集成运放基本应用之一—模拟运算电路

合集下载

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1

UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。

第1章 模拟集成运算放大电路

第1章  模拟集成运算放大电路

uO
相位相反
不同型号的集成运放供电电源不同,有的两路电源供电, 有的一路电源供电,有的两种情况均可。缺省时认为是 ±VCC (常为±15V )供电。
15
1.2模拟集成运算放大器
2.集成运算放大器的符号
+VCC OUT +调零
⑦ ⑥ ⑤
⑧ ① ② ④ ③
8
7
6
5
F007/μA741
1
2
3
4
−调零 IN(−) IN(+) −VEE (a) 金属圆外壳 (b) 陶瓷双列直插式
由于运放工作在非线性区 u+ = u– 所以 1.u+ u– 不再成立
2.i+=i- 0
26
1.4 基本运算电路
电路的输入电阻为多少? if i1 Rf
一、比例运算电路 i+ =i- 0 1.反相比例电路 i1 if 列KCL 虚地 u u 0
ui u ui + 可列出 i1 uO R1 R1 – u uO uO if Rf Rf Rf 由此得出 uO ui 平衡电阻 R2 = R1 // Rf R1 闭环电压 uO Rf 放大倍数 Auf u R 保证输入级 i 1 的对称性
A2为反相比例电路
R1 10kΩ ui R3
− +
∞ A1 +
− +
∞ A2 +
uo
R5 R5 图1.4.5 例1.4.2电路图 uo uo1 11ui 33ui R4 R4
R5 3 R4 300kΩ
对信号而言,任何放大电路均可看成二端口网络。
输入电流 信号源 内阻

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。

另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。

有的元器件虽然已经坏了,但仅凭肉眼看不出来。

因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。

并记下元器件的实际数值。

否则,实验测得的数值与计算出的数值可能无法进行科学分析。

)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路。

1)反相比例运算电路电路如图8—1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。

U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

实验十二集成运放基本应用之一——模拟运算电路一、实验目的1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性:在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放:开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路 1) 反相比例运算电路电路如图5-1所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图5-1 反相比例运算电路 图5-2 反相加法运算电路2) 反相加法电路电路如图5-2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。

实验--集成运算放大器的基本应用 模拟运算电路

实验--集成运算放大器的基本应用 模拟运算电路

实验–集成运算放大器的基本应用模拟运算电路引言集成运算放大器(Integrated Operational Amplifier,简称OPAMP)是一种重要的电子元件,它在模拟电路设计和实验中被广泛应用。

本文将介绍集成运算放大器的基本应用,并通过实验来验证其在模拟运算电路中的功能和性能。

集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入和单端输出的电子放大器。

它具有很高的输入阻抗、低的输出阻抗和大的开环增益。

通过反馈电路,集成运算放大器可以实现各种电路功能,如放大器、比较器、滤波器等。

实验目的本实验旨在通过实际操作,掌握集成运算放大器的基本应用,包括放大器、比较器和无源滤波器。

实验器材•集成运算放大器IC•双电源电源•电阻•电容•示波器•多用电表实验步骤步骤1:放大器的基本应用1.按照电路图连接集成运算放大器,并接入双电源电源。

2.接入电阻、电容等元件,按照电路图搭建一个基本放大器电路。

3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

4.调节输入信号的幅值和频率,观察输出信号的变化。

步骤2:比较器的应用1.断开反馈电路,使集成运算放大器工作在开环状态。

2.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

3.调节输入信号的幅值,观察输出信号的变化。

步骤3:无源滤波器的应用1.按照电路图连接集成运算放大器,并接入双电源电源。

2.接入电阻、电容等元件,按照电路图搭建一个无源滤波器电路。

3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

4.调节输入信号的频率,观察输出信号的变化。

实验结果与分析在实际操作中,我们成功搭建了集成运算放大器的放大器、比较器和无源滤波器电路,并通过示波器观察到了相应的输入输出波形。

在放大器电路中,我们调节了输入信号的幅值和频率,观察到了输出信号的线性放大效果。

在比较器电路中,我们调节了输入信号的幅值,观察到了输出信号的高低电平变化。

模拟集成电路及运算放大器的应用

模拟集成电路及运算放大器的应用

第五章模拟集成电路及运算放大器的应用教学内容:电流源工作原理;差分放大电路的分析和计算;集成运算放大器及主要技术指标,理想运算放大器及其组成的各种运算电路,实际运算放大器运算电路的误差分析。

教学要求:1、熟悉集成运放的组成及各部分作用,正确理解集成运放主要指标的物理意义;For personal use only in study and research; not for commercial use2、了解电流源的工作原理;3、了解LM324的工作原理及应用重点、难点:For personal use only in study and research; not for commercial use集成运放的电路组成及各部分作用,集成运放主要性能指标的物理意义及选用。

教学方法:讲授法、讨论法教学时数:12学时教学过程:5.1 模拟集成电路中的直流偏置技术5.1.1 BJT电流源电路1. 镜像电流源T1、T2的参数全同即β1=β2,I CEO1=I CEO2BE1BE2=V V ,E1E2=I I ,C1C2=I I当BJT 的β较大时,基极电流I B 可以忽略R V V R V V V I I I REF C O EE CC EE BE CC 2)(+≈---=≈=动态电阻 ce12CE 2C o 2B )(r v i r I =∂∂=-一般r o 在几百千欧以上⎪⎩⎪⎨⎧↓↓⇒↑⇒↑⇒↑⇒↓↑↑⇒B B R R R C0C1C1)(I V R I V I I I I T1. 电路简单,应用广泛;2. 要求I C1电流较大情况下,R 的功耗较大,集成电路应避免;3. 要求I C1电流较小时,要求R 数值较大,集成电路难以实现。

2. 微电流源e2BE e2BE2BE1E2C2O R V R V V I I I ∆=-=≈=由于BE V ∆很小,所以I C2也很小e2be2e221(R r R r r ce o ++≈β)3. 比例电流源e1E1BE1e0E0BE0R I V R I V +=+S ET BE ln I I V V ≈E1E0T BE1BE0ln I I V V V ≈-E1E0T e0E0e1E1lnI I V R I R I +≈ 1E C1R 0E C0 2I I I I I ≈≈≈>>,时,则若βR e1e0C1R e1T R e1e0C1ln I R R I I R V I R R I ≈+≈e0BE0CC R R R V V I +-≈4. 组合电流源T1、R 1 和T4支路产生基准电流I REFT1和T2、T4和T5构成镜像电流源T1和T3,T4和T6构成了微电流源1EB4BE1EE CC REF R V V V V I --+=5.1.2 FET 电流源1. MOSFET 镜像电流源R V V V I I I GSSS DD REF D2O -+===当器件具有不同的宽长比时REF 1122O //I L W L W I ⋅=(λ=0)r o = r ds2用T3代替R ,T1~T3特性相同,且工作在放大区,当λ=0时,输出电流为2T2GS22n 2T2GS22n2D2)( )()/(V V K V V K L W I -=-'= 2. MOSFET 多路电流源2T0GS0n0D0REF )( V V K I I -==REF 1122D2//I L W L W I =REF 1133D3//I L W L W I =REF 1144D4//I L W L W I =3. JFET 电流源5.2 差分式放大电路一. 直接耦合放大电路的零点漂移现象1. 零点漂移现象:在直接耦合放大电路中,输入电压v I=0,输出电压v O≠0的现象。

模拟电路集成运算放大电路(m).ppt

模拟电路集成运算放大电路(m).ppt

T 17
R6
R 7
Rp
T15 T18
T21
T24
+VCC
7
T 14
R9 +V O
R10 6
T20
T23
4
-V EE
输入级 偏置电路 中间级 输出级
分析:
1. 偏置电路:
T12、R5和T11构成了主偏置电路,产生基准电流:
I REF
VCC
(VEE ) UBE12 R5
U BE11
其他偏置电流都与基准电流有关。
+∞
A -
+
uo 输出端
V
国际符号:
u- - u-+ +
集成运放的特点:
•电压增益高
uo •输入电阻大
•输出电阻小
三. 集成电路特点
(1)集成电路中的元器件是在相同的工艺条件下做出的, 邻近的器件具有良好的对称性, 而且受环境温度和干扰的 影响后的变化也相同, 因而特别有利于实现需要对称结构 的电路。
(2)一般采用直接耦合方式
(3)常采用具有补偿特性的差动放大电路,抑制温漂
(4)三极管(或场效应管)代替电容、电阻和二极管。
集成工艺制造的电阻、 电容数值范围有一定的限制。集成电路中 的电阻是使用半导体材料的体电阻制成的, 因而很难制造大的电阻, 其阻值一般在几十欧姆到几十千欧姆之间; 集成电路中的电容是用 PN结的结电容作的。
4.低功耗型
要求其功耗为微瓦数量级。电流几十微安,电源电压在 几伏以下。 典型产品有CA3078、mPC253、ICL7641等。
5. 大功率型
大功率型集成运放的电源电压为正负几十伏,输出电流 几十安培,输出功率为几十瓦左右。 典 型 产 品 有 LH0021 、 MCEL165 、 HA2645 、 LM143 、 ICH8515等。

模拟电子技术实验-集成运算放大器的基本应用电路

模拟电子技术实验-集成运算放大器的基本应用电路

模拟电⼦技术实验-集成运算放⼤器的基本应⽤电路实验:集成运算放⼤器的基本应⽤电路⼀、实验⽬的1、掌握集成运算放⼤器的基本使⽤⽅法;2、掌握集成运算放⼤器的⼯作原理和基本特性;3、掌握集成运算放⼤器的常⽤单元电路的设计和调试的基本⽅法。

⼆、实验仪器名称及型号KeySight E36313A型直流稳压电源,KeySight DSOX3014T型⽰波器/信号源⼀体机。

模块化实验装置。

本实验所选⽤的运算放⼤器为通⽤集成运放µA741,其引脚排列及引脚功能如图1所⽰。

引脚2为运放反相输⼊端,引脚3为同相输⼊端,引脚6为输出端,引脚7为正电源端,引脚4为负电源端。

1脚和5脚为输出调零端,8为空脚。

图1 µA741的引脚图三、实验内容1. 反相⽐例运算电路(远程在线实验)在反向⽐例运算电路中,信号由反向端输⼊,其运算电路如图2所⽰。

o图2 反相⽐例运算电路设计反相⽐例运算电路,要求输出电压与输⼊电压满⾜解析式u o=-0.5u i;写出设计过程,在远程实验平台进⾏实验验证。

实验验证时,信号发⽣器输出正弦波,频率为1kHz,峰峰值为4V,连接到输⼊端u i,利⽤⽰波器观察输⼊端u i和输出端u o的电压波形并截图。

注意:要根据远程实验提供的阻值进⾏设计,其中R1可选择20k或10k,R2可选择10k、20k或100k,其中且不可打乱图中R1、R2和R3的位置。

进⼊远程实验操作界⾯:打开远程实验操作界⾯,主界⾯左上⽅为KeySight E36313A型直流稳压电源,右上⽅为KeySight DSOX3014T⽰波器/信号源⼀体机。

两个仪器中间为指导说明区,实验前应从头⾄尾阅读⼀遍指导说明。

主界⾯中下区域为实验操作区。

直流稳压电源的调节:主界⾯左上⽅为直流稳压电源,要求其输出±12V电压。

点击直流稳压电源进⼊调节界⾯。

点击电源开关打开电源,观察屏幕显⽰。

分别点击电源右上⾓的2或3通道选择按钮,在数字区输出12后再按Enter按键,分别设置2和3两个通道的电压为12V。

模拟电子线路(模电)运放运算电路ppt课件

模拟电子线路(模电)运放运算电路ppt课件
设集成运放开环增益Ad为50万倍,二极管导通电压为0.7 V,则VD1
ud = u- - u+ = u A u do1 u A o d 150 0 .7 140 V1.4uV
上式说明, 折算到运放输入端,仅1.4μV就可使二极管VD1 导通。同理,使VD2 导通的电压也降到这个数量级。显然, 这样的精密整流电路可对微弱输入信号电压进行整流。
辅助调零实质上是在输入端额外引入一个与失调作用相反的直流电位以此来抵消失调的影引到了反相输入端调节电位器触点便可改变加至反相端的辅助直流电位从而使得当输入信号为零时输出电压u消除自激问题运放在工作时容易产生自激振荡
集成运放运算电路
1 比例运算电路 2 加法与减法电路 3 积分与微分电路 4 对数与指数电路 5 基本应用电路
2、差动减法器 叠加定理
ui1作用
uo1
Rf R1
ui1
ui2作用
uo2(1R R1f )R' RR ' 2ui2
综合:
uoR R 1 fui1(1R R 1 f)R' RR ' 2ui2
uo
Rf R1
( u i1
ui2 )
Rf R1
(u i2
ui1 )
若Rf R' R1 R2
例 设计运算电路。要求实现y=2X1+5X2+X3的运算。
+
▪ vI >0时 vO <0 D1、D2✓ vO=0
▪ vI <0时 vO >0 D1✓、D2
vI
R1
vO= -(R2 / R1)vI
RL vo
-A +
vo
-
传输特性 vO
输入正弦波 vI vO

集成运算放大器的应用模拟运算电路

集成运算放大器的应用模拟运算电路

第七章集成运算放大器的应用—模拟运算电路本章是本课程的重点章节之一,应着重掌握以下内容:(1)集成运放工作在线性区和非线性区的条件和特点(2)比例运算电路的结构、特点,Uo 与Ui的特点(3)求和运算电路的结构特点,分析方法(4)积分运算电路的结构,输出输入关系(5)简单电压比较强的分析方法,会计算UT,花电压传输特性,画UO波形本章内容(1)集成运放应用基础(2)运算电路电子课件七. 集成运算放大器的应用—模拟运算电路课时授课教案一授课计划批准人:批准日期:课序19 授课日期授课班次课题:第7章第7.1节集成运放的应用基础第7.2节运算电路目的要求:1.深刻理解集成运放工作在线性区的条件和特点2. 掌握反相比例运算电路的结构、工作原理及特点3.掌握同相比例运算电路的结构、工作原理及特点4.掌握电压跟随器的电路结构、工作原理重点难点:重点反相和同相比例运算电路的结构特点及Uo与Ui的关系难点理解集成运算工作在线性区的条件和特点教学方法手段: 电子课件、课堂提问、课堂讨论、启发式教具:电子课件复习提问 1.知集成运放的Ao,据电压传输特性估算出集成运放的线性输入范围2.集成运放开环应用能否使运放工作在线性区?课堂讨论同相比例和反相比例电路分别作为一、二级组成两级放大电路讨论其输出电压与输入电压之间的关系布置作业本章思考题与习题3、4、7、8课时分配二授课内容7.1集成运放的应用基础复习:上一章介绍了集成运放的符号及集成运放的电压传输特性如图示由电压传输特性曲线知,集成运放有线性工作区和非线性工作区集成运放的最大输出电压610,12=±=±od O M A V U 则最大线性输入电压为v Ui μ1210126max ==,即只有v U i μ12≤时运放才工作在线性区。

可见集成运放开环应用不能工作在线性区,要使集成运放工作在线性区,必需在集成运放外部电路引入负反馈。

7.1.1 理想运放的条件理想条件:0,0,,0,,,0==∞==∞=∞=∞=io IO ic id od I U CMMR r r r A 等 用理想运放代替实际运放所产生的误差工程上是允许的7.1.2 理想运放工作在线性区的特点在线性区)(0-+-=U U A U od 00==--+odA U U U -+=U U 虚短路 0=-=-+idi r U U I 虚开路 虚短路、虚开路是分析集成运放线性应用电路的出发点。

集成模拟乘法器的应用

集成模拟乘法器的应用

集成模拟乘法器的应用一、基本运算电路1.平方运算将模拟乘法器的两个输入端输入相同的信号,平方运算电路如下图所示:2.除法运算器由集成运放和模拟乘法器组成,除法运算电路如上图所示。

当u1 > 0 时,u O < 0,为使u3 < 0,则u2 > 0 ; 当u1 < 0 时,u O > 0,为使u3 > 0,则u2 > 0。

3.平方根运算4.压控增益改变直流电压U XQ的大小,就可以调节电路的增益。

二、倍频、混频与鉴相1.倍频电路当两个输入信号为同频率的信号即可实现两倍频作用。

如下图所示。

2.混频电路模拟乘法器的输出为两个输入信号的和频和差频信号,即实现了混频作用,若用滤波器取出和频(信或差频)号输出,就称为混频,电路如下图所示。

3.鉴相电路鉴相电路用来比较两个输入信号的相位差,即它的输出电压与两输入信号之间的相位差成正比,用模拟乘法器构成的鉴相电路如下图所示。

作出u o与φ的关系曲线称为鉴相特性曲线,当|φ|≤0.5rad(约30°)时,sinφ≈φ,鉴相特性接近于线性。

三、调幅与解调(一)信息传输的基本概念1.对传输信号进行调制的原因(1)根据电磁波理论,天线尺寸大于信号波长的十分之一,信号才能有效发射。

如声音信号的频率范围为 0.1 ~ 6 kHz。

设f = 1 kHz,λ=C/ƒ=3×108/103=3×105(m),显然,低频信号直 接发射是不现实的。

(2)使接收者能区分不同信号。

2. 调制和解调调制(Modulation)— 将低频信号装载于高频信号。

解调(Demodulation)— 将已调信号还原为低频信号。

3.调制(解调)的方式调幅 AM (检波) 、调频 FM (鉴频) 、调相 PM (鉴相)4.信息传输系统(二)调幅原理用低频信号去改变高频信号的幅度,称为调幅。

经调幅后的高频信号称调幅信号,把没有调幅的等幅高频信号称为载波信号,它是运载低频信号的工具。

集成运算放大器基本运算电路

集成运算放大器基本运算电路

集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。

(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。

图中R2=RF,用以减小漂移和起保护作用。

一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。

图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。

图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。

在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。

uc(o)是t=0时刻电容C两端的电压值,即初始值。

图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。

显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限制。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。

但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。

K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。

集成运算放大器的基本应用(ⅰ) 模拟运算电路【PPT课件】

集成运算放大器的基本应用(ⅰ) 模拟运算电路【PPT课件】

测Ui2
测Uo
用积分电路将方波转换为三角波
积分波形
四、预习要求
1.复习教材中有关集成运放的线性应用部分。 2.拟定实验任务所要求的各个运算电路,列出各电 路的运算表达式。
3.拟定每项实验任务的测试步骤,选定输入测试信 号的类型(直流或交流)、幅度和频率范围。
4.拟定实验中所需仪器和元件。 5.设计记录实验数据所需的表格。
2. 在积分电路中,如R1=100KΩ, C=4.7μF,求 时间常数。
假设Ui=0.5V,问要使输出电压UO达到5V,需多长时间 (设uC(o)=0)?
3. 为了不损坏集成块,实验中应注意什么问题?
七、实验报告要求
1.整理实验数据,画出波形图(注意波形间的相 位关系)。
2.将理论计算结果和实测数据相比较,分析产生 误差的原因。
集成运算放大器的基本应用集成运算放大器的基本应用模拟运算电路模拟运算电路11研究由集成运算放大器组成的比研究由集成运算放大器组成的比例例加法加法减法和积分等基本运算电路减法和积分等基本运算电路的功能的功能
集成运算放大器的基本应用(Ⅰ)
─ 模拟运算电路 ─
刘永刚
一、实验目的
1、研究由集成运算放大器组成的比 例、加法、减法和积分等基本运算电路 的功能。
五、注意事项
1.为了提高运算精度,首先应对输出直流电位进行调 零,即保证在零输入时运放输出为零。
2.输入信号采用交流或直流均可,但在选取信号的频 率和幅度时,应考虑运放的频率响应和输出幅度的限 制。
3.为防止出现自激振荡,应用示波器监视输出电压波 形。
六、思考题
1. 若输入信号与集成运放的同相端相连,当信 号正向增大时,运放的输出是正还是负?若输入信号 与运放的反相端相连,当信号负向增大时,运放的输 出是正还是负?

集成运放电路的运算

集成运放电路的运算

1111
集成运放电路是一种多功能的模拟电子器件,它可以执行各种数学运算,如加法、减法、乘法、除法等。

下面是一些常见的集成运放电路的运算:
1. 加法运算:集成运放可以用于实现加法运算。

将输入信号分别加到运放的正输入端和负输入端,然后通过反馈网络将输出信号反馈到负输入端,就可以实现加法运算。

2. 减法运算:集成运放也可以用于实现减法运算。

将被减数信号加到运放的正输入端,减数信号加到运放的负输入端,然后通过反馈网络将输出信号反馈到负输入端,就可以实现减法运算。

3. 乘法运算:集成运放可以通过使用模拟乘法器来实现乘法运算。

模拟乘法器是一种特殊的电路,可以将两个输入信号相乘,并输出相应的乘积信号。

4. 除法运算:集成运放可以通过使用倒数放大器来实现除法运算。

倒数放大器是一种特殊的电路,可以将输入信号的倒数放大,并输出相应的结果。

5. 积分运算:集成运放可以通过使用积分器来实现积分运算。

积分器是一种特殊的电路,可以将输入信号进行积分,并输出相应的积分结果。

6. 微分运算:集成运放可以通过使用微分器来实现微分运算。

微分器是一种特殊的电路,可以将输入信号进行微分,并输出相应的微分结果。

总之,集成运放电路可以实现各种数学运算,这些运算可以用于信号处理、控制系统、测量仪器等领域。

模电(实验 模拟运算电路)10-11(2)

模电(实验  模拟运算电路)10-11(2)

实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
3、同相比例运算电路(图4) 、同相比例运算电路( ) RF 100k R1 Ui 10k +12V Uo Ui -12V + R 10k RW 100k -12V RF 10k +12V Uo
+ R 9.1k RW 100k
实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
集成运算放大器的基本应用—模 实验 集成运算放大器的基本应用 模 拟运算电路
一、实验目的 1、掌握集成运放管脚的识别方法。 、掌握集成运放管脚的识别方法。 2、研究由集成运算放大器组成的比例、加法、 、研究由集成运算放大器组成的比例、加法、 减法等基本运算电路的功能。 减法等基本运算电路的功能。 二、实验原理 本实验采用的集成运算放大器型号为µA741(或 本实验采用的集成运算放大器型号为 ( F007),引脚排列如图 所示。 ),引脚排列如图 所示。 ),引脚排列如图1所示 它是八脚双列直插式组件。 它是八脚双列直插式组件。
Байду номын сангаас 实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
8
7
6
5
µA741 + 1 2 3
图1 7脚为正电源端; 脚为正电源端; 脚为正电源端 4脚为负电源端; 脚为负电源端; 脚为负电源端 1脚和 脚为失调调零端,1脚和 脚之间可接入一 脚和5脚为失调调零端 脚和5脚之间可接入一 脚和 脚为失调调零端, 脚和 只几十k 的电位器并将滑动触头接到负电源端; 只几十 的电位器并将滑动触头接到负电源端; 8脚为空脚。 脚为空脚。 脚为空脚

模拟电子技术集成运算放大器的应用

模拟电子技术集成运算放大器的应用

反馈电路
主要作用是稳定放大器的输出电压 ,改变输入电压与输出电压之间的 关系。
集成运算放大器的主要参数
开环增益
表示放大器没有反馈时的电压放大倍数。
输入电阻和输出电阻
表示放大器对信号的输入和输出的阻碍作 用。
闭环增益
表示放大器接上反馈电路后的电压放大倍 数。
最大不失真输出电压
表示放大器在正常工作条件下能够输出的 最大不失真电压。
模拟运算放大器在信号处理中的应用
滤波器
运算放大器可以用于实现各种滤波器,例如有源低通滤波器、高通滤波器和带通滤波器等。通过设置适当的反 馈电阻和电容,可以将输入信号中的特定频率成分进行滤除或提取。
电压跟随器
电压跟随器是另一种常见的信号处理应用。通过将运算放大器的正输入端接地,负输入端接输入信号,输出端 接负载电阻,即可实现电压跟随器的功能,使得输出电压与输入电压保持一致。
06
总结与展望
集成运算放大器的优势及应用局限性
集成运算放大器具有高放 大倍数、低失调电压、低 噪声、高共模抑制比等优 点,使其在模拟信号放大 、滤波、采样等方面得到 广泛应用。
优势
应用局限性
集成运算放大器的频率响 应有限,对高频信号的放 大效果较差;同时,其内 部电路的参数可能随温度 、湿度等环境条件变化, 影响其性能和稳定性。
仪器仪表放 大器
传感器放大 器
将传感器输出的微弱信号 放大到便于测量的程度, 同时能够抑制噪声和干扰 。
集成运算放大器在通讯信号处理中的应用实例
调制解调器
在通讯系统中,利用集成运算放大器构成的调制解调 器可以将信号从高频信道中解调出来,实现信号在不 同频段之间的传输。
信号滤波器
集成运算放大器可以与电阻、电容等元件一起构成信 号滤波器,实现对通讯信号的滤波处理,达到一定的 频率响应和噪声抑制效果。同时能够将信号进行必要 的整形或放大,以适应后续电路的需要。

模拟电子线路复习笔记(六)——集成运算放大器原理及其运用

模拟电子线路复习笔记(六)——集成运算放大器原理及其运用

模拟电子线路复习笔记(六)——集成运算放大器原理及其运用本文是对模电的第六章的集成运算放大器原理及其运用知识点的笔记总结。

全文手写,附有例题解析,帮助加深理解。

1.知识点总结2.习题解析展开全文打开CSDN,阅读体验更佳Multisim的集成运算放大器(较全,含电路图分析).ms14Multisim的集成运放仿真电路,包含了同向比例放大,反向比例放大,加法器,减法器。

里面有各种电路的应用分析,可以帮助更进一步的了解集成运放电路浏览器打开Altium Designer 13 的集成运算放大器的pcb库Altium Designer 13 的集成运算放大器的pcb库,浏览器打开javaScript学习笔记(一)js基础=================================公众号关注一波(一叶知秋博客)不定期分享视频资料一、简介1、概述:JavaScript是目前web开发中不可缺少的脚本语言,js不需要编译即可运行,运行在客户端,需要通过浏览器来解析执行JavaScript代码。

诞生于1995年,当时的主要目的是验证表单的数据是否合法。

Java... 浏览器打开简单的集成运算放大器集成运算放大器(以后简称集成运放)是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路。

它的类型很多,电路也不一样,但结构具有共同之处,图1所示为集成运放的内部电路组成框图。

图中输入级一般是浏览器打开史上最全运放运算放大器知识讲解_justgg的专栏调节和放大模拟信号,它是用途十分广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器滤波器的供应商、振荡器振荡器的供应商及电压比较器比较...运算放大器工作原理_ngany的博客_运算放大器的工作原理运算放大器基本上可以算得上是模拟电路的基本需要了解的电路之一,而要想更好用好运放,透彻地了解运算放大器工作原理是无可避免,但是运放攻略太多,那不妨来试试这...高频电子线路复习笔记(2)——高频电路基础作者:BerenCamlost目录作者:BerenCamlost1 LC谐振电路1.1 串并联谐振回路1.1.1 并联谐振回路1.1.2 串联谐振回路1.2 谐振角频率ωo1.3 有载品质因数1.4 串并联回路的阻抗特性1.5 通频带1.5.1 Bw定义1.5.2 计算公式1.6 阻抗变化的计算1.6.1变压器耦合电路1.6.2 双电容耦合回路1.6.3 双电感耦合回路2 表面波滤波器(SAW)... 浏览器打开关于集成运算放大电路的笔记关于运放,无外乎抓住两点,虚短(v+=v-)和虚地(i+=i-=0)。

集成运算放大电路实验报告

集成运算放大电路实验报告

集成运算放大电路实验报告浙大电工电子学实验报告实验十二集成运算放大器及应用(一)模拟信号运算电路课程名称:指导老师:实验名称:集成运算放大器及应用(一)实验报告一、实验目的1.了解集成运算放大器的基本使用方法和三种输入方式。

2.掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。

二、主要仪器设备1.MDZ-2型模拟电子技术实验箱2.实验板及元器件3.直流稳压电源4.万用表三、实验内容在实验中,各实验电路的输入电压均为直流电压,并要求大小和极性可调。

因此在实验箱中安放了电位器,并与由集成运算放大器构成的电压跟随其联结,如图12-7所示。

当在电位器两端分别加+5V和-5V电源电压时,调节电位器就可在集成运算放大器构成的跟随器的输出端得到稳定而可调的正、负直流电压,此电压即作为各实验电路的输入电压。

图12-7 1.同相输入比例运算图12-1按图12-1接线,输入端加直流电压信号Ui,适当改变Ui,分别测量相应的Uo值,记入表12-1中,并2.加法运算图12-2按图12-2电路接线,适当调节输入直流信号Ui1和Ui2的大小和极性,册书Uo,计入表12-2。

表12-23.减法运算图12-4按图12-4电路完成减法运算,并将结果记入表12-4。

表12-44.积分运算图12-5按图12-5电路连接(注意:电路中的电容C是有极性的电解电容,当Ui为负值时,Uo为正值,电容C的正极应接至输出端;如Ui为正值时,则接法相反)。

将Ui预先调到-0.5V,开关S合上(可用导线短接)时,电容短接,保证电容器五初始电压,Uo=0。

当开关S断开时开始计时,每隔10秒钟读一次Uo,记入表12-5,直到Uo不继续明显增大为止。

表12-5(Ui=-0.5V)四、实验总结1.画出各实验电路图并整理相应的实验数据及结果。

实验电路图已在上文中画出,下面处理实验数据。

(1).同相输入比例运算作Ui-Uo图如下:(2).加法运算作Ui1-Ui2-Uo图如下:(3).减法运算作Ui1-Ui2-Uo图如下:(4).积分运算作T-Uo图如下:2.总结集成运放构成的各种运算电路的功能。

模电实验八集成运放基本应用之一--模拟运算电路实验报告

模电实验八集成运放基本应用之一--模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路
一、班级:姓名:学号:实验目的
1、研究由集成运算放大电路构成的比率、加法、减法和积分等基本运算电路的功能。

2、认识运算放大电路在实质应用时应试虑的一些问题。

二、实验仪器及器件
仪器及器件名称型号数目
+12V 直流稳压电源DP8321
函数信号发生器DG41021
示波器MSO2000A1
数字万用表DM30581
集成运算放大电路μA7411
电阻器若干
电容器若干
三、实验原理
1、反对比率运算电路
电路如图 8- 1 所示。

图 8- 1 反对比率运算电路
V O R F
V i R1
2、反相加法电路
电路如图 8- 2 所示。

图 8- 2
反相加法电路
V O
(
R F
V i1
R F
V i2 )
R ═ R
R 1
R 2
3
1
V O
( 1
R F
)V i
V O
R F
( V i2V i1 )
R 1
R 1
于实验设施使用时间的关系,实验电路板的电阻的实质阻值和标明的阻值存在偏差,电路中的其余元
件老化等对电路也有必定的偏差;
2.因为我们丈量时集成运放等元器件向来处于工作状态,长时间的工作也会对数据的丈量产
生必定的影响;
3.在用万用表丈量实验数据时,第一万用表自己存在偏差,其次在丈量有些数据时。

万用表显示的数值向来在跳动难以稳固,这也对数据的读出造成不可以忽略的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十二集成运放基本应用之一——模拟运算电路
一、实验目的
1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理
集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性:
在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放:
开环电压增益A ud=∞
输入阻抗r i=∞
输出阻抗r o=0
带宽f BW=∞
失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:
(1)输出电压U O与输入电压之间满足关系式
U O=A ud(U+-U-)
由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路 1) 反相比例运算电路
电路如图5-1所示。

对于理想运放, 该电路的输出电压与输入电压之间的
关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图5-1 反相比例运算电路 图5-2 反相加法运算电路
2) 反相加法电路
电路如图5-2所示,输出电压与输入电压之间的关系为
)U R R
U R R (
U i22
F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路
图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为
i 1
F
O )U R R (1U +
= R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。

图中R 2=R F

i 1
F O U R R U -=
用以减小漂移和起保护作用。

一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器
图5-3 同相比例运算电路
4) 差动放大电路(减法器)
对于图5-4所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21
F
O -=
图5-4 减法运算电路图 5-5 积分运算电路
5) 积分运算电路
反相积分电路如图5-5所示。

在理想化条件下,输出电压u O 等于
式中 u C (o)是t =0时刻电容C 两端的电压值,即初始值。

如果u i (t)是幅值为E 的阶跃电压,并设u c (o)=0,则
即输出电压 u O (t)随时间增长而线性下降。

显然RC 的数值越大,达到给定的U O 值所需的时间就越长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限值。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K 1闭合,即通过电阻R 2的负反馈作用帮助实现调零。

但在完成调零后,应将K 1打开,以免因R 2的接入造成积分误差。

K 2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压u C (o)=0,另一方面,可控制积分起始点,即在加入信号u i 后, 只要K 2一打开, 电容就将被恒流充电,电路也就开始进行积分运算。

三、实验设备与器件
1、±12V 直流电源
2、函数信号发生器
3、交流毫伏表
4、直流电压表
5、集成运算放大器μA741×1 电阻器、电容器若干。

四、实验内容及实验分析总结
实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

1、反相比例运算电路
⎰+-
=(o)u dt u C
R 1(t)u C i t
o 1O ⎰
=-
=t C R E -Edt C R 1(t)u 1t o
1O
1) 按图5-1连接实验电路,接通±12V 电源,输入端对地短路,进行调零和消振。

2) 输入f =100Hz ,U i =0.5V 的正弦交流信号,测量相应的U O ,并用示波器观察u O 和u i 的相位关系,记入表5-1。

表5-1 U i =0.5V ,f =100Hz
图像如下:其中黄线代表Ui 蓝线代表U0
分析:由公式 可计算出电路的输出电压与输入电压之比Au 的理论值为-10.由上波形图及读表可得Ui=0.175V U0=1.75 其比值为10.可知实验模拟效果非常好。

波形图可看出Ui 与U0相位恰好相差半个周期即反相,效果很好。

i
1
F O
U
R R U -=
2、同相比例运算电路
1) 按图5-3(a)连接实验电路。

实验步骤同内容1,将结果记入表5-2。

2) 将图5-3(a)中的R1断开,得图5-3(b)所示电路重复上述内容,将结果记入表5-3。

表5-2U i=0.5V f=100Hz
表5-3U i=0.5V f=100Hz 如图:其中黄线代表Ui,蓝线代表U0.
分析:
由公式
i 1
F
O )U R R (1U +
=可计算Au 的理论值为11,读表可得
Ui=0.176V U0=1.918V 计算得到Au 的值为10.90,误差为0.9%,模拟效果很好。

由波形图可看出Ui 与U0的图像同相,符合要求。

分析:
由公式
i 1
F
O )U R R (1U +
=,而将R1断开后公式则变为U0=Ui 可计算
Au 的理论值为1,读表可得Ui=0.144V U0=0.142V 计算得到Au 的值为10.90,误差为1.39%,模拟效果很好。

由波形图可看出Ui 与U0的图像同相,符合要求。

3、 反相加法运算电路
1) 自行设计实验电路,使其满足U 0=-10(U i1+U i2),并通过给U i1、U i2 输
入不同的直流电压,验证电路的功能。

2)实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。

用直流电压表测量输入电压U i1、U i2及输出电压U O,记入表5-4中。

表5-4
分析
由上述表格可知:数据一、数据二误差较大,分析原因可能是直流电压表读取U0时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。

数据三、数据五模拟效果较好。

4、减法运算电路
1) 自行设计实验电路,使其满足U0=10(U i2-U i1),并通过给U i1、U i2 输
入不同的直流电压,验证电路的功能。

2) 采用直流输入信号时,确保集成运放工作在线性区。

用直流电压表测量输入电压U i1、U i2及输出电压U O,记入表5-5中。

表5-5
分析:
由上述表格可知:数据二误差较大,分析原因可能是直流电压表读取U0时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。

其他数据模拟效果较好,误差均在2%左右。

5、积分运算电路
实验电路如图5-5所示。

1)打开K2,闭合K1,对运放输出进行调零。

2)调零完成后,再打开K1,闭合K2,使u C(o)=0。

3)预先调好直流输入电压U i=0.5V,接入实验电路,再打开K2,然后用直流电压表测量输出电压U O,每隔5秒读一次U O,记入表5-6,直到U O不继续明显增大为止。

表5-6
t(s)0510********...
U0(V)-3.793-4.240-5.132-6.461-7.122-8.216-9.362-9.369分析:
误差分析及总结:图像没有如预期拟合得那么好,主要原因是操作中我们用视频连续拍下数据,但处理时取数据时间间隔并不完全一致,导致误差产生。

但总体来说,线性下降的趋势还是有的,在一定程度上达到了验证积分运算电路的性质。

五、实验小结:
六组试验中,反相比例运算电路、同相比例运算电路、跟随特性曲线、减法运算电路这四组实验效果都非常不错,误差均在实验允许的范围内。

只有加法运算电路这组实验的数据以及积分运算电路这组实验的图像有较大的偏差。

分析原因如下:
加法运算电路可能是因为直流电压表读取U0时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。

积分运算电路原因是我们采用视频连续拍下数据,但处理时取数据时间间隔并不完全一致,导致图线并没有如理论一般呈线性下降的趋势。

总的来说,本次实验做得比较成功。

通过本实验,我们对集成运放基本应用中的模拟运算电路有了更深入的理解,增长了知识,收获了技能。

相关文档
最新文档