八年级初二数学 提高题专题复习勾股定理练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学 提高题专题复习勾股定理练习题及答案
一、选择题
1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).
A .36
B .18
C .12
D .9
2.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )
A .2
B .2.5
C .3
D .4
3.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )
A .36
B .9
C .6
D .18
4.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( )
A .4
B .8
C .16
D .5 5.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )
A 5
B 51
C 51
D .51-
6.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )
A .10
B .5
C .4
D .3 7.以下列各组数为边长,能组成直角三角形的是( )
A .1,2,3
B .2,3,4
C .3,4,6
D .1,3,2 8.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )
A .222221a b h +=
B .222111a b h +=
C .2h ab =
D .222h a b =+
9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )
A .12
B .10
C .8
D .6
10.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )
A .7.5平方千米
B .15平方千米
C .75平方千米
D .750平方千米
二、填空题
11.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)
12.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.
13.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______
14.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.
15.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.
16.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.
17.在等腰Rt ABC △中,90C ∠=︒,2AC =
,过点C 作直线l AB ,F 是l 上的一
点,且AB AF =,则FC =__________.
18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.
19.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.
20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM 7EF ,则正方形ABCD 的面积为_______.
三、解答题
21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.
22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)当2t =秒时,求PQ 的长;
(2)求出发时间为几秒时,PQB ∆是等腰三角形?
(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
23.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?
分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.
感悟与应用:
(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;
(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,
①求证:180B D ∠+∠=︒;
②求AB 的长.
24.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,
(1)求证:ABD ACE ≅;
(2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明;
②若3BD =,4CF =,求AD 的长,
25.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.
26.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.
(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;
(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;
(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).
27.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.
(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.
(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.
28.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.
(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;
(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;
(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.
29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .
(1)请直接写出CM 和EM 的数量关系和位置关系.
(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.
30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD
()1如图1,若2BD =,4DC =,求AD 的长;
()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)
②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.
【详解】
∵90BAC ︒∠=,
∴AB ⊥AD,
∵DE BC ⊥,BD 平分ABC ∠,
∴DE=AD ,∠BED=90BAC ︒∠=,
∴∠BDE=∠BDA ,
∴BE=AB=AC ,
∵CDE ∆的周长为6,
∴DE+CD+CE=AC+CE=BC=6,
∵,90︒
=∠=AB AC BAC
∴22236AB AC BC +==,
∴2236AB =, 218AB =,
∴ABC ∆的面积=211922
AB AC AB ⋅⋅==, 故选:D.
【点睛】
此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.C
解析:C
【分析】
作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.
【详解】
解:作DE ⊥AB 于E ,如图,
在Rt △ABC 中,BC 22106-8,
∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,
∴DE =DC ,
设DE =DC =x ,
S △ABD =12DE •AB =12
AC •BD , 即10x =6(8﹣x ),解得x =3,
即点D 到AB 边的距离为3.
故答案为C .
【点睛】
本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..
3.A
解析:A
【分析】
先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得
,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.
【详解】 CE 平分ACB ∠,CF 平分ACD ∠,
,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222
)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,
,BCE CEF DCF F ∠=∴∠∠=∠,
,ACE CEF ACF F ∴∠=∠∠=∠,
3,3EM CM FM CM ∴====,
6EF EM FM ∴=+=,
在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,
故选:A .
【点睛】
本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.
4.B
解析:B
【分析】
作AD ⊥BC ,则D 为BC 的中点,即BD=DC=2,根据勾股定理可以求得AD ,则根据S=12
×BC×AD 可以求得△ABC 的面积. 【详解】
解:作AD ⊥BC ,则D 为BC 的中点,
则BD=DC=2,
∵AB=,
∴△ABC的面积为S=1
2
×BC×AD=
1
2
×4×4=8,
故选:B.
【点睛】
本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD是解题的关键.
5.B
解析:B
【分析】
由数轴上点P表示的数为1
-,点A表示的数为1,得PA=2,根据勾股定理得PB
而即可得到答案.
【详解】
∵数轴上点P表示的数为1
-,点A表示的数为1,
∴PA=2,
又∵l⊥PA,1
AB=,
∴PB=
∵
∴数轴上点C1.
故选B.
【点睛】
本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.
6.B
解析:B
【分析】
根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.
【详解】
∵∠A=90°,AB=6,AC=8,
∴,
根据翻折的性质可得A′B=AB=6,A′D=AD,
∴A′C=10-6=4.
设CD=x,则A′D=8-x,
根据勾股定理可得x2-(8-x)2=42,
解得x=5,
故答案为:B .
【点睛】
本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.
7.D
解析:D
【分析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.
【详解】
解:A 、12+22=5≠32,故不符合题意;
B 、22+32=13≠42,故不符合题意;
C 、32+42=25≠62,故不符合题意;
D 、12+2
=4=22,符合题意. 故选D.
【点睛】
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
8.B
解析:B
【分析】
设斜边为c ,根据勾股定理得出
【详解】
解:设斜边为c ,根据勾股定理得出 ∵12ab=12
ch ,
∴,即a 2b 2=a 2h 2+b 2h 2, ∴22222a b a b h =22222a h a b h +22
222b h a b h
, 即
21a +21b =21h . 故选:B .
【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.
9.B
解析:B
已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到
CF CD DF =-,即可得到答案.
【详解】
解:由翻折变换的性质可知,AFD CFB '△≌△,
'DF B F ∴=,
设DF x =,则8AF CF x ==-,
在Rt AFD △中,222AF DF AD =+,即222
(8)4x x -=+,
解得:3x =,
835CF CD FD ∴=-=-=, 1102
AFC S AF BC ∴=⋅⋅=△. 故选:B .
【点睛】
本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到
AFD CFB '△≌△是解题的关键.
10.A
解析:A
【解析】
分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.
详解:∵52+122=132,
∴三条边长分别为5里,12里,13里,构成了直角三角形,
∴这块沙田面积为:
12
×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .
点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 二、填空题
11.【分析】
这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.
【详解】
解:如图,一条直角边(即木棍的高)长20尺,
另一条直角边长7×3=21(尺), 因此葛藤长222021+=29(尺).
答:葛藤长29尺.
故答案为:29.
【点睛】
本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.
12.5
【分析】
在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.
【详解】
解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,
∵直角ABC 中,90B ∠=︒,6AB =,8BC =,
∴22=10AC AB BC +=,
又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =
∴6810BE ⨯=,5BD =,
∴=4.8BE ,
∵90BEA ∠=︒,90BED ∠=︒
∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,
∴5AD AE ED =+=.
故答案为:5.
【点睛】
本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.
13.322或115或
1095
【分析】
分别就E ,F 在AC,BC 上和延长线上,分别画出图形,过D 作DG⊥AC,DH⊥BC,垂足为G ,
H,通过构造全等三角形和运用勾股定理作答即可.【详解】
解:①过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=1
2 BC
同理:DH=1
2 AC
又∵BC=AC
∴DG=DH
在Rt△DGE和Rt△DHF中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL)
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=GC-GE=CH-HF=CF=AB-BF=3
∴EF=22
3332
+=
②过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=1
2 BC
同理:DH=1
2 AC
又∵BC=AC
∴DG=DH
在Rt△DGE 和Rt△DHF 中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL )
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=
③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,
∴∠1+∠2=45°
∴∠EDF=2(∠1+∠2)=90°
∴△EDF 为等腰直角三角形
可证AED CFD △△≌
∴AE=CF=3,CE=BF=4
∴2222435EF CE CF =+=+=
④有第③知,EF=5,且△EDF 为等腰直角三角形,
∴ED=DF=522
,可证△E CF E DE ''∆∽,
2223y x +=
52
52x =+综上可得:25x =
∴2222E F DE DF DE '''''=+=
1095
E F ''= 【点睛】
本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.
14.10
【分析】
先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.
【详解】
解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,
∴a 2+b 2=c 2,
∴(a +b )2﹣2ab =c 2,
∵a +b =5c =5,
∴(52﹣2ab =52,
∴ab =10.
故答案为10.
【点睛】
本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.
157
【解析】
【分析】
通过作辅助线转化BM,MN的值,从而找出其最小值求解.
【详解】
解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:
∵等边△ABC的边长为6,AN=2,
∴BN=AC﹣AN=6﹣2=4,
∴BE=EN=AN=2,
又∵AD是BC边上的中线,
∴DE是△BCN的中位线,
∴CN=2DE,CN∥DE,
又∵N为AE的中点,
∴M为AD的中点,
∴MN是△ADE的中位线,
∴DE=2MN,
∴CN=2DE=4MN,
∴CM=3
4 CN.
在直角△CDM中,CD=1
2
BC=3,DM=
1
2
AD=
33
2
,
∴CM223
7 2
CD MD
+=
∴CN=43
727 32
=.
∵BM+MN=CN,
∴BM+MN的最小值为7.
故答案是:7
【点睛】
考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.16.106232
【解析】
【详解】
∵(x-6)2=9,
∴x-6=±3,
解得:x 1=9,x 2=3,
∵x ,y 为一个直角三角形的两边的长,y=3,
∴当x=3时,x 、y 都为直角三角形的直角边,则斜边为223332+=; 当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ;
当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.
故答案为:310,62或32.
【点睛】
本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.
17.31+或31-
【解析】
如图,l AB ,2AC =,作AD l ⊥于点D ,
∴1AD =,
∵222AF AB ==
=,且F 有2个, ∴2212213DF DF ==-=
∵1DC AD ==,
∴1113
CF CD DF =+= 2231CF DF CD =-=.
点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.
18.8或10或12或
253
【详解】
解:①如图1:
当BC=CD=3m时,AB=AD=5m,AC⊥BD,
此时等腰三角形绿地的面积:1
2
×6×4=12(m2);
②如图2:
当AC=CD=4m时,AC⊥CB,
此时等腰三角形绿地的面积:1
2
×4×4=8(m2);
③如图3:
当AD=BD时,设AD=BD=xm,
在Rt△ACD中,CD=(x-3)m,AC=4m,
由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,
解得x=25
6
,
此时等腰三角形绿地的面积:1
2
BD·AC=
1
2
×
25
6
×4=
25
3
(m2);
④如图4,
延长BC 到D ,使BD=AB=5m ,
故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12
×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或
253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.
19.5
【解析】
试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.
解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,
∵△ABC 是等腰直角三角形,
∴AB =CB ,∠ABC =90°,AD =DC ,
∴∠BAC =∠C =45°,
∵∠ADF =∠CDB ,
∴△ADF ≌△CDB ,
∴AF =BC ,∠FAD =∠C =45°,
∵AE =3,BE =1,
∴AB =BC =4,
∴AF =4,
∵∠BAF =∠BAC +∠FAD =45°+45°=90°,
∴由勾股定理得:EF 22AF AE +2243+,
∵AC 是BF 的垂直平分线,
∴BP =PF ,
∴PB +PE =PF +PE =EF =5,
故答案为5.
点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.
20.32
【分析】
由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.
【详解】
解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +
由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,
∵AM EF ,
2,,2
a a ∴== ∵正方形EFGH 的面积为4,
∴24b =,
∴正方形ABCD 的面积=2224+832.a b b ==
故答案为32.
【点睛】
本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
21.BF 的长为【分析】
先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .
【详解】
解:连接BF .
∵CA=CB ,E 为AB 中点
∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°
在Rt △FEB 与Rt △FEA 中,
BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩
∴Rt △FEB ≌Rt △FEA
又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°
∴∠FBE=∠FAE=12
∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°
又∵BD ⊥AD ,∠D=90°
∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =
+==【点睛】
本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.
22.(1)132)83;(3)5.5秒或6秒或6.6秒 【分析】
(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;
(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;
②当CQ BC =时(图2),则12BC CQ +=,易求得t ;
③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .
【详解】
(1)解:(1)224BQ cm =⨯=,
8216BP AB AP cm =-=-⨯=,
90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,
即28t t =-,
解得:83
t =; 即出发时间为83
秒时,PQB ∆是等腰三角形; (3)解:分三种情况:
①当CQ BQ =时,如图1所示:
则C CBQ ∠=∠,
90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,
90A C ∠+∠=︒,
A ABQ ∴∠=∠
BQ AQ ∴=,
5CQ AQ ∴==,
11BC CQ ∴+=,
112 5.5t ∴=÷=秒.
②当CQ BC =时,如图2所示:
则12BC CQ +=
1226t ∴=÷=秒.
③当BC BQ =时,如图3所示:
过B点作BE AC
⊥于点E,
则
68
4.8()
10
AB BC
BE cm
AC
⨯
===
22 3.6
CE BC BE cm
∴=-=,
27.2
CQ CE cm
∴==,
13.2
BC CQ cm
∴+=,
13.22 6.6
t
∴=÷=秒.
由上可知,当t为5.5秒或6秒或6.6秒时,
BCQ
∆为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
23.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14
【分析】
(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;
(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;
②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.
【详解】
解:(1)BC−AC=AD.
理由如下:如图(a),在CB上截取CE=CA,连接DE,
∵CD平分∠ACB,
∴∠ACD=∠ECD,
又CD=CD,
∴△ACD≌△ECD(SAS),
∴DE=DA,∠A=∠CED=60°,
∴∠CED=2∠CBA,
∵∠CED=∠CBA+∠BDE,
∴∠CBA=∠BDE,
∴DE=BE,
∴AD =BE ,
∵BE =BC−CE =BC−AC ,
∴BC−AC =AD .
(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,
∵AC 平分∠DAB ,
∴∠DAC =∠MAC ,
∵AC =AC ,
∴△ADC ≌△AMC (SAS ),
∴∠D =∠AMC ,CD =CM =12,
∵CD =BC =12,
∴CM =CB ,
∴∠B =∠CMB ,
∵∠CMB +∠CMA =180°,
∴∠B +∠D =180°;
②设BN =a ,
过点C 作CN ⊥AB 于点N ,
∵CB =CM =12,
∴BN =MN =a ,
在Rt △BCN 中,2222212CN BC BN a --==,
在Rt △ACN 中,2222216(8)CN AC AN a --+==
, 则2222
1216(8)a a --+=
, 解得:a =3,
即BN =MN =3,
则AB =8+3+3=14,
∴AB=14.
【点睛】
本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判
定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.
24.(1)见详解(2)①结论:2
22BD FC DF +=,证明见详解②
35
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
25.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析
【分析】
(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.
【详解】
解:(1)AE=BD ,AE ⊥BD ,
理由如下:∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠EAC=∠DBC=45°,
∴∠EAC+∠CAB=90°,
∴AE ⊥BD ;
(2)∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
(3)如图3,若点D 在AB 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
如图4,若点D 在BA 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6.
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.
26.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452
α︒-,或α=45°时45°<∠BAC <90°.
【分析】
(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;
(2)可以画出∠A=35°的三角形;
(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.
【详解】
解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;
故答案为:20°;
(2)如图所示:∠BAC=35°;
(3)设BD 为△ABC 的二分割线,分以下两种情况.
第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.
当∠A =90°时,△ABC 存在二分分割线;
当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;
当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;
第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,
当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时
1809014522
A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°, 综上,∠A =45°或90°或90°-2α或1
452α︒-,或α=45°时,45°<∠BAC <90°.
【点睛】
本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.
27.(1)3;(2)见解析.
【分析】
(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.
【详解】
解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =
∴222AC AD CD =-=,
∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=
⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,
∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,
∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,
∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,
∴∠EFC =∠BCG ,∴∠E =∠BCG ,
在△BCG和△BEH中,∵∠CBG=∠EBH,BC=BE,∠BCG=∠E,∴△BCG≌△BEH(ASA),∴BG=BH,CG=EH,
∴22
2
GH BG BH BG
=+=,
∴2
EG GH EH BG CG
=+=+.
【点睛】
本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.
28.(1)S=
24(06)
464(616)
t
t t
<
⎧
⎨
-+<<
⎩
(2)
10
,10
3
⎛⎫
⎪
⎝⎭
(3)存在,(6,6)或(6,1027)
-,
(6,272)
【解析】
【分析】
(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
【详解】
解:(1)∵A,B的坐标分别是(6,0)、(0,10),
∴OA=6,OB=10,
当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
∴S=1
2
×8×6=24;
当点P在线段BC上时,BD=8,高为6+10-t=16-t,
∴S=1
2
×8×(16-t)=-4t+64;
∴S与t之间的函数关系式为:
240t6
S
4t64(6t16)
<≤
⎧
=⎨
-+<<
⎩
()
;
(2)设P(m,10),则PB=PB′=m,如图1,。