等和线解决的平面向量专题

合集下载

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》
等和线定理可知,点 P 位于矩形 ABA'B' 内(含边界).其面积 S 4SAOB 4 3 .
衡阳市高中教师数学交流 QQ 群:731847633
衡阳市数学学会
练习 5:如图 13 所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长
线交于圆 O 外的点 D ,若 OC mOA nOB ,则 m n 的取值范围是
当 AD EF 时, f x, y AD 取得最 小值,此时 f x0 , y0 AD .易知
ABC AEF ,则 AD AH r 4 .
四、解题总结 1、确定等值线为 1 的直线; 2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和 最小值; 3、从长度比或者点的位置两个角度,计算最大值或最小值.
部的动点,设向量 AP m AB n AFm, n R ,则 m n 的取值范围是( )
A . 1,2
B . 5,6
C . 2,5
D .3,5
【分析】
如图 5,设
AP1
m AB n AF ,由等和线结论,m n
AG AB

2 AB AB
2 .此为 m n
的交点,P 为边 AB 上一动点,Q 为 SMN 内一点(含边界),若 PQ x AM y BN ,
则 x y 的取值范围是
.
【分析】
如图 8 所示,作 PS AM ,PT BN ,过 I 作直线 MN 的平行线,由等和线定理
可知,
x

y


3 4
,1
.
(三)基底一方可变
OB'

1_平面向量专题:共线定理与等和线--学生版

1_平面向量专题:共线定理与等和线--学生版

平面向量专题:共线定理与等和线适用题型:在向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法。

共线定理:已知OP mOA nOB =+,若1m n +=,则,,P A B 三点共线;反之亦然。

例:已知ABC ∆中,3BC BD =,过D 的直线分别交直线AB ,AC 于点M ,N ,若AM AB λ=,AN AC μ=,(),0λμ>,则21λμ+= 。

变式1:如图,在OAB ∆中,:1:2OA a OB b BE EA ===,,,F 是OA 中点,线段OE 与BF 交于点G ,则:(1)OG = (用a b ,表示).(2)过G 的直线分别交直线OA ,OB 于点M ,N ,若OM a λ=,ON b μ=,(),0λμ>, 则12λμ+= 。

变式2:如图,在OAB ∆中,14OC OA =,12OD OB =,AD 与BC 交于点G ,设OA a =,OB b =,过G 的 直线分别交OA ,OB 于点M ,N ,若OM a λ=,ON b μ=,(),0λμ>,则13λμ+= 。

变式3:在AOB ∆中,点P 在AB 上,若2OP tPA tOB =+,则PB PA= 。

变式4:如图所示,在△ABC 中,点D 是AB 的中点,且12AF FC =,BF 与CD 相交于点E , 过E 的直线分别交线段AB ,AC (不含端点)于点M ,N ,若AM AB λ=,AN AC μ=, 当1tλμ+为定值时,t λμ的取值范围为 。

变式5:在△ABC 中,=2,=3,设P 为△ABC 内部及边界上任一点,若=λ+μ,则λμ最大为 .变式6:设G 为△ABC 的重心,过G 作直线l 分别交线段AB ,AC (不与端点重合)于P ,Q .若=λ,=μ(1)求+的值; (2)求λ•μ的取值范围.等和线:平面内一组基底OA , OB 及任一向量OP , OP OA OB λμ=+,若点P 在直线AB 上或在平行于AB 的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与AB 平行的直线称为等和线。

20240905-专题3:平面向量之等和线

20240905-专题3:平面向量之等和线

专题3 平面向量的等和线根据平面向量基本定理,如果P A →,PB →为同一平面内两个不共线的向量,那么这个平面内的任意向量PC→都可以由P A →,PB →唯一线性表示:PC →=xP A →+yPB →.特殊地,如果点C 正好在直线AB 上,那么x +y =1,反之如果x +y =1,那么点C 一定在直线AB 上.于是有三点共线结论:已知P A →,PB →为平面内两个不共线的向量,设PC →=xP A →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.以上讨论了点C 在直线AB 上的特殊情况,得到了平面向量中的三点共线结论.下面讨论点C 不在直线AB 上的情况.如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xP A →+yPB →(x ,y ∈R ).1.平面向量等和线定义(1)当直线DE 经过点P 时,容易得到x +y =0.(2)当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λP A →+μPB →(λ,μ∈R ),则λ+μ=1.由△P AB 与△PED 相似,知必存在一个常数k ∈R ,使得PC →=kPF →(其中k =|PC ||PF |=|PE ||P A |=|PD ||PB |),则PC →=kPF →=kλP A →+kμPB →.又PC →=xP A →+yPB →(x ,y ∈R ),所以x +y =kλ+kμ=k .以上过程可逆.在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.2.平面向量等和线定理平面内一组基底PA →,PB →及任一向量PF →满足:PF →=λPA →+μPB →(λ,μ∈R ),若点F 在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.3.平面向量等和线性质(1)当等和线恰为直线AB 时,k =1;(2)当等和线在点P 和直线AB 之间时,k ∈(0,1);(3)当直线AB 在点P 和等和线之间时,k ∈(1,+∞);(4)当等和线过点P 时,k =0;(5)若两等和线关于点P 对称,则定值k 互为相反数.例1.如图,A ,B 分别是射线OM ,ON 上的点,给出下列以O 为起点的向量:①OA →+2OB →;②12OA →+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →+BA →+23OB →.其中终点落在阴影区域(不包括边界)内的向量的序号是________(写出满足条件的所有向量的序号).例2.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .54例3.在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,且AF →=λa +μb ,则λ+μ等于( )A .1B .34C .23D .12例4.在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是________.练习1.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2练习2.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22练习3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.练习4.已知点O 为△ABC 的边AB 的中点,D 为边BC 的三等分点,DC =2DB ,P 为△ADC 内(包括边界)任一点,若OP →=xOB →+yOD →,则x -2y 的取值范围为________.。

二轮复习小专题平面向量等和线法

二轮复习小专题平面向量等和线法
等和线:平面内的一组 基底OA,OB及任一向量 OP
OP OA OB,若点P在直线AB上或平行于 AB的 直线上,则 k(定值),反之亦成立。 我们把
直线AB或平行于 AB的直线叫做等和线
深入研究
若OC
OD,那么OC
xOA
yOB
x
OA
y
OB
OD
x y 1,即x y
过C点作直线l // AB,在l上任作一点C',连接OC 'AB D'
BE
2 3
BC, 若DE
1
AB
2
AC1, 2
R,则1
2的
值为 ________.
解析:
过点A作AF DE,设AF与BC的延长线交于点H,
易知AF
FH,即DF为BC的中位线,因此1
2
1 2
:若所求的式子是系数的线性关系式 而不是系数和呢?
考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作, 那么理论上来说,所有的系数之间的线性关系,我们都可以通过
的等和线,所以系数和k的取值范围是1,3
0<k<1 k=0
k>1
:若是基底向量中有一个变化的向量,该如何处理,是否可以用 等和线呢?
如图,在正方形ABCD中,E为AB的中点,P为以A 为圆心,AB为半径的圆弧上的任意一点,
设AC DE AP,则 的最小值为_____.
AN AM
,
AD AM
3,4
例2、给定两个长度为1的平面向量OA和OB,它们的夹角
为 2 ,如图所示,点C在以O为圆心的圆弧AB上变动,若
3
OC xOA yOBx, y R,则x y的最大值是_____.

向量技巧:等和线

向量技巧:等和线

等和线定理一、等和线定理 (1)平面向量共线定理已知,若,则三点共线;反之亦。

OC OB μλ+=OA 1=+μλC B A 、、(2)等和线平面内一组基底及任一向量,,若点p 在直线AB 上或在平OB OA ,OP OB OA OP μλ+=行于AB 的直线上,则(定值),反之也成立,我们把直线AB 以及与直线AB 平k =+μλ行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于12.当等和线在O 点和直线AB 之间时,)1,0(∈k 3.当直线AB 在O 点和等和线之间时, ),1(+∞∈k 4.当等和线经过O 点时k 等于0,5.若两等和线关于O 点对称,则定值k 互为相反数6. 定值k 的变化与等和线到O 点的距离成正比二、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达 式及平方和时,可以用等值线法。

三、解题步骤1、确定等值线为1 的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;利用等和线求向量积例题精讲例1设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于()A.OM→B .2OM→C .3OM→D .4OM→例2如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R),则λ+μ=.例3如图所示,在平行四边形ABCD 中,13AE AB = ,14AF AD =,CE 与BF 相交于G 点,记AB a = ,AD b = ,则AG =_______例4在△ABC 中,D 是△ABC 所在平面内一点,且AD →=13AB →+12AC →,延长AD 交BC 于点E ,若AE →=λAB →+μAC →,则λ-μ的值是.练习1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB →=a ,AC →=b ,则AO →=()A.12a +12b B.12a +13b C.14a +12b D.12a +14b 2.(2019·济南调研)在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为()A .-4B .-1C .1D .43.在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为()A .911B .511C .311D .2114.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .45.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=()A .12AC →+13AB→B .12AC →+16AB→C .16AC →+12AB →D .16AC →+32AB→6.(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R),则52μ-λ=()A .-12B .1C.32D .-37.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.8.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.9.(2019·中原名校联考)如图,在△ABC 中,点M 是BC 的中点,N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,则APPM=________.10.点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值;11.在三角形ABC 中,AM ﹕AB =1﹕3,AN ﹕AC =1﹕4,BN 与CM 相交于点P ,且a AB =,b AC =,试用a 、b表示AP .12.已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,求yx 41+的最小值.PABCMN微信公众号:高中数学学习资料第5页答案例1答案:D 解析:OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →例2解:因为E 为线段AO 的中点,所以BE →=12BA →+12BO →=12BA →+1221(⨯BD →)=12BA →+14BD →=λBA →+μBD →,所以λ+μ=12+14=34.例3解:,,E G C 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x 使得(1)AG xAE x AC∴=+- , 1133AE AB a == ,AC a b=+ 12(1)()(1)(1)33x AG x a x a b a x b ∴=⨯+-+=-+-…………………①又,,F G B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数λ使得(1)AG AB AFλλ∴=+-1144AF AD b ==,,1(1)4AG a b λλ∴=+-……………………………②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 例4解:设AE →=xAD →,因为AD →=13AB →+12AC →,所以AE →=x 3AB →+x2AC →.由于E ,B ,C 三点共线,所以x 3+x 2=1,解得x =65.又AE →=λAB →+μAC →.所以λ=x 3=25,μ=x 2=35,因此λ-μ=-15.练习1、答案:D 解析:因为在三角形ABC 中,BE 是AC 边上的中线,所以AE →=12AC →.因为O 是BE 边的中点,所以AO →=12(AB →+AE →)=12AB →+14AC →=12a +14b .2、答案:B解析:根据题意设BP →=nBN →(n ∈R),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+-(1-n )AB →+n5AC →,又AP →=mAB →+25AC →,n =m ,=25,=2,=-1.3、答案:C 解析:,,B P N 三点共线,又2284111111AP m AB AC m AB AN m AB AN=+=+⨯=+8111m ∴+=311m ∴=4、答案:B 解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.5、答案:C 解析:如图,因为EC →=2AE →,所以EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.6、答案:A 解析:AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →,因此E ,M ,F 三点共线.所以2(λ-μ)+(-3μ)=1,则2λ-5μ=1.因此52μ-λ=-12.7、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →+→+12μ→,+μ=1,+12μ=1,=23,=23,所以λ+μ=43.8、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →+→+12μ→,+μ=1,+12μ=1,=23,=23,所以λ+μ=43.9、答案:4解析:设AB →=a ,AC →=b ,因为A 、P 、M 三点共线,所以存在唯一实数λ,使得AP →=λAM →.又知M 为BC 的中点,所以AP →=12λ(a +b ).因为B 、P 、N 三点共线,所以存在唯一实数μ,使得BP →=μBN →,又AP →=AB →+BP →=AB →+μBN →=AB →+μ(AN →-AB →)=AB →+-(1-μ)a +23μb ,所以12λ(a +b )=(1-μ)a +23μb ,μ=12λ,=12λ,解得λ=45,μ=35.所以AP →=45AM →,PM →=15AM →.所以|AP →|∶|PM →|=4∶1,即AP PM=4.10、证明: 因为G 是OAB 的重心,分析:211()()323OG OA OB OA OB ∴=⨯+=+ 1OP xOA OA OP x =∴= 1OQ yOB OB y=∴= 111111()()3333OG OA OB OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+=113x y ∴+=11x y ∴+为定值311、解:,,N P B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x,y 使得,1AP xAB y AN x y =++= ,AN ﹕AC=1﹕4,b AC AN 4141==1444y y x AP xAB AC xa xa b -∴=+=+=+ ……①又,,C P M 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++= ∵AM ﹕AB=1﹕3∴a AB AM 3131==,,133AP a b a b μλλλ-∴=+=+ ……………………………②由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩81,11x y y +=∴= 321111AP a b ∴=+ 12. 点P 落在ABC 的边BC 上∴B,P,C 三点共线AP xAB y AC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y x x y x y x y x y x y x y ∴+=+⨯=+⨯+=++=++ x>0,y>040,0y x x y ∴>>由基本不等式可知:44y x x y +≥=,取等号时4y x x y=224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y += 12,33x y ∴==,符合所以yx 41+的最小值为9。

平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案

平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案

平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。

则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。

重难点专题04 妙用等和线解决平面向量系数和差商方问题(五大题型)(课件)-高一数学新教材讲义

重难点专题04 妙用等和线解决平面向量系数和差商方问题(五大题型)(课件)-高一数学新教材讲义

O
P
A
l
A1
03
典型例题
典型例题
题型一: + 问题(系数为1)
【例1】(2024·山东滨州·统考一模)在△ 中,M为BC边上任意一点,N为线段AM上任意一点,
若 = + ( , ∈ ),则 + 的取值范围是(
1
A. 0, 3
B.
1 1
,
3 2
C.[0,1]
所以 = + ,即 =

因为 、 、 三点共线,所以 +





+



= 1,即 + = ∈ 0,1 .
综上, + 的取值范围是 [0,1].故选:C.
典型例题
题型一: + 问题(系数为1)
【变式1-1】(2024·重庆铜梁·高一统考期末)在 △ 中,点 是线段 上任意一点,点 满足 =

D.[1,2]
【答案】C
【解析】由题意,设 = , 0 ≤ ≤ 1 ,
当 = 0时, = 0 ,所以 + = 0 ,
所以 = = 0,从而有 + = 0;
当0 < ≤ 1时,因为 = + ( , ∈ ),
由向量加法的 平 行 四 边 形 法则 , 为 平 行 四 边 形的 对
角线,
该四边形应是 以 与 的 反 向 延长 线 为 两 邻 边 ,
1
∴当 = − 2 时,要使 点 落 在 指 定 区 域内 , 即 点 应 落
在 上,
1
2
, =

等和线解决的平面向量专题

等和线解决的平面向量专题

1、【2014宁波二模理17】已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非.零实数...x 、y ,使得AO xAB y AC =+u u u r u u u r u u u r ,且21x y +=,则cos ∠BAC = .解答:取AC 中点D ,则有2AO xAB y AC xAB y AD =+=+u u u r u u u r u u u r u u u r u u u r,而21x y +=,得点B,O,D三点共线,已知点O 是△ABC 的外心,可得BD AC ⊥,故有BC=AB=3,AC=4,求得2cos 3BAC ∠=. 2、【2014杭州二模文8理6】设O △ABC 的外心(三角形外接圆的圆心).若3131+=,则BAC ∠的度数为( ) A.30° B.45° C.60° D.90°解答:取AC 中点D ,则有1233AO AB AD =+u u u r u u u r u u u r,得点B,O,D 三点共线,已知点O 是△ABC的外心,可得BD AC ⊥,即有AO=BO=2DO ,故可求得60BAC ∠=︒.3、【2009浙江理样卷6】已知AOB ∆,点P 在直线AB 上,且满足()2OP tPA tOB t R =+∈u u u r u u u r u u u r,则PA PBu u u r u u u r =( ) A.13 B.12 C.2 D.3解答:由已知212t OP OA tOB t =++u u u r u u u r u u u r ,点P 在直线AB 上,得2112tt t+=+,解得1t =-或12t =.当1t =-时,可得1122OA OP OB =+u u u r u u u r u u u r ,此时A 为PB 中点,PA PB u u u r u u ur =12;当12t =时,可得1122 OP OA OB =+u u u r u u u r u u u r,此时P为AB中点,PAPBu u u ru u u r=1.4、【2014浙江省六校联考理17】已知O为ABC∆的外心,2AB a=,2(0)AC aa=>,120BAC∠=o,若AO xAB yAC=+u u u r u u u r u u u r(x,y为实数),则x y+的最小值为_____.EOBCA解答:如图,设AO BC E=I,EO m=,AO R=,则易知()11R RAO AE x AB y ACR m R m==+--u u u r u u u r u u u r u u u r,其中111x y+=,,2Rm R⎡⎤∈⎢⎥⎣⎦,故由已知可得Rx yR m+=-,所求取值范围是[)2,+∞.5、【2013学年第一学期末宁波理17】已知O 为ABC ∆的外心,ο120,2,4=∠==BAC AC AB 。

平面向量的等和线问题.ppt

平面向量的等和线问题.ppt
3当直线ab在o点与等和线之间时5若两等和线关于o点对称则定值互为相反数
平面向量 复习课(2)
平面向量共线定理 : 已知OA OB OC , 若 1, 则A, B , C 三点共线, 反之亦然. 等和线 : 平面内的一组基底OA, OB及任一向量OP , OP OA OB , 若点P 在直线AB上或平行于AB的直线上, 则 k (定值 ), 反之亦成立.我们把直线AB或平行于AB的直线叫做等和线. (1)当等和线恰为AB时, k 1; ( 2)当等和线恰在O点与AB之间时, k (0,1); (3)当直线AB在O点与等和线之间时, k (1, ); ( 4)当等和线过O点时, k 0; (5)若两等和线关于O点对称, 则定值互为相反数; (6)定值k的变化与等和线到O点的距离成正比.
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办 A.打破了外商对中国航运业的垄断 B.阻止了外国对中国的经济侵略 C.标志着中国近代化的起步 ( )
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵
航空都获得了一定程度的发展。
(2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式,
一定程度上转变了人们的思想观念;加强了中国与世界各地的
联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
”;此后十年间,航空事业获得较快发展。

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

衡阳市数学学会高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》衡东一中朱亚旸一、问题的提出平面向量与代数、几何融合考查的题目综合性强,难度大,考试要求高.近年,高考、模考中有关“等和线定理”(以下简称等和线)背景的试题层出不穷.学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高.在平时教学中,我们能不能给出一个简单、有效的方法解决此类问题呢?带着这个问题,笔者设计本微型专题.二、等和线定理平面内一组基地 OA, OB 及任一向量 OC ,OC = λOA + μOB(λ,μ ∈ R),若点C 在直线 AB 上或在平行于 AB 的直线上,则λ + μ = k (定值),反之也成立,我们把直线 AB 以及直线 AB 平行的直线称为“等和线”.(1)当等和线恰为直线 AB 时, k =1;(2)当等和线在 O 点和直线 AB 之间时, k ∈(0,1);(3)当直线 AB 在 O 点和等和线之间时, k ∈(1,+∞);(4)当等和线过 O 点时, k =0;(5)若两等和线关于 O 点对称,则定值 k 互为相反数;(6)定值 k 的变化与等和线到 O 点的距离成正比;⎛ x y ⎫简证,如图1若 OC = λOD ,那么 OC = xOA + yOB = λ OA + OB⎪ = λOD ,λ λ⎝ ⎭从而有x+y= 1 ,即x+y= λ.另一方面,过C点作直线l // AB,在l上任作一λ λ点 C',连接 OC'⋂ AB = D',同理可得,以 OA, OB 为基底时,OC'对应的系数和依然为λ .三、定理运用(一)基底起点相同例1:(2017年全国Ⅲ卷理科第12题)在矩形 ABCD中, AB =1, AD =2,动点 P 在以 C 为圆心且与 BD 相切的圆上,若 AP = λ AB + μ AD ,则λ + μ的最大值()A .3B .22C . 5D .2【分析】如图2,由平面向量基底等和线定理可知,当等和线 l与圆相切时,λ + μ最大,此时λ + μ =AF=AB+BE+EF=3AB=3,故选 A .AB AB AB练习 1:(2006年湖南卷15题)如图3所示,OM // AB ,点 P 在由射线 OM 、射线段 OB 及 AB的延长线围成的阴影区域内(不含边界)运动,且 OP = xOA + yOB(1)则 x 的取值范围是;(2)当 x = - 1 时, y 的取值范围是.2【分析】(1),根据题意,很显然 x <0;(2)由平面向量基底等和线定理可知,0< x + y <1,结合 x = -12,可得12< y <32.练习2:(衡水中学 2018届高三二次模拟)如图4,边长为 2 的正六边形ABCDEF 中,动圆 Q 的半径为1,圆心在线段 CD (含短点)上运动, P 是圆 Q 上及其内部的动点,设向量 AP = m AB + n AF(m, n ∈ R),则 m + n 的取值范围是()A .(1,2] B .[5,6] C .[2,5] D .[3,5]【分析】如图5,设 AP = m AB + n AF ,由等和线结论,m + n = AG = 2 AB = 2 .此为m+n1 AB AB的最小值;同理,设 AP = m AB + n AF ,由等和线结论,m + n = AH = 5 .此为m+n2 AB的最大值.综上可知 m + n ∈[2,5].(二)基底起点不同例 2:(2013 年江苏高考第 10 题)设 D , E 分别是 ∆ABC 的边 AB , BC 上的点,且有 AD =12 AB , BE = 23 BC , 若 DE = λ1 AB + λ2 AC (λ1 , λ2 ∈ R ),则 λ1+ λ2 的值为【分析】过点 A 作 AF = DE ,设 AF , BC 的延长线交于点 H ,易知 AF = FH ,即 AF = FH ,即 DF 为 BC 的中位线,因此 λ1 + λ2 =12 .练习 3:如图 7,在平行四边形 ABCD 中,M , N 为 CD 的三等分点,S 为 AM 与 BN 的交点,P 为边 AB 上一动点,Q 为 ∆SMN 内一点(含边界),若 PQ = x AM + y BN ,则 x + y 的取值范围是 .【分析】如图 8 所示,作 PS = AM ,PT = BN ,过 I 作直线 MN 的平行线,由等和线定理⎡3 ⎤可知, x + y ∈ ⎢ ,1⎥ .4 ⎣ ⎦(三)基底一方可变例 3:在正方形 ABCD 中,如图 9, E 为 AB 中点, P 以 A 为圆心, AB 为半径的圆弧上的任意一点,设 AC = x DE + y AP ,则 x + y 的最小值为 .【分析】由题意,作 AK = DE ,设 AD = λ AC ,直线 AC 与直线 PK 相交与点 D ,则有AD = λx AK + λy AP ,由等和线定理,λx + λy =1,从而 x + y =λ1,当点 P与点 B 重合时,如图10,λmax= 2 ,此时,(x+y)min=1 2.练习4:在平面直角坐标系 xoy 中,已知点 P 在曲线Γ:y = 1 -x42(x≥ 0)上,曲线Γ与 x 轴相交于点 B ,与 y 轴相交于点 C ,点 D(2,1)和 E(1,0)满足OD = λCE + μOP(λ,μ ∈ R)则λ + μ的最小值为___.【分析】作CE = OA ,令 OD1= xOD ,有 OD1= xλOA + xμOP ,由等和线定理, xλ + xμ =1,所以λ + μ =1x,如图11,再由等和线定理,得(λ + μ)min=12 .(四)基底合理调节例题4:(2013 年高考安徽理科卷)在平面直角坐标系中,O 是坐标原点,两定点A, B 满足 OA = OB = OA⋅OB =2,则点集{P OP = λOA + μOB,λ + μ ≤1,λ,μ ∈ R}所表示的区域面积是()A .22B .23C .42D .4 3【分析】由 OA = OB = OA⋅OB =2可知,OA, OB = π3 .如图 12 所示,当 λ ≥ 0,μ ≥ 0 时,若λ + μ = 1 ,则点P位于线段AB上;当λ ≥ 0,μ ≤ 0 时,若λ - μ = 1,则点P位于线段 AB'上;当λ ≤0,μ ≥0时,若- λ + μ =1,则点 P 位于线段 A' B 上;当λ≤ 0,μ ≤ 0 时,若- λ - μ = 1 ,则点P位于线段A'B'上;又因为λ + μ ≤ 1 ,由等和线定理可知,点 P 位于矩形 ABA' B'内(含边界).其面积 S =4S∆AOB=4 3 .衡阳市数学学会练习5:如图13所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长线交于圆 O 外的点 D ,若 OC = mOA + nOB ,则 m + n 的取值范围是.【分析】作 OA, OB 的相反向量 OA1, OB1,如图14所示,则 AB // A1 B1,过 O 作直线 l // AB ,则直线 l , A1 B1为以 OA, OB 为基底的平面向量基本定理系数等和线,且定值分别为0,-1 ,由题意CO的延长线与线段BA的延长线交于圆O外的点D,所以点C在直线 l 与直线 A1 B1之间,所以 m + n ∈(-1,0).练习6:如图15,在扇形 OAB 中,∠AOB =π3, C 为弧 AB 上的一个动点,若OC = xOA + yOB ,则 x +3 y 的取值范围是.【分析】,令 OB'=OB,依题意, OC = xOA +3 y OB⎪⎛ ⎫⎪3⎝ 3 ⎭重新调整基底 OA, OB'.显然,当 C 在 A 点时,经过 k =1的等和线, C 在 B 点时经过 k =3的等和线,这两个分别是最近跟最远的等和线,所以系数和x+ 3 y∈[1,3].(五)“基底+”高度融合例 5 :已知三角形∆ABC 中, BC =6 , AC =2 AB ,点 D 满足AD = 2x AB + y AC ,设f(x,y)= AD , f (x, y)≥ f (x , y )恒成立,2(x+y)x + y 0 0则 f (x0, y0)的最大值为.【分析】衡阳市数学学会本题为“基底+阿氏圆”交汇命题.思路1:如图16所示,以 BC 为 x 轴,中垂线为 y 轴建立直角坐标系,易知点 B 的轨迹方程是(x -5)2+ y 2 = 16 .取AC中点F,延长AB 到 E ,且 AB = BE .于是,AD =2xAB +yAC ,∴ AD =x (2 AB)+ y ⎛ 1 AC ⎫⎪ ,即有x + y 2(x+y) x + y (x + y)⎝2 ⎭AD =xAE +yAF ,从而 D ∈ EF ,进一步得到x + y x + yf (x, y)≥ f (x0, y0)= AK ,且有 AK =2 BG ,因为EF恒过∆ACE重心H,所以AK =2 BG ≤2 BH =4,即 f (x0, y0)max=4.思路2:如图17所示,同上分析, D ∈ EF .当 AD ⊥ EF 时,f(x,y)=AD取得最小值,此时 f (x0, y0)= AD .易知∆ABC ≅ ∆AEF ,则AD=AH≤r=4.四、解题总结1、确定等值线为 1 的直线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值或最小值.五、后记等和线定理巧妙的将代数问题转化为图形关系,将具体的代数式运算转化为距离的长短比例关系问题,这是数形结合思想的非常直接的体现。

微专题 妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(学生版)

微专题  妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(学生版)

妙用等和线解决平面向量系数和、差、商、平方问题【题型归纳目录】题型一:x +y 问题(系数为1)题型二:mx +ny 问题(系数不为1)题型三:mx -ny 问题题型四:m x +ny 问题题型五:yx 问题题型六:x 2+y 2问题【方法技巧与总结】(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然。

(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB (λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;【典型例题】题型一:x +y 问题(系数为1)1(2024·山东滨州·统考一模)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN=λAB +μAC (λ,μ∈R ),则λ+μ的取值范围是() A.0,13B.13,12C.[0,1]D.[1,2]2(2024·陕西西安·高一西北工业大学附属中学校考阶段练习)在ΔABC 中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足AN =13NM ,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的值为()A.14B.13C.1D.43(2024·重庆铜梁·高一统考期末)在△ABC 中,点D 是线段BC 上任意一点,点P 满足AD =3AP,若存在实数m 和n ,使得BP =mAB +nAC,则m +n =()A.23B.13C.-13D.-23题型二:mx +ny 问题(系数不为1)1(2024·山东潍坊·高一统考期末)已知O 是ΔABC 内一点,且OA +OB +OC =0 ,点M 在ΔOBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的取值范围是()A.1,52B.1,2C.23,1D.12,12(2024·江苏南京·高一南京师大附中校考期末)在扇形OAB 中,∠AOB =60o ,OA=1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]3(2024·辽宁沈阳·高三统考期末)如图,在扇形OAB 中,∠AOB =30°,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若μ=x +λy (λ>0)存在最大值,则λ的取值范围是()A.34,33B.33,32C.34,32D.32,233题型三:mx -ny 问题1(2024·上海徐汇·高二位育中学校考阶段练习)如图,OM ⎳AB ,点P 在由射线OM 、线段OB 及AB 的延长线组成的区域内(不含边界)运动,且OP =xOA +yOB ,当x =-12时,y 的取值范围是2(2024·河南平顶山·高一统考期末)如图所示,点P 在由线段AB ,AC 的延长线及线段BC 围成的阴影区域内(不含边界),则下列说法中正确的是.(填写所有正确说法的序号)①存在点P ,使得AP =12AB +2AC;②存在点P ,使得AP =-12AB+2AC ;③存在点P ,使得AP =12AB -2AC;④存在点P ,使得AP =12AB +32AC.3(2024·高一课时练习)已知△ABC 中,CD =-35BC,EC =12AC ,AF =13AB ,若点P 为四边形AEDF 内一点(不含边界)且DP =-13DC+xDE ,则实数x 的取值范围为.题型四:m x +ny问题1(2024·江苏·高三专题练习)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t n 的最小值为83,则正数t的值为2(2024·江苏盐城·高一统考期末)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t 2nt >0 的最小值为3,则正数t 的值为.3(2024·山东菏泽·高一统考期末)在△ABC 中,点O 是线段BC 上的点,且满足OC =3OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m +2n的最小值为.题型五:y x问题1(2024·山西·高一统考期末)已知在△ABC 中,点D 满足BD =34BC,点E 在线段AD (不含端点A ,D )上移动,若AE =λAB +μAC ,则μλ=.2(2024·山东潍坊·高三开学考试)在△ABC 中,点D 满足BD =34BC,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC ,则λ+1μ的最小值为.3(2024·黑龙江哈尔滨·高三哈师大附中校考期末)在ΔABC 中,点D 满足BD =34BC,当E 点在线段AD (不包含端点)上移动时,若AE =λAB +μAC ,则λ+3μ的取值范围是A.233,+∞B.[2,+∞)C.174,+∞D.(2,+∞)题型六:x 2+y 2问题1(2024·江苏泰州·高一泰州中学阶段练习)在ΔABC 中,点D 满足BD =34BC ,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC,则(λ+1)2+μ2的取值范围为.2(2024·天津·高三校联考阶段练习)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λμ=,λ2-μ的最小值为.3(2024·全国·高三专题练习)在△ABC 中,点D 满足BD =DC ,当E 点在线段AD 上移动时,若AE=λAB +μAC ,则t =(λ-1)2+μ2的最小值为.4(2024·山东德州·高三统考期末)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN=λAB +μAC ,则λ2+μ2的最小值为.【过关测试】一、单选题1(2024·高三课时练习)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC,则λ+μ的值为()A.12B.13C.14D.12(2024·安徽六安·高一六安一中校考期末)如图所示,在△ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM =λAB +μAC,则λ+μ=()A.-1B.-12C.-2D.-323(2024·重庆·高三重庆南开中学校考阶段练习)已知点O 为ΔABC 所在平面内一点,满足OA +OB +OC =0 ,M 为AB 中点,点P 在ΔAOC 内(不含边界),若BP =xBM +yBC ,则x +y 的取值范围是()A.1,2B.23,2C.12,1D.13,324(2024·广东惠州·高一校联考阶段练习)在△ABC 中,点O 是线段BC 上的点,且满足|OC |=3|OB|,过点O 的直线分别交直线AB 、AC 于点E 、F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m+tn的最小值为3,则正数t 的值为()A.2B.3C.83D.1135(2024·江西南昌·高三阶段练习)在△ABC 中,点O 是BC 的三等分点(靠近点B ),过点O 的直线分别交直线AB ,AC 于不同两点M ,N ,若AB =mAM ,AC =nAN ,m ,n 均为正数,则1m +1n的最小值为()A.2 B.1+23C.1+223D.1+233二、多选题6(2024·江苏南京·高一南京市宁海中学校联考期末)在△ABC 中,点D 是线段BC 上任意一点,点M 是线段AD 的中点,若存在λ,μ∈R 使BM =λAB +μAC,则λ,μ的取值可能是()A.λ=-35,μ=110B.λ=1,μ=-32C.λ=-910,μ=25D.λ=-710,μ=357(2024·浙江宁波·高一宁波市北仑中学校考期末)已知O 是△ABC 内一点,且OA +OB +OC =0 ,点M 在△OBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的值可能为()A.97B.117C.137D.1578(2024·重庆·高一校联考阶段练习)在ΔABC 中,点D 满足BD =DC,当点E 在线段AD 上(不含A 点)移动时,记AE =λAB +μAC,则() A.λ=2μB.λ=μC.14λ+μ的最小值为1D.4λ+μ的最小值为49(2024·湖北武汉·高三校联考期末)在△ABC 中,点D 满足BD =DC,当点E 在线段AD 上移动时,记AE =λAB +μAC ,则()A.λ=2μB.λ=μC.λ-2 2+μ2的最小值为2D.λ-2 2+μ2的最小值为52三、填空题10(2024·全国·高三专题练习)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC ,则2x +2y 的最大值为11(2024·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.12(2024·四川绵阳·高一统考期末)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB ,则3x +y 的取值范围是.13(2024·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.14(2024·全国·高三专题练习)扇形OAB 中,∠AOB =120°,C 为AB 上的一个动点,且OC =xOA+yOB ,其中x ,y ∈R .(1)x +y 的取值范围为;(2)2x +y 的取值范围为.15(2024·吉林·高一阶段练习)如图,在ΔABC 中,D ,E ,F 分别为BC ,CA ,AB 上的点,且CD =35BC ,EC =12AC ,AF =13AB .设P 为四边形AEDF 内一点(P 点不在边界上),若DP =-13DC +λDE ,则实数λ的取值范围为16(2024·重庆万州·高一万州外国语学校天子湖校区校考期末)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λ2+1μ的取值范围是.四、解答题17(2024·高一课时练习)在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB 时,x +y =1(如图1),小明同学提出了如下两个问题,请同学们帮助小明解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由;(2)如图2,射线OM ⎳AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.18(2024·高一课时练习)如图,OM ⎳AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB.(1)求x 的取值范围;(2)当x =-12时,求y 的取值范围.19(2024·上海浦东新·高二华师大二附中校考阶段练习)小郭是一位热爱临睡前探究数学问题的同学,在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB时,x +y =1(如图1)第二天,小郭提出了如下三个问题,请同学帮助小郭解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由(2)如图2,射线OM ∥AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.(3)过O 作AB 的平行线,延长AO 、BO ,将平面分成如图3所示的六个区域,且OP =xOA +yOB,请分别写出点P 在每个区域内运动(不含边界)时,实数x ,y 应满足的条件.(不必证明)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等和线解决的平面向量专题SANY GROUP system office room 【SANYUA16H-1、【2014宁波二模理17】已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实数....x 、y ,使得AO xAB y AC =+,且21x y +=,则cos ∠BAC=.解答:取AC 中点D ,则有2AO xAB y AC xAB y AD =+=+,而21x y +=,得点B,O,D 三点共线,已知点O 是△ABC 的外心,可得BD AC ⊥,故有BC=AB=3,AC=4,求得2cos 3BAC ∠=.2、【2014杭州二模文8理6】设O △ABC 的外心(三角形外接圆的圆心).若AC AB AO 3131+=,则BAC ∠的度数为() A.30°B.45°C.60°D.90°解答:取AC 中点D ,则有1233AO AB AD =+,得点B,O,D 三点共线,已知点O 是△ABC 的外心,可得BD AC ⊥,即有AO=BO=2DO ,故可求得60BAC ∠=︒.3、【2009浙江理样卷6】已知AOB ∆,点P 在直线AB 上,且满足()2OP tPA tOB t R =+∈,则PAPB=()A.13B.12C.2D.3解答:由已知212t OP OA tOB t =++,点P 在直线AB 上,得2112tt t+=+,解得1t =-或12t =.当1t =-时,可得1122OA OP OB =+,此时A 为PB 中点,PA PB =12;当12t =时,可得1122OP OA OB =+,此时P 为AB 中点,PA PB=1. 4、【2014浙江省六校联考理17】已知O 为ABC ∆的外心,2AB a =,2(0)AC a a=>,120BAC ∠=,若AO xAB yAC =+(x ,y 为实数),则x y +的最小值为_____. 解答:如图,设AOBC E =,EO m =,AO R =,则易知()11R R AO AE x AB y AC R m R m ==+--,其中111x y +=,,2R m R ⎡⎤∈⎢⎥⎣⎦,故由已知可得Rx y R m+=-,所求取值范围是[)2,+∞. 5、【2013学年第一学期末宁波理17】已知O 为ABC ∆的外心,120,2,4=∠==BAC AC AB 。

若21λλ+=,则=+21λλ__________.解法1:如图,设AOBC E =,EO m =,AO R =,AF BC ⊥于F 点,OG BC ⊥于G 点,则易知()11R RAO AE x AB y AC R m R m==+--,其中111x y +=,由已知可求得3OG =,7AF =,故可求得121316R AF OG OG R m AF AF λλ++===+=-. 解法2:212212AO AB AB AC AB AO AC AB AC AC λλλλ⎧⋅=+⋅⎪⎨⎪⋅=⋅+⎩,得12128164244λλλλ=-⎧⎨=-+⎩,解得125686λλ⎧=⎪⎪⎨⎪=⎪⎩,故12136λλ+=. 解法3:设()0,0A ,()4,0B,(C -,外心O 是AB 中垂线2x =和AC 中垂线y x =的交点2,3O ⎛ ⎝⎭,得2,3AO ⎛⎫= ⎪ ⎪⎝⎭,()4,0AB =,(AC =-,得121224λλ=-⎧=,有误,重解【变式1】、已知向量a,b 的夹角为23π,且|a |=4,|b|=2,|a-c |=|b-c |=|c |,若c=x a +y b ,则x+y=136. 6、【2013学年第一学期月考宁海县正学中学文17】已知a ,b 为平面内两个互相垂直的单位向量,若向量c 满足()λc +a=c +b (∈λ)R ,则|c |的最小值为解答:如图,由已知111c b a λλλ--=+--,设a OA =,b OB =,c OC -=,则点C 在直线AB 上,得c OC =有最小值2. 7、【2012年稽阳联考15】A ,B ,P 是直线l 上不同的三点,点O 在直线l 外,若(23),()OP mAP m OB m R =+-∈,则||||PB PA =2。

解答:8、【2013杭二中高三适应考理17】如图,在直角梯形ABCD 中,AD AB ⊥,AB ∥DC ,1AD DC ==,2AB =,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设AP AD AB λμ=+(λ,R μ∈),则λμ+取值范围是.解答:设APBD E =,AE m =,AP n =,则()n n AP AE xAB yAC m m==+,其中1x y +=,得15kn k m λμ++===+,k 表示点P 到BC 边的距离,0,5k ⎡∈⎢⎣⎦,得所求取值范围是[]1,2.9、已知等差数列{}n a 的前n 项和为n S ,若,20092a a ⋅+⋅=且A,B,C 三点共线(该直线不过点O),则2010S 等于(D ) A .2010B .2008C .1010D .100510、已知等差数列{}n a 的前n 项和为n S ,若22013,OA a OB a OC =⋅+⋅且A,B,C 三点共线(该直线不过点O ),则2014S 等于(D ) A.2014 B.2012 C.1012 D.100711、如图,在扇形OAB 中,60AOB ︒∠=,C 为弧AB 上的一个动点.若OC -→x OA y OB -→-→=+,则3x y +的取值范围是[1,3].解答:如图,在OB 上取一点D ,使OB=3OD ,设OC AD E =,OE m =,EC n =,则有()11m n m nOC OE x OA y OD m m++==+,其中111x y +=,另有3OC xOA yOB xOA yOD =+=+,得31m n nx y m m++==+,易知当点C 和点A 重合时n m 达最小值0,当点C 和点B 重合时nm达最大值2,故[]31,3x y +∈.12、如图,四边形OABC 是边长为1的正方形,OD =3,点P 为△BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于4313、在平面直角坐标系中,O 是坐标原点,若两定点,A B满足2=⋅==,则点集{}R ,,2,|∈≤++=μλμλμλP 所表示的区域的面积是316.14、若等边ABC ∆的边长为2,平面内一点M 满足CA CB CM 2131+=,则=⋅(C )A.98B.913C.98-D.913- 15、若等边ABC ∆的边长为32,平面内一点M 满足CA CB CM 3261+=,则=⋅MB MA -2.16、若M 为ABC ∆内一点,且满足3144AM AB AC =+,则ABM ∆与ABC ∆的面积之比为1:4.17、设O 是ABC ∆的外心,AO xAB yAC =+,4AB =,6AC =,1212x y +=,则AB AC ⋅=4 18、已知O 为△ABC 的外心,||AB ,若AC y AB x AO +=,且32x +25y =25,则OA =10. 19、已知是单位圆上的两点,为圆心,且120,是圆的一条直径,点在圆内,且满足,则的取值范围是(C )A .1[,1)2- B .[1,1)-C .3[,0)4- D .[1,0)-20、已知圆O 的半径为2,A B 、是圆上两点且AOB ∠=23π,MN 是一CM CN⋅(01)λ<<(1)OC OA OBλλ=+-COMNAOB ∠=O A B、条直径,点C 在圆内且满足(1)OC OA OB λλ=+-(01)λ<<,则CM CN ⋅的最小值为(C )A .-2B .-1C .-3D .-421、已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=,(02)k <<,则cos()αβ-的最大值是.22、【2014稽阳联谊理16】在ABC ∆中,90BAC ∠=︒,以AB 为一边向ABC ∆外作等边ABD ∆,若2BCD ACD ∠=∠,AD AB AC λμ=+,则λμ+=. 解:如图,设点D 关于AC 的对称点为'D ,且'DD 交AC 于点E .设DCA θ∠=,则2,'90,1503,BCD CD D CBD θθθ∠=∠=︒-∠=︒-在',DCD BCD ∆∆中利用正弦定理得'sin(1503)sin 2sin 2sin(90)CD BD DD CDθθθθ︒︒===--从而得sin(1503)sin(90)θθ︒︒-=-,从而1503θ︒-=90θ︒-或150390180θθ︒︒︒-+-=从而得15θ︒=.显然1,2DE AE AB AC λμ===-=,故λμ+=. 23、已知ABC ∆中,AB=4,AC=2,若()22AB AC λλ+-的最小值是2,则对于ABC ∆内一点P ,()PA PB PC ⋅+的最小值是______.解:()()()22121AB AC AB AC AB AD λλλλλλ+-=+-⋅=+-的最小值是2, 设()1AE AB AD λλ=+-,则点E 在直线AD 上,AB=4,AC=2,AD=4,故当AE 长度最小为2时,E 为BD 中点,AE BD ⊥, 得120BAC ∠=︒,取BC 中点F ,连结AF ,取AF 中点G ,则有:当点P 与点G 重合时,有最小值()22113282AF AB AC-=-+=-.1、ABC ∆内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,则OC AB ⋅=___.解:345OA OB OC +=-,两边平方得0OA OB ⋅=.故()3411155555OC AB OA OB OB OA OA OB ⎛⎫⋅=--⋅-=-+⋅=- ⎪⎝⎭.2、在ABC ∆中,AC=2,BC=6,O 是ABC ∆内一点,且340OA OB OC ++=,则()2OC BA BC ⋅+=_______.解法1:设()3,0B -,()3,0C ,(),A x y ,则由AC=2得()2234x y -+=,由340OA OB OC ++=得3,88x y O +⎛⎫⎪⎝⎭, 得21,88x y OC --⎛⎫= ⎪⎝⎭,()215,BA BC x y +=+, 故()()()2222115163152888x x x x y OC BA BCy -+-++-⋅+=-=()223324408x y ---+==.解法2:如图,取AC 中点D ,取BC 中点E ,()()343260OA OB OC OA OC OB OC OD OE ++=+++=+=,故31314488OC CE CD CB CA =--=--, 223BA BC BC CA BC CA CB +=++=-,得()()22129408OC BA BC CA CB ⋅+=--=.。

相关文档
最新文档