速转动.已知环的角速度为 ,环的横截面面积为A,材料的单位 体积质量为r.求圆环横截面上的正应力.
qd
Fd
d

O
FNd FNd
FNd
Fd Ar D 2 4
2
2
FNd r 2 D 2 d A 4
(Dynamic Loading)
Fd r 2 D 2 d A 4 D 圆环轴线上点的 v 2
线速度
y
D qd ( d ) 2
qd
Fd
d

d rv
强度条件
其中 K d 1 1
说明:
D st
h为冲击物由静止自由下落的高度
Dst 为冲击物以静载方式作用在冲击点时, 冲击点的静位移.
Fd K d P
D d =K d D st d K d st
(Dynamic Loading) 讨 论
(1)当载荷突然全部加到被冲击物上,即 h=0 时
FNst l D st EA FNd l Dd EA
P
m
FNst
m
FNd
rAg
x
rAg rAa
D d K d D st FNd D d d Kd FNst D st st
P
P a g
结论:只要将静载下的内力,应力,变形,乘以动荷系数Kd即 得动载下的应力与变形.
a 作匀加速直线运动的构件的动荷系数 K d 1 g

第十、十一章动载荷 交变应力概述

第十、十一章动载荷 交变应力概述

第十章 动载荷与交变应力
§10-2 动静法的应用
一、动静法
1. 构件作加速运动时,构件内各质点将产生惯性力, 惯性力的大小等于质量与加速度的乘积,方向与加速度的方向
相反。 2. 动静法:在任一瞬时,作用在构件上的荷载,惯性力和
约束力,构成平衡力系。当构件的加速度已知时,可用动静 法求解其动应力。
二、匀加速直线运动构件的动应力
式中, st
P 为静应力。 A
由(3),(4)式可见,动荷载等于动荷载因数与静荷载 的乘积;动应力等于动荷载因数与静应力的乘积。即用动荷因 数反映动荷载的效应。
6
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
例 10-4 已知梁为16号工字钢,吊索横截面面积 A=108
mm2,等加速度a =10 m/s2 ,不计钢索质量。求:1,吊索的动应 力d ; 2,梁的最大动应力d, max 。 解: 1. 求吊索的d 16号工字钢单位长度的 重量为
横截面上的正应力为
FNd rw2 D 2 d A 4
13
材 料 力 学 电 子 教 案
第十一章 动载荷与交变应力
四、匀变速转动时构件的动应力
例 6-3 直径d =100 mm的圆轴,右端有重量 P =0.6 kN, 直径D=400 mm的飞轮,以均匀转速n =1 000 r/min旋转(图a)。
P a FNd P a P (1 ) g g a 令 K d 1 (动荷系数) g
(1) (2) (3)

5
FN d Kd P
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
钢索横截面上的动应力为
FN d P d K d K d st A A

材料力学 动荷载

材料力学 动荷载

第十四章 动荷载/二、等加速运动构件的应力计算
1.惯性力的概念
等加速状态 构件处于加速运动状态 变加速状态
等加速运动状况—惯性力是个定值 变加速运动状况—惯性力是时间的函数 (是变荷载) 这里讨论等加速运动状态
2.等加速直线运动构件的应力计算
等加速直线运动:
FD
a W FD W a 1 W g g a
3 圆环等角度转动时构件的应力与变形计算: (1)圆环横截面上的应力
图示匀质等截面圆环,绕着通过环中心且
D o t 垂直于圆环平面的轴以等角速度旋转, 已知横截面面积为A,材料的容重为γ,壁厚
an
为t,求圆环横截面上的应力。
解:求沿圆环轴线的均匀分布惯性力集度 qD
qD
A A D an 2 g g 2
H
H
A B 弹簧
设:受重物Q自高度 H 落下,冲击弹性系统后, Q
速度开始下降至0,同时弹簧变形达到最 Nhomakorabea大值 d 。
H
Q Q
D
此时,全部(动)势能转化为变形能, 杆内动应力达最大值(以后要回跳)。就 以此时来计算:
释放出的动能(以势能的降低来表示)
弹簧
T Q(H D)
增加的变形能,在弹性极限内
材料力学
讲授:顾志荣
材料力学
第十四章 动荷载
同济大学航空航天与力学学院 顾志荣
第十四章 动荷载
一、动荷载的概念与实例 二、等加速运动构件的应力计算
三、受冲击荷载作用时构件的应力和变形计算
第十四章 动荷载
一、动荷载的概念与实例
第十四章 动荷载/一、动荷载的概念与实例
静荷载:作用在构件上的荷载由零逐渐增加到最终

材料力学第10章(动载荷)

材料力学第10章(动载荷)
突加荷载 h 0,
Kd 2
二、水平冲击 mg v
d
Fd d , Pst st
Pst mg 其中: mgl st EA
Fd
st
Pst
mv2 冲击前:动 T1 能 2
冲击后: 应变能Vε 2 Fd d 2
2 F 2 st mv d mg
h
P
h
解:
st
Pl 1.7 102 (mm) EA
2h K d 1 1 st
2 500 1 1 243 2 1.7 10
l
l
d 2 A 4
P 2 103 0.028(MPa) st 4 A 7.1 10 d Kd st
假设: (1)冲击物为刚体; (2)不计冲击过程中的声、光、热等能量损耗(能量守恒);
(3)冲击过程中被冲击物的变形为线弹性变形过程。(保守计算)
一、自由落体冲击
P
冲击前: T 0
V P(h d )
B
h
A
冲击后:
1 Vε d Fd d 2
A
Δd
能量守恒: T V Vd
B
2h st
l
4 Pl 3 22mm st 3 EI
K d 1 1 2 50 3.35 22
40 C 30
d Kd st
M max Pl 50(MPa) st W W
d Kd st 161 MPa) (
A
Δd
Fd
B
1 P (h d ) Fd d 2 Fd d P st
2 Fd 1 Fd P (h st ) st P 2 P

材料力学教程11动荷载

材料力学教程11动荷载

0
n
30
10
3
角加速度: 1 0
角加速度与角速度方向相反, 按动静y法在飞轮上加惯性力:
Md
2
I
0.53
3
mt
x
Td
0.5
3
A
B
0 md
max
T Wt
2.67MPa
§12.4 杆件受冲击时的应力和变形
冲击 : 加载的速度在非常短的时间内发生改变,
构件受到很大的作用力,这种现象称为冲击。
243EIh 2Pl3
A
CD B
2l 9
h
Kd 1
1
243EIh 2Pl3
A A
CD B
C
P D
B
( D )st
M W
2Pl 9W
( D )d kd st
2 Pl
1
9
(1
1
243EIh 2Pl3
)
2Pl 9W
A
B
(C )st
23Pl 3 1296EI
1l
(C )d kd C
4
例已知:重为G的重物以水平速度v冲击到圆形截面AB梁的 C点,EI. 求:σd max
(锻锤与锻件的接触撞击,重锤打桩,高速转动的飞 轮突 然刹车等)
求解冲击问题的简化算法—能量法
冲击应力估算中的基本假定: ①不计冲击物的变形; ②冲击物与构件接触后无回弹; ③构件的质量与冲击物相比很小,可忽略不计 ④材料服从虎克定律; ⑤冲击过程中,声、热等能量损耗很小,可略去不计
承受各种变形的弹性杆件都可以看作是一个弹簧。 例如:
d
d
Q
st
st
P Q 或

《材料力学》第十章 动载荷

《材料力学》第十章 动载荷
第十章 动 载 荷
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd

材料力学动载荷(共59张PPT)

材料力学动载荷(共59张PPT)
g 二、动荷系数
Kd
1a1 5 1.51 g 9.8
三、计算物体静止时,绳索所需的横截面积
由强度条件得
三、计算物体静止时,绳索所需的横截面积
因此,吊索受到冲击作用。 〔2〕H =1m, 橡皮垫d2 = 0. 当CD、EF两杆位于铅直平面内时, 冲击点静位移 最大应力为
FNd
Ast P840 0 11 0 3 0 60.51 03
二、构件作等速转动时的动应力
截面为A的薄壁圆环平均直径为 D,以 等角速度ω绕垂直于环平面且过圆心的平面转 动,圆环的比重为γ。求圆环横截面的动应力。
解:一、求薄壁圆环内动内力
(1)
an
2R
2
D 2
F
man
AD 2
g
D 2
(2)
qd
ma n
D
Aan
g
A 2 D
g2
Ro
qd
(2) qdm D na A g anA g 2D 2
P(1 b 2 )
3g
P (1 b 2 )
3g
b 2
P(1 ) 3g
2 P b 2
3g
Pl (1 b2 )
3
3g
Pl (1 b 2 )
3
3g
三、计算 ωmax 。
当CD、EF两杆位于铅直平面内时, CD杆中有最大轴力
FNmax
P
Pb2
g
P (1 b 2 ) 3g
A
P b 2 P
g
bF
E
B
b
解:制动前瞬时,系统的机械能
l
由机械能守恒,得
Td
JGIp l
T11 2J2, V 10, U 10

10 动荷载

10 动荷载

例: 汽轮机叶片在工作时通常 顶 要发生拉伸、扭转和弯曲的组 部 合变形。本题计算在匀速转动 时叶片的拉伸应力和轴向变形。 设叶片可近似地简化为变截面 叶 直杆, 且横截面面积沿轴线按 根 线性规律变化。叶根的横截面 面积A0为叶顶的横截面面积A1 的两倍, 即A0=2A1。令叶根和 叶顶的半径分别为R0和R1。转 速为 w, 材料单位体积的质量 为 r 。试求叶片根部的应力和 总伸长。
动能无变化: T=0
AB增加的应变能:
B
Δd
h
B
1 Vεd Pd d 2
根据能量守恒定理:
1 V P(h d ) Vεd Pd d 2
1 P h d Pd d 2 Pd l d EA EA Pd d l 1 1 EA 2 Vεd Pd d ( ) d 2 2 l P l 令st EA EA P st l 2 d 2st d 2st h 0
v h 2g
2h v2 Kd 1 1 1 1 st g st
3.若已知冲击物自高度h处以初速度v下落,则
2
v 2 v0 2 2 gh
2 v2 v0 2 gh Kd 1 1 1 1 g st g st
例: 图示分别为不同支承的钢梁, 承受相同的重物冲击, 已知弹簧刚度k=100 kN/m, h=50 mm, G=1 kN, l=3 m, 钢梁的I=3.04×107 mm4, W=3.09×105 mm3, E= 200 GPa。试比较两者的冲击应力。
3) 过程中只有势能, 动能与应变能的转化, 略去 其它能量的损失。
例: 一重量为P的重物由高度为h的位置自由下落,与一 块和直杆AB相连的平板发生冲击。杆的横截面面积为 A。求: 杆的冲击应力。 解: 重物是冲击物, 杆AB(包 括圆盘)是被冲击物。 冲击物减少的势能:

材料力学第十章 动载荷

材料力学第十章 动载荷
Pl / 4 st 6 MPa Wz
A C
1.5m 1.5m P h
B
z
C 截面的静位移为
Pl 3 Δst 0.2143mm 48EI
增加弹簧后
Pl 3 P/2 Δst 1.881 mm 48 EI 2k Kd 1 1 2 20 5.7 1.881
stC
Pl Pa l Pa a 3EI z1 GI p 3EI z 2
3 3
P
H h
b A d l B
C
a

64 Pl 32 Pa l 4 Pa 4 4 3Eπd Gπd Ebh 3
kd 1 1
3
2
3
2.动荷系数 3.危险点: 4.静应力
2h
st
st
动荷因数为
2h Kd 1 1 14.7 Δst
梁的最大动应力为 d K d st 14.7 6 88.2 MPa
d 5.7 6 34.2 MPa
例 水平面内AC杆绕A匀速转动。C端有重Q的集中质量。若因故 在B点卡住,试求AC杆的最大冲击应力。设AC杆质量不计。
FATT
0
T
一般把晶粒状断口面积占整个断口面积50%的温度规定为~, 并称为FATT(fracture appearance transition temperature) 不是所有金属都有冷脆现象 温度降低,b增
大,却发生低温 脆断,原因何在 ?
练习 重P的重物从高H处自由下落到钢质曲拐上,试按第三强度准 则写出危险点的相当应力。 解:1.静位移 叠加法:AB杆(弯、扭)+BC杆(弯)
第10章 动载荷
10.1 概述 10.2 动静法的应用 10.3* 受迫振动的应力计算 10.4* 杆件受冲击时的应力和变形 10.5* 冲击韧性

材料力学10动载荷

材料力学10动载荷
目录
当载荷突然全部加到被冲击物上, 此时T=0
2T Kd 1 1 Q st
2
Q
由此可知,突加载荷的动荷系数是2,这时所引 起的应力和变形都是静荷应力和变形的2倍。 1.若已知冲击物自高度 h 处无初速下落,冲击
物与被冲击物接触时的速度为v
T
Qv 2g
2
h
v 2 2 gh
2
v 2h 2T 1 1 1 1 Kd 1 1 g st st Q st
d
a
目录
b
设冲击物体与弹簧开始接触的瞬时动能为 T 根据机械能守恒定律,冲击物的动能T和势能 V的变化应等于弹簧的变形能 V d,即
动能T
d
T V V d
1 V d Fd d 2
a
V Qd
b
1 T Q d Fd d 2
在线弹性范围内,载荷、变形和应力成正比, 即:
Ebh 4 wB d K d st 1 1 3 2 Ql
4Ql 3 Ebh3
目录
例10-3:图示钢杆的下端有一固定圆盘,盘
上放置弹簧。弹簧在 1kN的静载荷作用下缩
短0.625mm。钢杆直径d=40mm, l =4m,许用 应力[σ]=120MPa, E=200GPa。若有重为 15kN的重物自由落下,求其许可高度h。
Fd d d Q st st
d Fd Q st
a
b
1 2 d V d Q 2 st
c
目录
V Qd
b
T V V d
a
1 2 d V d Q 2 st
c

材料力学课件第10章 动载荷zym

材料力学课件第10章 动载荷zym

FNd
qd D Aρ D 2 2 = = ω 2 4
(3)截面应力: )截面应力: FNd ρ D 2ω 2 σd = = = ρv2 A 4 (4)强度条件: )强度条件:
σ d = ρ v 2 ≤ [σ ]
2、问题特点: 、问题特点: •截面应力与截面面积 无关。 截面应力与截面面积A无关 截面应力与截面面积 无关。 (三)扭转问题
2)强度计算: )强度计算: (1)确定危险截面: )确定危险截面: 为跨中截面。 为跨中截面。
l 1 l M = F −b − q 2 2 2 a l 1 = Aρ g 1 + − b l 2 g 4
2
(2)建立强度条件: )建立强度条件: M d Aρ g a l σd = = 1 + − b l ≤ [σ ] W 2W g 4 2、问题特点: 、问题特点: 设加速度为零时的应力为σst 则: 设加速度为零时的应力为σ 1 l Aρ g − b l M 2 4 = Aρ g l − b l σ st = st = W W 2W 4 a σ d = σ st 1 + = σ st K d g
P
v
∆d P 即:Fd = ∆ st
代入得: 代入得: 1P 2 1 1 ∆2 d v = ∆ d Fd = P 2g 2 2 ∆ st
∆d =
Kd =
P
∆ st
v2 ∆ st g ∆ st
v2 g ∆ st (10.9)
∆ d = K d ∆ st ,
Fd = K d P,
σ d = K dσ st
= 1057 ×106 Pa
§10 – 5

材料力学第10章 动载荷

材料力学第10章 动载荷

Kd = 1 + 1 + 2H
∆st
P
Pl 3 + P ∆st = 48EI 4C
σ st max = Pl / 4 = Pl
W
4W
MF
Pl/4
σd max = Kdσ st max ≤ [σ ] [H] =
∆st
2 σ st max
[(
[σ ]
−1) −1]
2
等截面刚架,重物P自高度 处自由下落。 、 、 自高度h处自由下落 例:等截面刚架,重物 自高度 处自由下落。 E、I、 W已知 。 试求截面的最大竖直位移和刚架内的最大 已知。 已知 冲击正应力( 刚架的质量可略去不计, 冲击正应力 ( 刚架的质量可略去不计 , 且不计轴力 对刚架变形的影响) 对刚架变形的影响)。
第十章 动载荷
§10.1 概述 §10.2 动静法的应用 §10.3 强迫振动的应力计算 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
§10.1 概述
1)动载荷问题的特点: )动载荷问题的特点: 静载荷问题:载荷平稳地增加, 静载荷问题:载荷平稳地增加,不引起构件 的加速度——准静态。 准静态。 的加速度 准静态 动载荷问题:载荷急剧变化, 动载荷问题:载荷急剧变化,构件速度发生 急剧变化。 急剧变化。
2FNd = qd (2R)
qd FNd FNd
qd
σd =
FNd = ρR2ω2 = ρv2 A
注意: 无关! 注意:与A无关! 无关
4)匀减速转动(飞轮刹车) )匀减速转动(飞轮刹车) 例 4 : 飞 轮 转 速 n=100r/min , 转 动 惯 量 为 Ix=0.5kNms2 , 轴 直 径 d=100mm , 10 秒停转,求最大动应力。 秒停转,求最大动应力。 解:角速度: ω0 = nπ 角速度: 30 角加速度: 角加速度:α = −ω0 / t

材料力学-第十章 动载荷

材料力学-第十章 动载荷
300
400 400 30
题 10-2 图
-1-
第十章 动载荷
班级
学号
姓名
10-3 图示钢轴 AB 的直径为 80mm,轴上有一直径为 80mm 的钢质圆杆 CD,CD 垂直于 AB。若 AB 以匀角速度 ω=40rad/s 转动。材料的许用应力[σ]=70MPa,密度为 7.8g/cm3。 试校核 AB 及 CD 杆的强度。
d 15kN
h h l
题 10-7 图
10-8 AB 和 CD 二梁的材料相同,横截面相同。在图示冲击载荷作用下,试求二梁最大正 应力之比和各自吸收能量之比。
l/2
l/2
P
D
A
B
l/2 C
l/2
题 10-8 图 -4-
B P
C v
A
题 12-5 图
10-6 直径 d=30cm,长为 l=6m 的圆木桩,下端固定,上端受重 P=2kN 的重锤作用,木材 的 E1=10GPa。求下列三种情况下,木桩内的最大正应力。 (a) 重锤以静载荷的方式作用于木桩上; (b) 重锤以离桩顶 0.5m 的高度自由落下; (c) 在桩顶放置直径为 15cm、厚为 40mm 的橡皮垫,橡皮的弹性模量 E2=8MPa。重锤也是 从离橡皮垫顶面 0.5m 的高等自由落下。
第十章 动载荷
班级
学号
姓名
10-1 均质等截面杆,长为 l,重为 W,横截面面积为 A,水平放置在一排光滑的辊子上, 杆的两端受轴向力 F1 和 F2 作用,且 F2﹥F1。试求杆内正应力沿杆件长度分布的情况(设 滚动摩擦可以忽略不计)。
l
F1
F2
题 10-1 图
400 120
10-2 轴上装一钢质圆盘,盘上有一圆孔。若轴与盘以 ω=40rad/s 的匀角速度旋转,试求轴 内由这一圆孔引起的最大正应力。

材料力学 动载荷

材料力学  动载荷

Q
Q d
是从零开始增加到最大值。
所以:
弹簧
冲击过程中,动载荷所做的功即为被冲击物的应变能
1
H
U 2 Fdd
动载荷/杆件受冲击时的应力和变形
若冲击物P以静载的方式作用于构件上,
构件的静变形和静应力为△st和σst,根
据胡克定律得:
Fd d d P st st
带入应变能的计算公式得:
U 1 d2 P
y
qd
o
Nd
2Nd qdD
x
Nd
AD2 2
4g
N d 圆环横截面上的应力为:
d
Nd D22
A 4g
v2
g
式中v, D是圆环轴线上各 速点 度的 。
2
H
17
动载荷/动静法的应用
圆环等角速度转动的强度条件为:
d
v2
g
[]
结论: 1.环内应力与横截面积A无关; 2.要保证强度,应限制圆环的转速。
H
课本320页例10.1-等截面圆轴受冲击扭转 在AB轴的B端有一个质量很大的飞轮,轴的质 量忽略不计,轴的另一端A装有刹车离合器, 飞轮的转速为n=100r/min,转动惯量 Ix=0.5KN*S2,轴的直径d=100mm,刹车时使 轴在10S内均匀减速停止转动,求轴内的最大 动应力。
d Kd st
H
关于动荷系数的讨论:
2T Kd 1 1
Pst
1.重为P的物体从高为h处自由下落
mv2 T mgh
2
2h
Kd 1 1
st
H
36
2.突然加于构件上的载荷
2h Kd 1 1
st
Kd 2
注意:突加载荷作用下构件的应力和变形皆为 静载时的2倍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位长重量q=25. 5N/m , [] =300MPa , 以a=2m/s2的加速度提起重
50kN 的物体,试校核钢丝绳的强度.
解:①受力分析如图
Fห้องสมุดไป่ตู้d
FNd
(G
qL)(1
a) g
②动应力
L q(1+a/g) G(1+a/g)
d
FNd A
1 (G A
qL)(1
a) g
2.9
1 104
(50
103
惯性力的方向与加速度方向相反,惯性力的数值等于加速
度与质量的乘积。只要在物体上加上惯性力,就可以把动
力学问题在形式上作为静力学问题来处理,这就是动静法
(Method of kineto static).
惯性力(Inertia force) 大小等于质点的质量 m 与加速度
a 的乘积,方向与 a 的方向相反,即 F= -ma
解:①受力分析如图
A
惯性力
qG
a g
x
FNd
(qst
qG
)x
Ax(1
a) g
a
a
②动应力
L
mn
x
FNd
qst qG
d
FNd A
x(1
a) g
动荷系数
Kd
1
a g
强度条件 dmax Kd stmax [ ]
第11页/共53页
(Dynamic Loading)
例题3 起重机钢丝绳长60m,有效横截面面积A=2. 9cm2 , 单
第1页/共53页
(Dynamic Loading)
§10-1 概述 (Instruction)
一、基本概念 (Basic concepts)
1、静荷载(Static load) 荷载由零缓慢增长至最终值, 然后保持不变。构件内各质点加速度很小,可略去不计.
2、动荷载 (Dynamic load) 荷载作用过程中随时间 快速变化,或其本身不稳定(包括大小、方向),构件 内各质点加速度较大.
△d表示动变形 △st表示静变形
当材料中的应力不超过比 例极限时荷载与变形成正比
N st
mm
A
x
d K d st
G
Nd A Aa
g GGa g
结论:只要将静载下的应力,变形,乘以动荷系数Kd即得动载 下的应力与变形.
第10页/共53页
(Dynamic Loading)
例题2 起重机丝绳的有效横截面面积为A , [] =300MPa , 物体单位体积重为 , 以加速度a上升,试校核钢丝绳的强度.
25.5
60)(1
2 9.8
)
214MPa 300MPa 第12页/共53页
(Dynamic Loading)
二、转动构件的动应力 (Dynamic stress of the rotating member)
例题4 一平均直径为 D 的薄圆环,绕通过其圆心且垂于 环平面的轴作等速转动。已知环的角速度为 ,环的横截面
2
A 2D
2g
qd
O
r
第14页/共53页
(Dynamic Loading)
qd
(1
A
g
)( D 2 )
2
A 2D
2g
Rd
0
qd(
D 2
d
) sin
A 2D2 sin d 4g 0
A 2D2
FNd
2g
FNd
Rd 2
A 2D2
FNd
(1
a )(G g
Ax)
FNst G Ax
FNst
mm
FNd KdFNst
绳索中的动应力为
A
x
d
FNd A
Kd
FNst A
K d st
G
st 为静荷载下绳索中的静应力
强度条件为 d Kd st [ ]
第9页/共53页
FNd
mm
A Aa
x
g
GGa g
(Dynamic Loading)
第4页/共53页
(Dynamic Loading)
§10-2 动静法的应用 (The application for method of dynamic equilibrium)
原理( Principle) 达朗伯原理( D’Alembert’s Principle ) 达朗伯原理认为 处于不平衡状态的物体,存在惯性力,
三、动荷系数 (Dynamic factor)
动荷系数Kd
动响应 静响应
第3页/共53页
(Dynamic Loading)
四、动荷载的分类 (Classification of dynamic load)
1、惯性力(Inertia force) 2、冲击荷载(Impact load) 3、振动问题 (Vibration problem) 4、 交变应力 (Alternate stress)
面积为A,材料的容重为 。求圆环横截面上的正应力.
O r
第13页/共53页
解:
(Dynamic Loading)
因圆环很薄,可认为圆环上各
O r
点的向心加速度相同,等于圆环中
线上各点的向心加速度.
an
D2
2
因为环是等截面的,所以相同长度的 任一段质量相等.
其上的惯性力集度为
qd
(1
A
g
)( D 2 )
第2页/共53页
(Dynamic Loading)
二、动响应 (Dynamic response)
构件在动载荷作用下产生的各种响应(如应力、应变
、位移等),称为动响应(dynamic response).
实验表明 在静载荷下服从虎克定律的材料,只要应力 不超过比例极限 ,在动载荷下虎克定律仍成立且E静=E动.
(Dynamic Loading)
第十章 动载荷(Dynamic loading)
§10-1 概述 (Instruction) §10-2 动静法的应用 (The application for method of dynamic equilibrium) §10-3 构件受冲击时的应力和变形(Stress and deformation by impact loading)
绳索的横截面面积为 A ,绳索单位体积的重量 ,求距绳索下
端为 x 处的 m-m 截面上的应力.
mm
a
x
G
第7页/共53页
(Dynamic Loading)
mm
a
x
A
a
G
G
绳索的重力集度为 A
物体的惯性力为 G a g
绳索每单位长度的惯性力
A
a g
第8页/共53页
A a
g
a
Ga g
G
(Dynamic Loading)
第5页/共53页
(Dynamic Loading)
惯性力求解 强度条件
第6页/共53页
(Dynamic Loading)
一、直线运动构件的动应力 (dynamic stress of the body in the straight-line motion)
例题1 一起重机绳索以加速度 a 提升一重为 G 的物体,设
相关文档
最新文档