自动控制原理课件ppt课件

合集下载

自动控制原理课件

自动控制原理课件
• 即,原开环Bode图+校正环节Bode图+ 增益调整=校正后的开环Bode图
2.根轨迹法
在系统中加入校正装置,相当于增加 了新的开环零极点,这些零极点将使 校正后的闭环根轨迹,向有利于改善 系统性能的方向改变,系统闭环零极 点重新布置,从而满足闭环系统性能 要求。
§6.2 线性系统的基本控制规律
校正装置 Gc(s)
R(s)
+
+
+
原有部分 C(s)
Go(s)
-
(d)前馈补偿
对扰动
信号直
接或间
测 量 , R(s) +
+
形成附 加扰动
+ -
补偿通

校正装置 Gc(s)
原有部分 + Go2(s)
N(s)
+ 原有部分 C(s) Go2(s)
(e)扰动补偿
•串联校正和反馈校正属于主反馈回路之内的校正。
根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
+
+
-
-
原有部分 Go(s)
校正装置 Gc(s)
(b)反馈校正
C(s)
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 形和滤 波后再 送入反 馈系统
•知 识 要 点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。

自动控制原理课件大全ppt课件

自动控制原理课件大全ppt课件

复 杂
自动控制系统对函数概念的理解:
程 度

自控原理的思维控制 方量式x:数控学制的系方统法,工被控程制的量意y识,深控制的语言
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 3
第一节 数学模型
数学模型的定义 能够描述控制系统输出量和输入量数量关系之间 关系的数学表达式
(t )
原因:后级电路的电流i2影响前级电路的输出电压uc1(t)。
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 15
第二节 时域数学模型-微分方程
负载效应
R1C1R2C2
d
2uo (t) dt 2

(R1C1

R2C2 )
duo (t) dt

(频域)
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 6
第一节 数学模型
数学模型建立(建模)的方法
解析法: 即依据系统及元部件各变量之间所遵循的 物理、化学定律列写出变量间的数学表达式,并经实 验验证,从而建立系统的数学模型
R1C1R2C2
d
2uo (t) dt 2

(R1C1

R2C2

R1C2
)
duo (t) dt

uo
(t )

ui
(t )
机械力学系统的数学模型: 相似系统
m
d
2 y(t dt 2
)

f

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理及应用课件

自动控制原理及应用课件
确保系统能够满足定位要求。
控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立

自动控制原理课件胡寿松

自动控制原理课件胡寿松
系统开环频率响应相位在临界 频率处的值与180度之间的差值 。
带宽频率
系统开环幅频特性等于0.707时 的频率。
剪切频率
系统开环幅频特性等于0.707时 的频率。
稳定性与性能的关系
稳定性是控制系统的重要性能指 标,它决定了系统能否正常工作

系统的稳定性与其性能指标密切 相关,如系统的超调量、调节时
自动控制原理课件胡 寿松
目录
• 自动控制概述 • 控制系统稳定性分析 • 控制系统的性能指标 • 控制系统的设计方法 • 控制系统的校正与补偿 • 控制系统的应用实例
01
自动控制概述
定义与分类
定义
自动控制是利用控制装置,使被 控对象按照预设规律自动运行的 系统。
分类
开环控制系统、闭环控制系统、 复合控制系统等。
通过分析系统的频率特性 ,研究系统的稳定性、带 宽和阻尼特性。
现代控制理论设计方法
状态空间法
01
基于系统的状态方程进行系统分析和设计,适用于线性时变系
统和非线性系统。
线性二次型最优控制
02
通过优化性能指标,设计最优控制律,适用于多输入多输出系
统。
滑模控制
03
设计滑模面和滑模控制器,使得系统状态在滑模面上滑动,适
无人机飞行控制系统通过自动控制算法,实现无人机的稳定飞行 和精确控制。
卫星姿态控制
卫星姿态控制系统通过传感器和执行机构,实现卫星的稳定指向 和精确姿态调整。
航空发动机控制
航空发动机控制系统通过调节燃油流量和点火时间等参数,实现 发动机的稳定运行和性能优化。
工业自动化控制系统的应用
智能制造
智能制造系统通过自动化设备和传感器,实现生产过程的自动化控 制和优化。

《自动控制原理》课件第二章

《自动控制原理》课件第二章

Cen idRd
Ld
d id dt
ud
(2-4)
当略去电动机的负载力矩和粘性摩擦力矩时,机械运动
微分方程式为
M GD2 d n 375 d t
(2-5)
式中,M为电动机的转矩(N·m); GD2为电动机的飞轮矩
(N·m2)。当电动机的励磁不变时,电动机的转矩与电枢电
流成正比,即电动机转矩为
M=Cmid
称为相似量。如式(2-1)中的变量ui、uo分别与式(2-3)中的变
量f(t)、y(t)为对应的相似量。
2.1.2 线性定常微分方程求解及系统运动的模态 当系统微分方程列写出来后,只要给定输入量和初始条
件,便可对微分方程求解,并由此了解系统输出量随时间变 化的特性。
若线性定常连续系统的微分方程模型的一般表示形式为 y(n)(t)+a1y(n-1)(t)+···+any(t)=b0u(m)(t)+b1u(m-1)(t)+…+bmu(t)
x0
( x x0 )2
当增量x-x0很小时,略去其高次幂项,则有
y
y0
f (x)
f (x0)
d f (x) dx
x0
(x x0)
令Δy=y-y0=f(x)-f(x0),Δx=x-x0,K=(df(x)/dx)|x0,则线性
化方程可简记为Δy=KΔx。这样,便得到函数y=f(x)在工作
点A附近的线性化方程为y=Kx。
图2-4 小偏差线性化示意图
对于有两个自变量x1、x2的非线性函数f(x1,x2),同样 可在某工作点(x10,x20)附近用泰勒级数展开为
y
f (x1 ,x2 )
f

自动控制原理课件:自动控制系统概述

自动控制原理课件:自动控制系统概述

本章思考题:
• 自动控制的实质是什么? • 闭环控制的结构使得其具有哪些优缺点? • 对自动控制系统的基本要求有哪些?
随动系统与自动调整系统 线性系统与非线性系统 连续系统和离散系统 单输入单输出系统和多输入多数出系统
1.5 自动控制系统的基本要求 稳定性 稳态性能指标 暂态性能指标
经典控制理论的主要分析方法:时域分析,频域分析
1.6 控制系统数字仿真实践的必要性
进行数字仿真实 验在某种意义上比理 论和试验对问题的认 识可以更为细致,不 仅可以了解问题的结 果而且可以通过设定 仿真条件等方式连续 动态、重复地显示控 制系统发展演化的中 间过程,方便了解直 观试验不易观测到的 整体与局部细节过程。
自动控制系统概述
目 录
CONTENTS
1.1 引言 1.2 开环控制和闭环控制 1.3 闭环自动控制系统的基本组成 1.4 自动控制系统的分类 1.5 自动控制系统的基本要求 1.6 控制系统数字仿真实践的必要性
1.1 引言
自动控制的基本概念
自动控制 自动控制是在没有人的直接干预下,利用物理装置对生产设备和
闭环控制的特点
控制器与被控对象之间既有信号的正向作用,又 有信号的反馈作用。
优点:抗干扰能力强,稳态精度高、动态性能好等。
缺点:设计不合理时,将出现不稳定。在开控制器 2-控制对象 3-检测装置
1.3 闭环自动控制系统的基本组成
1.4 自动控制系统的分类
工艺过程进行合理的调节,使期望的物理量保持恒定,或者按照一定 的规律变化。
自动控制系统 自动控制系统是为实现某一控制目标所需要的所有物理部件的有
机组合体。
1.2 开环控制和闭环控制
图1-1 电炉加热系统 1-控制器(调压器) 2-被控对象(电炉箱)

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

《自动控制原理》全书总结PPT课件

《自动控制原理》全书总结PPT课件
3
开环控制系统的特点: 闭环控制系统的特点: 自动控制系统的本质特征: 闭环控制系统的基本组成,每个环节的作用。
4
闭环控制系统的组成和基本环节
闭环控制系统的结构(示意)图
控制器
要求精 度要高
1-给定环节;2-比较环节;3-校正环节;4-放大环节; 5-执行机构;6-被控对象;7-检测装置
5
题1-9、图为液位自动控制系统示意图。在任何情况 下,希望液面高度维持不变。试说明系统工 作原理,并画出系统结构图。
24
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
25
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(s)
1 Ts 1
1 t
单 位 阶 越 响 应 : x c (t) 1 eT, (t 0 )
11
◆传递函数第一种形式:
传递函数的表达形式有三种: 标准形式、有理分式形
式或多项式形式
W s X X c rs s b a 0 0 s s m n b a 1 1 s s m n 1 1
b m 1 s b m n m a n 1 s a n
m
K (Tis 1)
W s
14
1、熟悉典型环节传递函数 2、控制系统的传递函数的求取
动态结构图的编写、变换、化简 3、误差传递函数的求取 3、信号流图,梅逊公式求控制系统传函。 4、例题
15
结构图变换技巧
• 变换技巧一:向同类移动 分支点向分支点移动,综合点向综合点移动。

bao--自动控制-PPT课件

bao--自动控制-PPT课件
2024/1/6
自动控制
1
目录
1 2 3 4 5 6
2
2024/1/6
自控起源 自控基础知识 常用传感器与执行器 控制器及调节方法 具体案例分析 自控点位表
自控起源 ❖ 自动控制对于我们来说并不是一个陌生的概念,因为它已
经延伸到社会生活的各个领域: ❖ 如:在家中,为了可以舒适的生活,我们需要控制室内的
提供快速群组性设备名单的设立及管理 提供实时警报讯息、警报讯息记录
历史数据记录
提供对特殊监控点图形及文字趋势记录
报表打印程序 丰富的报表内容,提供检视及虚拟系统操作效率
12
2024/1/6
自控系统的设计原则 ❖ 1、使系统设备能够可靠、高效运行,减轻人员劳动强度; ❖ 2、确保建筑物内环境舒适 ❖ 3、提供系统优化运行和能耗控制方案,进行节能管理; ❖ 4、及时提供设备运行的有关信息,并进行统计与分析,作
下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状 态或参数自动地按照预定的规律运行。自动控制是相对人工控制概念 而言的。
❖ 自动控制的发展过程
❖ 第一代气动控制系统PCS(pneumatic control system); ❖ 第二代模拟式控制体系ACS(analogy control system); ❖ 第三代计算机控制体系CCS(computer control system); ❖ 第四代分布式数字控制系统DCS(distributed control ❖ system); ❖ 第五代现场总线控制系统FCS(fieldbus control system)。
盒,适合屋外安装。
17
2024/1/6
湿度传感器
❖ 湿度传感器的种类:根据原理 的不同可分为干湿球湿度计、 电容式、氯化锂电阻式、氯化 锂露点式等。 以干湿球湿度计为例:

自动控制原理课件全分解

自动控制原理课件全分解

使箱温增大到给定温度。
人 工 控 制 精 度 不 高 , 人的反应不够快,不少 恶劣的场合人无法参与 直接控制。自动控制系 统可以解决以上问题。 下图为一恒温自动控制 系统原理框图。
2024/4/1
《自动控制原理》第一章
14
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
12
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1.1.1自动控制的基本原理
所谓控制系统(Control System)就是通过执行 规定的功能来实现某一给定目标的一些相互关联 单元的组合。由人直接或间接操作执行装置的控 制方式称为手动控制(Manual Control);而无需 人去直接或间接操纵执行机构,利用控制装置控 制被控制量自动地按预定的规律变化的过程则称 为自动控制(Automatic Control)。
2024/4/1
《自动控制原理》第一章
13
示例——恒温控制系统 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
由温度计测出恒温箱的实际温度与恒温箱内要求达到的 温度进行比较,得出偏差,根据偏差的大小和正负进行 控制。当恒温箱温度高于所要求的温度时,移动调压器 可动触头减小外施电压,使箱温减小到要求的温度;若 箱温低于给定温度,则移动调压器触头增大外施电压,
历史回顾
18世纪,James Watt 为控制蒸汽机速度设计的离心调节器。是自 动控制领域的第一项重大成果。在控制理论发展初期,做出过 重大贡献的众多学者中有迈纳斯基、黑曾和奈魁斯特。

《自动控制原理》PPT课件

《自动控制原理》PPT课件

i1
j1
i1
j1
f
G(s)
K G (1s 1)(22s2 22s 1) s (T1s 1)(T22s2 2T2s 1)
KG'
(s zi )
i1 q
(s pi )
i1
前向通道增益 前向通道根轨迹增益
KG'
KG
1 2 2 T1T2 2
反馈通道根轨迹增益
l
(s z j )
H(s) K H '
狭义根轨迹(通常情况):
变化参数为开环增益K,且其变化取值范围为0到∞。
G(s)H (s) K s(s 1)
(s) C(s) K R(s) s2 s K
D(s) s2 s K 0
s1,2
1 2
1 2
1 4K
K=0时 s1 0 s2 1
0 K 1/ 4 两个负实根
K值增加 相对靠近移动
i1
i1
负实轴上都是根轨迹上的点!
m
n
(s zi ) (s pi ) | s2 p1 135
i1
i1
负实轴外的点都不是根轨迹上的点!
二、绘制根轨迹的基本规则
一、根轨迹的起点和终点 二、根轨迹分支数 三、根轨迹的连续性和对称性 四、实轴上的根轨迹 五、根轨迹的渐近线 六、根轨迹的分离点 七、根轨迹的起始角和终止角 八、根轨迹与虚轴的交点 九、闭环特征方程根之和与根之积
a
(2k 1)180 nm
渐近线与实轴交点的坐标值:
n
m
pi zi
a= i1
i1
nm
证明
G(s)H (s) K '
m
(s zi )
i 1 n

自动控制原理课件ppt

自动控制原理课件ppt
控制目标。
传感器
检测系统的状态或参数,并将 检测结果转换为电信号传输给
控制器。
调节机构
根据控制器的指令调整系统的 参数或结构,以实现系统的稳
定和性能优化。
02
控制系统基本概念
系统稳定性
01Biblioteka 0203稳定性的定义
一个控制系统在受到扰动 后能够回到原始状态的能 力。
稳定性的分类
根据系统响应的不同,可 以分为渐近稳定、指数稳 定和不稳定三种类型。
闭环控制系统
系统的输出反馈到输入端,通过反馈 控制提高控制精度。
03
控制系统的数学模型
传递函数
定义
传递函数是描述线性定常系统动 态特性的数学模型,它反映了系 统输出与输入之间的函数关系。
形式
传递函数通常表示为有理分式的 形式,即 G(s) = num(s)/den(s) ,其中 s 是复变量,num(s) 是 分子多项式,den(s) 是分母多项
参数优化
根据系统性能指标,调整控制器的参数,以实现更好的控制效果 。
结构优化
对控制系统结构进行调整,以提高系统的稳定性和动态性能。
鲁棒性优化
提高系统对不确定性和干扰的抵抗能力,保证系统在各种情况下 都能稳定运行。
控制系统的调试与测试
硬件调试
对控制系统的硬件部分进行调试,确保硬件设备正常工作 。
软件调试
自动控制的应用
工业自动化
航空航天
交通运输
智能家居
自动化生产线、机器人 、自动化仪表等。
飞行器控制、卫星轨道 控制等。
自动驾驶车辆、列车控 制等。
智能家电、智能照明等 。
自动控制系统的组成
01
02
03

自动控制原理课件可编辑全文

自动控制原理课件可编辑全文
恒值控制系统也认为是过程控制系统的特 例。
• 3、随动控制系统(或称伺服系统)
这类系统的特点是输入信号是一个未知 函数,要求输出量跟随给定量变化。如火炮自 动跟踪系统。
工业自动化仪表中的显示记录仪,跟踪卫 星的雷达天线控制系统等均属于随动控制系统。
1.2.3 按系统传输信号的性质来分
• 1、连续系统 系统各部分的信号都是模拟的连续函数。目前工业中
功率 放大器
电动机
转速自动控制系统。
电源变化、负载变化等引起转速变化, 称为扰动。电动机被称为被控对象, 转速称为被控量,当电动机受到扰动 后,转速(被控量)发生变化,经测 量元件(测速发电机)将转速信号 (又称为反馈信号)反馈到控制器 (功率放大器),使控制器的输出 (称为控制量)发生相应的变化,从 而可以自动地保持转速不变或使偏差 保持在允许的范围内。
直流电动机速度自动控制的原理结构
图如图1-1所示。图中,电位器电压为输
+U
入信号。测速发电机是电动机转速的测量
元件。图1-1中,代表电动机转速变化的
测速发电机电压送到输入端与电位器电压
进行比较,两者的差值(又称偏差信号) 控制功率放大器(控制器),控制器的输 出控制电动机的转速,这就形成了电动机
电+ 位 器
一个系统性能将用特定的品质指标来衡量其优劣, 如系统的稳定特性、动态响应和稳态特性。
1.3 对控制系统的基本要求
当自动控制系统受到干扰或者人为要求给定值改变, 被控量就会发生变化,偏离给定值。通过系统的自动 控制作用,经过一定的过渡过程,被控量又恢复到原 来的稳定值或者稳定到一个新的给定值。被控量在变 化过程中的过渡过程称为动态过程(即随时间而变的 过程),被控量处于平衡状态称为静态或稳态。

自动控制原理课件ppt

自动控制原理课件ppt

03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。

采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类性能指标是从不同的角度表示系统的性能, 它们之间存在必然的内在联系。对于二阶系统,时 域指标和频域指标之间能用准确的数学式子表示出 来。它们可统一采用阻尼比ζ和无阻尼自然振荡频 率ωn来描述,如所示。
二阶系统的时域性能指标
1 2
arctg

tr
n 1 2
二阶系统的频域性能指标
一般规定A(ω )由A(0)下降到-3dB时的频率,
亦即A(ω )由A(0)下降到0.707 A(0)时的频率叫
作系统的闭环截止频率。频率由0~
ω
的范围
b
称为系统的闭环带宽。
3. 综合性能指标(误差积分准则) 综合性能指标有各种不同的形式,常用的有以
下几种:
(1)误差积分( IE )

IE 0 e(t)dt
(2)绝对误差积分(IAE)

IAE 0 e(t) dt
(3)平方误差积分(ISE)
ISE e2 (t)dt 0
(4)时间与绝对误差乘积积分(ITAE)

ITAE 0 t e(t) dt
以上各式中,e(t) c(t) c要 (t) ,见图3—1。
4. 各类性能指标之间的关系
第6章 控制系统的设计和校正
内容提要
为改善系统的动态性能和稳态性能,常在系统 中附加校正装置,这就是系统校正。按校正装置在 系统中的位置不同,系统校正分为串联校正,反馈 校正和复合校正。根据校正装置的特性又可分为超 前校正,滞后校正,滞后-超前校正。校正的实质均 表现为修改描述系统运动规律的数学模型。设计校 正装置的过程是一个多次试探的过程并带有许多经 验,计算机辅助设计为系统校正装置的设计提供了 有效手段。
引言
1. 线性控制系统理论的基本内容
系统建模:微分/差分方程、传递函数、方框图、 信号流图、频率特性、状态空间表达式等
系统分析:时域分析、频域分析、根轨迹分析、 状态空间分析等
系统综合:校正、状态空间综合法、鲁棒优化 法等
2. 控制系统设计和校正
设计问题:根据给定被控对象和自动控制的技术要 求,单独进行控制器设计,使控制器与被控对象组 成的系统能较好地完成自动控制任务。
在实际工程控制问题中,还有另一类问题需 要考虑,即往往事先确定了要求满足的性能指 标,要求设计一个系统并选择适当的参数来满 足性能指标的要求,或考虑对原已选定的系统 增加某些必要的元件或环节,使系统能够全面 地满足所要求的性能指标,同时也要照顾到工 艺性、经济性、使用寿命和体积等。这类问题 称为系统的综合与校正,或者称为系统的设计。
① 系统的基本部分(原有部分):被控对 象、控制器的基本部分——给定
② 系统的性能要求——给定 ③ 校正装置——需设计(未知)
4. 校正装置的实现 通常是参数易于调整的专用装置(模电或 数电装置) 校正方式多样化:串联校正、反馈校正、 前馈补偿等 注意:校正方案不唯一
目录
§6.1 概 述 §6.2 线性系统的基本控制规律 §6.3 校正装置及其特性 §6.4 采用根轨迹法进行串联校正 §6.5 频率法进行串联校正 §6.6 反馈校正 §6.7 复合校正 §6.8 基于MATLAB和SIMULINK的线性控制系
知识要点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。
对一个控制系统来说,如果它的元部 件、参数已经给定,就要分析它能否满足 所要求的各项性能指标。一般把解决这 类问题的过程称为系统的分析。
2. 频域性能指标 (1) 开环频域指标 开环截止频率ω c (rad/s) ; 相角裕量γ(°) ;
幅值裕量Kg 。
(2) 闭环频域指标 一般应对闭环频率特性提出要求,例如给出闭环 频率特性曲线,并给出闭环频域指标如下: 谐振频率ω r ; 谐振峰值 Mr 。
闭环截止频率ωb与闭环带宽0~ωb :
c n arctg
1 4 4 2 2 2
1 4 4 2 2
r n 1 2 2
Mr
2
1
1 2
b n 1 2 2 2 4 2 2 4
性能指标通常由控制系统的使用单位或被控 对象的制造单位提出。
一个具体系统对指标的要求应有所侧重
1. 时域性能指标 评价控制系统优劣的性能指标,一般是根据
系统在典型输入下输出响应的某些特征点规定的。 常用的时域指标有:
(1) 稳态指标 静态位置误差系数Kp 静态速度误差系数Kv 静态加速度误差系数Ka 稳态误差ess
(2) 动态指标
上升时间tr 峰值时间tp 调整时间ts 最大超调量(或最大百分比超调量) Mp 振荡次数N
校正问题:一种原理性的局部设计。在系统的基本 部分(通常指对象、执行机构、测量元件等主要部 件)已确定的条件下,设计校正装置的传函和调整 系统放大倍数,使系统动态性能满足一定的要求。
两者区别:设计问题要求设计整个控制器,而校正 问题设计的只是控制器的一部分(校正装置)。
3. 校正问题的三要素
统设计 小 结
§6.1 概 述
6.1.1 系统的性能指标
系统的性能指标,按其类型可以分为: (1) 时域性能指标,包括稳态性能指标和动态性能 指标; (2) 频域性能指标,包括开环频域指标和闭环频域 指标; (3) 综合性能指标(误差积分准则),它是一类综合 指标,若对这个性能指标取极值,则可获得系统 的某些重要参数值,而这些参数值可以保证该综 合性能为最优。
调速系统对平稳性和稳态精度要求严格; 随动系统对快速性期望很高。
性 能源功率的约束等。
6.1.2 系统的校正
校正装置的形式及它们和系统其它部分的联接 方式,称为系统的校正方式。校正方式可以分为串 联校正、反馈(并联)校正、前置校正和干扰补偿等。 串联校正和并联校正是最常见的两种校正方式。
相关文档
最新文档