集气管压力的影响因素
焦炉集气管压力调节控制影响因素分析
焦炉集气管压力调节控制影响因素分析摘要:本文介绍了酒钢焦化厂3#4#焦炉及其化产配套工艺流程,重点分析了影响3#4#焦炉集气管压力波动的各类影响因素,提出合理的控制措施,确保焦炉和后续系统生产稳定运行。
关键词:焦炉、集气管压力、影响因素、控制措施前言焦炉集气管压力的稳定与否直接关系到焦炉生产及化产回收系统的稳定,因此合理稳定的控制好集气管压力,减少集气管压力波动情况至关重要,但同时在集气管压力控制过程中任何一个微小的因素都会引起集气管压力的波动。
在日常生产操作中,集气管压力是不断变化的,特别是装煤过程中集气管压力波动频繁。
集气管压力偏低,会导致炭化室产生负压,如果吸入大量空气可能会导致焦炭燃烧产生生产事故、化产品燃烧降低化产品回收率,同时,炭化室炉墙石墨过分燃烧造成炉墙串漏,影响焦炉寿命。
集气管压力偏高,会使炭化室压力增大,造成炉门跑烟冒火,污染环境,造成化产品损失,同时给焦炉生产操作带来恶劣影响。
1 系统工艺流程简介炼焦配合煤在焦炉炭化室通过高温干馏产生的荒煤气,在煤气鼓风机产生的负压条件下,经上升管、桥管引入集气管。
利用循环氨水在桥管、集气管的喷洒,氨水汽化带走大部分显热,使煤气温度由650~750℃将至76℃左右,同时,大部分焦油组分被冷凝下来,通过气液分离器将煤气、焦油氨水进行分离,氨水、焦油进入机械化澄清槽,煤气进入初冷器,在初冷器内经初冷循环水、低温水分段进行间接换热,冷却至24-27℃。
冷却后的煤气通过离心鼓风机加压,将煤气送至脱硫、吸氨、粗苯系统进行回收净化,净化后的焦炉煤气送至焦炉回炉加热或化产工序管式炉、外供炼轧、民用等用户。
2 集气管压力控制的措施2.1集气管压力的主要调节手段或措施,一是通过模糊控制系统程序,自动平衡各焦炉集气管后吸气管翻板阀开度,以稳定各集气管压力;二是通过煤气大、小循环管翻板阀开度对初冷器前吸力进行总体调节,煤气大、小循环管是将鼓风机后煤气循环返回至初冷器前荒煤气管道,各循环管设有翻板阀;三是通过调节煤气鼓风机转速高、低,对鼓风机前吸力进行总体调节。
集气管压力和煤气中含氧量的管理规定
集气管压力和煤气中含氧量的管理规定集气管压力和煤气中含氧量的管理在工业生产过程中非常重要,对于保障生产安全和提高生产效率具有重要作用。
下面将详细介绍集气管压力和煤气中含氧量的管理规定,以确保工业生产的顺利进行。
一、集气管压力管理规定1. 设定合理的集气管压力范围:根据设备和生产工艺的特点,设定合理的集气管压力范围。
一般来说,集气管压力的设定应考虑煤气的供应压力、使用的设备和工艺的要求等因素,避免过高或过低的集气管压力对设备和工艺造成不良影响。
2. 定期检查集气管压力:定期对集气管压力进行检查和监测,及时发现和解决问题。
检查的频率一般应根据生产工艺的需要和设备的运行情况来确定,特别是在高负荷运行期间或温度变化较大的情况下,要加强对集气管压力的监测和控制。
3. 保持集气管压力稳定:通过合理调整阀门、增设减压装置等手段,保持集气管压力的稳定性,避免因集气管压力的不稳定导致设备故障或生产工艺受影响。
4. 预防和处理压力爆破事故:加强压力管道的设计、安装和维护,在必要的位置设置安全阀等防爆装置,以预防和处理可能发生的压力爆破事故。
同时,要定期对安全阀等装置进行检测和维护,确保其正常运行。
二、煤气中含氧量的管理规定1. 确保煤气中含氧量符合要求:煤气中的氧气含量直接影响到燃烧效率和安全性,因此必须确保煤气中的氧气含量符合工艺要求。
一般来说,根据生产设备和工艺要求,确定煤气中的氧气含量的上下限,并严格进行监测和控制。
2. 定期检查和校准氧气测量仪器:对于监测煤气中含氧量的氧气测量仪器,要定期进行检查和校准,确保其测量数据准确可靠。
一般情况下,建议每隔一段时间对氧气测量仪表进行校正和检查,特别是在设备维护和更换氧气测量仪器之后,要进行重新校准。
3. 合理调整煤气中含氧量:根据生产工艺的要求和煤气的供应情况,合理调整煤气中的氧气含量。
一般来说,合理的氧气含量可以提高燃烧效率和产品质量,但过高或过低的氧气含量会导致燃烧不完全或设备过载等问题,因此需要根据具体情况进行调整。
JNX70—2型焦炉集气管压力波动原因及改进
集气 管 压力过 低 , 空 气 会 进入 炉 体 , 导 致焦 炭 燃 烧 ,
降低 煤 气质量 ; 如 果 大 量 空气 吸 人 到 炭化 室 及荒 煤 气 中会 引发 生 产事 故 。 当压 力过 高 时 , 荒 煤气 将 会
ga t h e r i ng pi p e f r e q u en t l y lu f c t ua t e d c o ns i d e r a bl y,c a us e d l e a ka ge a n d di f f u s i on o f r a w c ok e o v e n ga s ,a s we l l a s e n v i r o n me n t p o l l ut i on a n d r e s o u r c e wa s t e.Ba s e d o n t h e s e a r c h a nd o bs e r v a t i o n f or a l o ng t i m e,i t i s a n a —
l y z e d t h e r e a s o n or f p r e s s u r e lu f c t ua t i o n,pr o p os e d c o r r e s p o n di ng i mp r o v i n g me a s ur e s ,go o d e f f e c t g o t . Ke y Wo r d s:c o k e ov e n;g a s—ga t h e ing r pi pe;p r e s s u r e f l uc t u a t i o n;r e a s on;i mpr o ve me n t
影响集气管压力的因素必须予以充分的考虑
影响集气管压力的因素必须予以充分的考虑,这是确定控制方案并实施集气管压力控制的前提和基础。
以下因素必须充分重视,它们也是实施集气管压力控制的关键。
1.在调节过程中,因管道阻力不同,使系统分配到各个焦炉集气管的吸力会偏大或者偏小,由此导致部分焦炉集气管调节蝶阀开度过小或者过大而进入调节的不灵敏区(蝶阀调节灵敏区是翻板开度在40~60 度范围内)。
进入不灵敏区后,调节阀对压力控制作用减弱,无法及时克服压力波动,造成压力波动加剧,这就需要在调节过程中对调节阀进行线性修正。
2.焦炉产气量波动每座焦炉在结焦的不同阶段产生的荒煤气的量是变化的,对于同一座焦炉,不同的结焦周期下单位时间内产生的荒煤气的量也是不同的。
任何一座焦炉荒煤气发生量的变化在改变自身集气管压力的同时,将改变整个煤气输送系统内各点的压力。
3.推焦、装煤、换向和喷洒高压氨水扰动,推焦、装煤、喷洒高压氨水对集气管压力的扰动很大。
煤气换向期间,焦炉实际是停止加热,因此不使用煤气,这造成风机后的阻力增加,风机吸气量减少,焦炉集气管压力升高。
在常规控制方式下,这些扰动是“诱发”集气管压力不稳定的根源之一。
4.初冷器阻力变化初冷器内随着温度的降低荒煤气中部分杂质会粘凝在初冷器管壁上。
随着初冷器运行时间的不断增加,初冷器内部实际的煤气流通截面面积相应变化,导致初冷器阻力变化。
初冷器阻力的变化导致风机的实际吸气量改变,进而影响集气管压力。
初冷器阻力的变化也影响风机与集气管压力之间的动态特性。
阻力越大,集气管压力对风机吸力越不灵敏。
5.机后压力的变化化产工序及煤气用户的生产情况使得机后阻力是不断变化的,而机后阻力的变化将直接影响从焦炉至化产的实际的煤气流量,进而改变焦炉内部的气体平衡状态,最终影响集气管压力。
化产工序引起的扰动是诱发集气管压力波动的另一个根源。
6. .保障风机全自动调速安全技术措施风机是焦化企业的心脏,因此调速中必须采取充分的安全技术措施,软件中需要充分考虑到调速时转速变化必须平稳,设计上不仅考虑了限位,最高最低转速限制和报警,还考虑机后压力、转速变化速率等因素,对于喘振区,每台鼓风机的喘振区可以单独设置,处理过喘振区有两种方式:一、根据风机的运行情况,在进入喘振区期,进行声光报警,交由人工进行处理;二、到喘振区后,安装设定的速率快速通过(设定的速率需要提前设定),同时注意在提速时的风机电流,如果过流或者电流变化率太快,要进行声光报警。
焦炉集气管压力的影响因素及其控制分析
焦炉集气管压力的影响因素及其控制分析
薛学源 张振华 赵务 霞
( 韶钢焦化厂 。广 东 韶关 5 1 2 1 2 3)
【 摘 要】 首先 对焦化 厂焦炉集气管压力控 制的必要性进行 了 分析 ,随后介绍 了焦炉集 气管压 力波动 的影响 因素,进 而通过应 用 实例提 出了集气管压 力控 制策略 。实践证 明,该控制 策略 能够 有效 解决 问题 ,取得 了很好的控制效果 ,值得 推广。 【 关键词 】焦炉 ;集 气管;压力控制
一
一
经气液分 离器将氨水及焦油分离后进入初冷器,冷却至 3 5  ̄4 0 ℃后 通过鼓风机被送往后续工序 。 3 . 2 原 有 系 统 存在 的一 些 问题 该焦化厂原有集气管控制系统存在 以下 问题 : ①集气管压力波动较大 , 在焦炉加高压氨水或机后压力很大时, 压力能达 到 4 0 0 P a左右,焦炉严重 冒烟 ;而在煤气发生量小或机后 压力很小时,压 力则降至 负压 。 ②初冷器前吸力频繁达 到最高值 , 且经常 出现剧烈的异常波 动。 ③当集气管处于低压或高压 ,且长时间不能上去或下来时,操 作人员不得不关 小或开 大前阀闸,在夜班时这种情况经常出现。 ④A 、B系统集气管之 间有 比较严重 的耦合现象 。 4集气管压 力控制策略 无论是对于子系统 A还 是 B ,首先要做 到初冷器前吸力的稳定, 然后才能很好地 对集气 管压力进行控制 。 下面 以西 门子 s 7 — 3 0 0系列 P L C以及西 门子变 频器为 核心对原有系统进行改造n 。 4 . 1初冷器前吸力的控制 对于子系统 A,以初冷器前吸力为被调量 ,以横管上蝶 阀的开 度为控制量组成一个单回路 的闭环控制系统 ,采用 P I D控制算法来 实现对蝶 阀的控制 ,进而达到稳定初冷器前吸力的 目的。对于子系 统 B ,采用 由变频器组成 的单 回路闭环 ,同样 以初冷器前吸力作为 被控对象 ,采用 P I D算法通过 改变频率 ,即改变鼓风机转速来达到 将初冷器前吸力稳定住 的 目的。 4 . 2 集气管压力的控制 而 对 于 4个 集 气 管 的 压 力控 制 , 都是 以集 气 管 压 力 作 为 被 调 量 , 并 以集气管上蝶 阀开度作为控制量来组成单 回路的闭环控制系统 , 采用参数变化的 P I D控制算法。当压力在正常范 围进行波动时 ,固 定参数的 P I D控制能够取得比较好的效果 。但是如果压力波动超 出 了正常范 围,固定参数 P I D调节的效果则不尽如人意 ,难 以做到快 速开大 阀门或快速关小 阀门,控制效果不好 。因此 ,需要将压力进 行分 区,在不同的区段采用不 同的 P值 ,通过 P值 的改变来做到 阀 门开度的快速调节 ,从而脱离 高压力或低压力 的状态 。 4 . 3 专家系统控制 . 上述 的控制策 略在集气管 阀位全开或全关而压力依然很高或很 低 时,则说 明常规 P I D算法的收敛属性 已经难 以满足控制要求 ,此 时采用专家系统就显得很有必要 。专家系统总体思想是基于对集气 管压力及 阀位 的分析来对初冷器前吸力设定值进行改变,从而使集 气 管压力快速恢复正常状态“ ] 。 以子系统 A为例,子 系统 A在下面两种情 况下 需要增大初冷器 前吸力 l的设定值 : ( 1 ) 焦炉 1集气管压 力 P 1 >P 1 , 焦炉 1集气 管阀位 V l >V I 焦炉 2集气管压力 P 2 >P 2 ; ( 2 ) 焦炉 2集气管压 力 P 2 >P 2 , 焦炉 2集气管阀位 V 2 >V 2 … 焦炉 l 集气管压力 P 1 >P I … 而在相反情况下则需要减小初冷器前吸力 1的设定值 ;子系统 B设 定 同子 系 统 A 。 4 . 3改造后 的系统运行效果 集气 管压力控 制系 统经过 改造 以后 ,由于变频器具有很 强的调 节能力 ,成功地将子系统 B初冷器的前吸力稳 定住 ,波动很小 ,进 而使集气 管压力基本能够控制在 8 0 _ . 2 0 P a以内, 即使在加氨水和装 煤等大扰动 条件 下,集气 管压力也能够在很短时 间内恢复到正常波 动范围以内:而对 于子系 统 A ,由于横 管上蝶 阀的调节能力相 比于 变频器要 弱很多,所 以导致初冷器前吸 力相对有较大波动 ,集气管 压力则基本 能够控制在 8 0 _5 + 0 P a以内, 在加氨 水和装煤等大扰动条 件下,集气 管压力能够在较短的时间 内恢复到正常波动范 围以内。 ( 下转第 1 7页 )
焦炉集气管压力波动的原因及处理方法
焦炉集气管压力波动的原因及处理方法焦炉集气管压力波动的原因及处理方法焦炉集气管是焦炉的重要组成部分,其主要作用是将炉内产生的高温高压煤气输送到下游的处理设备中。
然而,在实际生产中,焦炉集气管的压力波动问题经常出现,这不仅会影响炉内煤气的质量,还会对下游设备的正常运行造成影响。
因此,深入研究焦炉集气管压力波动的原因及处理方法具有重要意义。
一、焦炉集气管压力波动的原因1.炉内煤气产生不稳定焦炉煤气的产生是一个复杂的过程,其中包括煤的热解、气体的化学反应等多种因素。
如果这些因素不稳定,就会导致炉内煤气的产生不稳定,从而引起焦炉集气管压力波动。
2.炉内温度变化大焦炉煤气的产生与炉内温度密切相关,如果炉内温度变化大,就会导致煤气产生不稳定,从而引起焦炉集气管压力波动。
3.集气管内部结构不合理焦炉集气管内部结构的合理性对于煤气的输送和压力的稳定性有着重要的影响。
如果集气管内部结构不合理,就会导致煤气的流动不畅,从而引起焦炉集气管压力波动。
二、焦炉集气管压力波动的处理方法1.优化炉内煤气产生过程通过优化炉内煤气产生过程,可以使煤气的产生更加稳定,从而减少焦炉集气管压力波动的发生。
具体措施包括优化煤的配比、控制炉内温度等。
2.改善集气管内部结构通过改善焦炉集气管内部结构,可以使煤气的流动更加畅通,从而减少焦炉集气管压力波动的发生。
具体措施包括增加集气管的直径、改善集气管的弯曲程度等。
3.加强集气管的监测和维护加强焦炉集气管的监测和维护,可以及时发现集气管内部的问题,并采取相应的措施进行修复,从而减少焦炉集气管压力波动的发生。
具体措施包括定期检查集气管的内部结构、清理集气管内部的积灰等。
综上所述,焦炉集气管压力波动是一个复杂的问题,其原因涉及多个方面。
为了减少焦炉集气管压力波动的发生,需要从多个方面入手,采取相应的措施进行处理。
只有这样,才能保证焦炉的正常运行,提高生产效率。
焦炉集气管压力控制方法的研究
焦炉集气管压力控制方法的研究焦炉集气管压力控制方法的研究【摘要】焦化厂集气管压力是重要的工艺参数,在焦化生产过程中,它因受多种因素(出焦、装煤、喷洒高压氨水、换向、煤气发生量(生产周期的安排)、工艺设备及管道阻力等)的影响而常常发生波动,因而影响焦炭的质量和焦炉的寿命,本文结合神华蒙西焦化厂焦炉的实际情况,采用了PID控制,进行集气管压力的改造。
从近年来的运行情况看,经过改进的系统运行良好,稳定性很高,达到自动控制的要求,减少煤气外溢,保护环境减少污染物排放,延长炉体寿命。
【关键词】焦化;集气管压力;PID控制;模糊控制系统在焦炉炼焦过程中,会有大量荒煤气产生,荒煤气由集气管收集,倘若焦炉炉体内操作形成负压时,空气就会进入炉体,导致焦炭燃烧、灰分增加、焦炭质量下降、湿煤气中氧含量增加影响甲醇的正常生产,加重冷却系统的负担并缩短炉体使用寿命;压力过高时,荒煤气将会冒出,降低了荒煤气的回收率并污染环境。
因而对焦炉集气管压力进行控制使其稳定在生产工艺所需范围内是保证安全生产、提高产品质量、减少环境污染、延长炉龄的重要技术措施。
焦炉集气管压力系统是一个耦合严重、具有严重非线性、扰动频繁剧烈的多变量时变系统。
由于集气管压力控制对象没有精确的数学模型,因而采用常规方法很难实现有效调节,严重影响了生产的正常进行。
又因为通常两座焦炉的后续工艺设备(初冷器、风机等)是共用的,所以,当一个集气管内的压力波动时,就会使另一个集气管的压力随之波动。
若波动量较大时,就会使整个集气管压力控制系统造成拉锯式的振荡现象,很难用常规方法加以控制。
一、工艺分析我厂是两座58型焦炉每座焦炉有两个集气管,共用一套鼓冷系统。
两座焦炉各炭化室发生的煤气首先进入各自的煤气管,在集气管控制蝶阀后汇合进入煤气总管,再经气液分离器、初冷器、电捕和鼓风机将焦炉煤气送至后续工段。
工艺流程见图1。
集气管压力存在以下问题:(1)我厂采用的高压氨水喷洒无烟装煤系统,装煤时用3MPa左右的高压氨水在桥管氨水喷头处喷洒,桥管喷洒区域的后方及上升管内产生较大的负压,并在炭化室内靠近上升管底部区域形成负压,使荒煤气及烟尘由X+2、X+4炭化室经上升管、桥管吸入集气管内,以避免荒煤气从机侧装煤口处溢出,喷洒氨水时集气管压力达到300Pa~500Pa,使大量荒煤气外溢。
焦炉集气管压力波动的原因及处理方法
焦炉集气管压力波动的原因及处理方法2乌鲁木齐互利安康安保技术有限责任公司新疆乌鲁木齐 830022摘要:本文探讨了焦炉集气管压力波动的原因及其处理方法。
首先介绍了焦炉集气管的作用和重要性,指出了压力波动对生产效率、产品质量和设备寿命的不良影响。
然后详细讨论了压力波动的原因,包括操作误差、设备问题和磨损以及外部环境因素。
针对这些原因,提出了一系列的处理方法,包括定期维护和保养、精确的炉温控制、压力调节系统的改进和外部环境因素的应对。
通过案例分析,进一步验证了这些处理方法的有效性。
最后,总结了本文的主要观点,并展望了未来可能的改进方向。
关键词:焦炉集气管;压力波动;原因;处理方法;生产效率焦炉集气管作为冶金工业中重要的设备之一,其压力波动问题对生产过程和产品质量产生了严重影响。
了解焦炉集气管压力波动的原因,并采取相应的处理方法,对于提高生产效率、确保产品质量和延长设备寿命具有重要意义。
本文旨在深入探讨焦炉集气管压力波动的原因,分析其影响,并提供有效的处理方法。
通过阐明这些问题,我们可以为冶金工业中的相关从业者提供有价值的指导,以应对和解决焦炉集气管压力波动问题,提升生产效率和质量水平。
一、焦炉集气管压力波动的原因(一)操作误差和不稳定因素焦炉集气管压力波动的一大原因是操作误差和不稳定因素。
以下是几个常见的因素:(1)炉温控制不准确:焦炉炉温的变化会直接影响集气管的压力。
如果炉温控制不准确,温度波动会导致集气管压力的波动。
可能的原因包括温度传感器的偏差、控制系统的不稳定性或操作人员的疏忽。
(2)集气管进气量变化大:集气管进气量的变化也会引起压力波动。
进气量的不稳定性可能是由于燃料供应的问题、炉内燃烧的不稳定性或进气阀门控制不准确等原因导致的。
(3)压力调节系统故障:集气管的压力调节系统如果发生故障,例如压力调节阀失效或控制信号失灵,都会导致压力波动。
(二)设备问题和磨损焦炉集气管本身的问题和磨损也是导致压力波动的原因之一。
影响集气管压力稳定的因素与预防措施
技术论坛
2 D 1 5年 8 月・ 2 4 9・
影响集气,甘肃 嘉峪 关 7 3 5 1 O O
摘要 :集气管压力波动存在集气管正压 、集气管负压及 集气管锯齿状 波动三种情况 ,集气管的波动主要 由于装煤、焦炉之 间 出炉段 、器前吸力变化 、结焦时间的变更、加热制度的 变化 、循环氨水流量和温度 的变化 、炉顶 空间温度 不稳定 、炉门、炉盖 密 封不严 、 氨 水量 变化等原 因。 通过对 集气管压 力波动造成 的现 象进行观察判断原 因,可采取相应 的有效控制措施稳定集气管压 力, 确保焦炉的正常生产至关重要 。 关键词 :焦化 焦炉 集气管 影响 措施 中图分类号 : T Q5 2 文献标识码 :A 文章编号 : 1 6 7 1 - 5 5 8 6( 2 0 1 5 )4 2 - 0 2 4 9 - 0 1
集气管是焦炉非常重要 的荒煤气 导出设备 ,它 能否 正常运 4 几种集气管压力不稳定的现象 行直接关系到荒煤气的正常排出及焦炉生产的正常稳定。焦 炉 经过很长~段时间对集 气管压力系统 的观察 ,存在着如下 在炼焦生产过程 中,会有大量的荒煤气产 生,荒煤 气通 过上升 几种情况: 管 由集气管收集 ,通过输气管网 由鼓风机送往 后续 工段 处理 。 ( 1 )集气 管压力波 动大,在焦炉加 大高压氨水或者机 后 在 同一个 时间段 内,由于不 同炭化室的结焦时间不同,产气量 阻力很 大 的时候 ,压力有 时 能达 到 3 5 0 P a 左右 ,焦 炉严重 冒 也随结焦 时间而变化 ,集气管中 的压力也在不断变化,特 别是 烟 ,有 时煤气 发生量 小或者机 后压力 很小 的时候,压力 能降 到. 1 0 0 P a 左右 ; 在炭化室进行推焦 、装煤时会造成集气管压力大幅波动 。 1集气管压力不稳定所造成的危害 ( 2 )初冷器前 吸力经常达 到上限,并且经常 出现 急剧上 ( 1 ) 当集气管 中的压力为负压时, 炉体内操作形成 负压 时, 升和下降的现 象; 空气 就会从炉 门、炉盖等处进入炉体 ,导致炭化室 内的焦炭加 ( 3 )当集气管 处于高压或者低 压,并且长时 间不 能下来 快燃烧 、造成焦炭灰分增加 、质量下 降。进入 的空气还会同炉 或者上去时,操作人员不得不调节机前闸阀。 体建筑材料发生化 学反应 , 导致炉体剥蚀 , 缩短炉体使用寿 命. ( 4 )机后 阻力 、出工段压力 的变 化超过规定值 也能够影 空气还会促使荒煤气燃烧 ,使煤气系统温度增高 ,从而加重 了 响到集气管压力的稳定,这 需要调节 出工段的 4 0 0闸阀。 冷却系统的负担 ,产生不必要 的能源消耗 。 ( 5 )炭化窒装 煤、推焦操作 时,集气管压力 波动大,特 ( 2 )当集气管 中的压力过 高时,也会 导致 炉体 内的压力 别是在邻近集气管调节翻板 的炉号时 ,压力波动 明显增 大 。 增高 ,荒煤气将会 从炉门、炉盖等处 冒出,一方面造成跑烟 冒 ( 6 )有时集气管压力波动的幅度过高、频率过快,模糊 火 ,污染操作和大气环 境;同时也给护炉铁件造成损害 ;另一 控制采集到 的压力数据,传 递到执行机构进行动作调节 时存在 方面降低 了荒煤气 的回收率 ,造成 能源 的浪费 。 时 间差 。与 当前的压力值不一致 ,造成压力呈 巨齿形波动 ,上 ( 3 )因 1 焦炉 为老 龄化焦炉 ,有 4 0多年 的炉 龄。焦 升管 冒大烟 。但此种情况极 为少见 炉 的 各 个 部 位 均 有 不 同 程度 的损 坏 、炉 体 窜 漏 现 象 较 为 严 重 。 5 如 何 控 制 处理 及 预 防 在装煤操作中如果集气管压力增大,会 导致大烟 囱冒黑烟 的现 针对 以上分析 的情况 ,所 以我们必须对集气管压力进行控 象经常发生 ,污染大气环境。 制 ,使其维持在设定的压力范围内。首先我们要稳定的是初冷 ( 4 )集气 管压力波动 大、不稳定 不但影响焦 炭的质量 , 器前 的吸力 ,只有这个吸力大致稳定了,集气管的压力才能得 也关 系到焦炉 的寿命 。 到很好 的控制 。 2 工 艺 分 析 ( 1 )上升管 岗位操作 工与风机 司机 窒、计算机窒保持联 工艺流程 : 目前我厂 的一 回收作业 区有五 台初冷器全部运 系 ,当吸力 、压力、氨水等系统出现异常 时,及时联系处理 , 转 以及 四台鼓风机 ( 2 开2 备) , 负责抽送 1 # 2 # 3 # - 4 # 焦炉的煤气 。 ( 2 )岗位操作 工 ,定期对集气 管、吸气 管、焦 油盒检 查 焦炉煤气从各炭化室通过上升管、弯管、进入集气 管,并在进 清理 ,防止堵塞 ,保持管道畅通。对上升 管、直管 、弯管、翻 入集 气管的过程 中被循环氨气 冷却到 8 0 - - , 9 0 。 C,然后进入 吸 板做到 出一炉 ,清一炉 ,检查一炉,保持 “ 三通一活”。 气管 。在气液分离器与焦油、氨水分 离,进入初冷器 ,在初冷 ( 3 ) 加强循环氨水的澄清 分离操作 , 保证循环氨水清洁。 器冷却到 2 2— 3 2 。C ,然后通过鼓风机送往下道工序 。 建立检查 、清理氨水喷头的制度 ,保证氨水初冷效果。 3 影响集气管压力的因素 ( 4 )制定 科学合理 的加热制度 ,加 强调火操作 ,有计 划 通过分析与长 期观 察,影响焦炉集气 管压 力稳 定的因素有 地对焦炉各项温度和压力 、阻力,做好测量和检查 ,降低炉顶 以下 几方 面 : 空间温度 ,减少化学产 品分解 。 炭化 室内间歇地装煤和推焦对集气管压力会产 生较大 的冲 ( 5 )提 高炼 焦精煤质量 ,保证配煤具有 良好 的粘结性和 击: 成焦性 ,配煤细度和水分要达到标准 。 ( 1 )焦炉 之间 的相互 影响,在 回收初 冷器前 吸力稳定 的 ( 6 ) 做好装煤操作 , 做到不堵眼、 不缺角。 平煤及 时、 快速 , 情况 下, 一座焦 炉压 力的波动 , 都会 影响到另一座焦炉 的压力; 各 岗位之 间做好配合 ,及时消灭炉门、炉盖处 的跑烟 冒火。 ( 2 ) 器前吸力变化的影响,在鼓风机抽力不变 的情 况下 , ( 7 )在集 气管压力 巨齿形波动 时,首先将集气管执行 机 机后 设备 的阻力发生变化或煤气用户的用 量发 生变化 时,都会 构 打为手动 。在此情况下手动缓慢关小煤气翻板 ,人为增加集 引起机后压力 的变化 ,进而引起器前吸力的变化 ,在煤气发生 气 管压力 ,此时上升管的水封 冒烟情 况有可能 比之前的 冒烟程 量稳 定的情况下 ,该吸力势必引起集气 管压力 的波动 ; 度还要严重 ,此为正常情况。待集气 管压力波动不剧烈后 ( 此 ( 3 )结焦 时间 的变 更和加热制度 的变化 ,使 得产气量存 时集气 管压力相对要高 ),此种情况要保 持 3— 5分钟左右待 在明显波 动;煤 的成分 、装煤量 的变化 以及实际推 焦时间的变 压 力保待平稳后 ,手动调节压力至 1 2 0 p a左右后再调为 自动 。 化也会影响到集气管 的压力变化 ; 参 考文献 ( 4 )循环 氨水流量和温 度 的变化 ,荒煤气冷 却系统是否 [ 1 1姚 ] 昭章 . 中间包冶金技术 的发展 . 北京:冶金工业 出版社 , 畅通 、阻力大小也影响压力的稳 定;鼓风机 出、入 口排液系统、 2 0 05 . . 鼓风机后 管线是否 畅通也直接影响压力系统的稳定 : [ 2 ] 王 晓东 . 焦炉 生产技 术 啪 . 沈 阳:辽 宁科 学技 术 出版社 , 炉 门、炉盖密封不严引起集气 管压力波动 大,且不 易调节 20 0 3: 8 7. 氨水量的加大变化形成瀑布 ,从而增加荒煤气 的流动 阻力。
焦炉集气管压力
焦炉集气管压力焦炉集气管压力是指焦炉煤气通过集气管进入下游设备时所受到的压力。
焦炉是冶金工业中常用的设备,用于生产焦炭和其他煤化工产品。
焦炉煤气是焦炉生产过程中产生的一种副产品,含有可燃气体、酚醛、氨等成分。
在焦炉生产过程中,焦炉煤气需要通过集气管输送到下游设备,供应给其他工艺过程使用。
焦炉集气管压力是保证煤气正常输送和下游设备正常运行的重要参数之一。
焦炉煤气产生后,通过集气管将煤气抽出焦炉,并输送到下游设备进行处理或利用。
焦炉集气管压力的大小直接影响到煤气的输送效果和下游设备的运行情况。
焦炉集气管压力的高低对于煤气的输送效果有直接影响。
如果焦炉集气管压力过高,会导致煤气在管道中流速过快,从而增加煤气输送过程中的阻力和能量损失。
同时,过高的压力还可能导致管道振动、噪音增加等不良现象的发生。
因此,合理控制焦炉集气管压力,保持其在合适的范围内,对于提高煤气输送效率非常重要。
焦炉集气管压力的大小还会影响到下游设备的运行情况。
下游设备根据煤气的压力要求进行设计,如果焦炉集气管压力低于设计要求,会导致下游设备无法正常运行。
反之,如果焦炉集气管压力超过设计要求,可能会使下游设备过载运行,影响设备的寿命和安全性能。
因此,合理控制焦炉集气管压力,保持其在设计要求的范围内,对于保证下游设备的正常运行非常重要。
在实际操作中,焦炉集气管压力的控制需要考虑多种因素。
首先,焦炉煤气的产量和成分会对集气管压力的控制产生影响。
焦炉煤气产量的增加会导致集气管压力的增加,需要相应地调整集气管系统的参数。
其次,焦炉集气管的管径和长度也会对压力产生影响。
较大的管径和较长的管道会增加阻力,导致集气管压力的降低。
因此,在设计和操作焦炉集气管时,需要充分考虑这些因素,确保焦炉集气管压力在合理范围内。
焦炉集气管压力是焦炉煤气输送过程中的重要参数。
合理控制焦炉集气管压力,对于提高煤气输送效率和保证下游设备正常运行非常重要。
在实际操作中,需要考虑焦炉煤气产量、成分以及集气管的管径和长度等因素,以保证焦炉集气管压力在合理范围内。
影响集气管压力稳定的因素
关于集气管压力控制方面存在的问题集气管压力要求保持在100--140pa之间,相当于人正常呼吸时呼出的气体压力,压力相当低,系统中任何一个微小的因素都会引起集气管压力波动。
根据仪表人员的长期调试观察,目前存在的影响集气管压力稳定的因素主要有以下几点:一、鼓风机转速。
1、相对于目前煤气量风机转速偏高。
由于鼓风机的喘振点的限制,风机转速已经无法下调。
2、2#鼓风机转速不稳定,在给定速度信号不变的情况下,风机转速自动波动,波动范围为30到50转之间,频率为每2分钟一次。
风机转速提高30转,集气管压力就会下降60--80pa。
风机转速不稳定,不仅严重影响集气管压力,而且各个自动调节阀门也会随之频繁动作使用寿命会大大缩短。
处理意见:变频器质量问题,2#风机开始投入使用就存在此问题,要求厂家处理。
二、系统稳定时保持同一个压力,南北集气管执行器开度相差在40%左右,南边开度小北边开度大,这就造成在北边装煤时北集气管压力偏高降不下来而南边压力偏低升不上去。
原因:1、北边集气管压力确实比南边高。
(可能性不大)2、南北集气管手动翻版开度不一致,或者旁通阀以及放散阀有关闭不严的情况。
3、集气管长期存积杂物有堵塞现象,导致管道气体流通截面积减小气体流通不畅。
4、煤气主管与南北集气管分支点与南北集气管距离不一样而且管径也不相同。
分支点距离南集气管15米,管径大;分支点距离北集气管距离为30米,管径细。
主管吸力一定,自动翻版开度一定,北集气管压力相对比南边高。
处理意见:仔细检查个手动阀门状态,再通过调整南北集气管进口手动翻版以达到南北吸力相同。
三、高压氨水。
开启或者关闭高压氨水,集气管压力会产生很大变化。
正常情况高压氨水只在装煤时使用,装煤时打开高压氨水阀门,控制系统检测到氨水流量超过设定值后水泵就会加速运转以达到要求压力,装煤完毕后必须关闭阀门使流量降到设定值以下,否则下次装煤开阀门时压力不会自动提升。
目前大部分时间高压氨水阀门在装煤完毕后关不到位,有时候高压氨水连续喷洒8个小时。
焦炉集气管与压力控制研究
焦炉集气管与压力控制研究1 引言在焦炉炼焦过程中,会有大量的荒煤气产生,荒煤气由集气管收集,通过输气管网由鼓风机送往后续工段处理。
由于产气量随结焦时间而变化,集气管中的压力不断改变,特别是在炭化室进行推焦、装煤时会造成集气管压力大幅波动。
当炉体内操作形成负压时,空气就会从炉门、炉盖等处进入炉体,导致焦炭燃烧、灰分增加、焦炭质量下降。
进入的空气还会同炉体建筑材料发生化学反应,导致炉体剥蚀,缩短炉体使用寿命;空气还会促使荒煤气燃烧,使煤气系统温度增高,从而加重了冷却系统的负担,产生不必要的能源消耗。
当炉体内的压力过高时,荒煤气将会从炉门、炉盖等处冒出,一方面造成跑烟冒火,污染环境;另一方面降低了荒煤气的回收率,造成能源的浪费[1>。
综上所述,集气管压力的稳定不但影响焦炭的质量,也关系到焦炉的寿命。
所以我们必须对集气管压力进行控制,使其维持在设定的压力范围内,考虑到焦炉集气管压力控制对象的数学模型难以建立,本文以湘钢焦化厂工艺过程控制技术改造项目为研究对象,利用经典控制与智能控制相结合进行集气管压力的控制。
2 工艺分析2.1 工艺流程目前湘钢焦化厂现有四座焦炉、三台初冷器(2开1备)以及四台鼓风机(2开2备)。
由于中间的闸阀都关死了,整个系统可以看成两套独立的系统Ⅰ和系统Ⅱ。
系统Ⅰ包括1#初冷器、1#和2#鼓风机(1开1备),连接1#和2#焦炉;系统Ⅱ包括3#初冷器、3#和4#鼓风机(1开1备),连接3#和4#焦炉,系统Ⅰ和系统Ⅱ鼓风机输出端合并,2#初冷器备用。
焦炉煤气从各炭化室通过上升管,并在上升管被循环氨气冷却到80~90°C,然后进入集气管。
在气液分离器与焦油、氨水分离,进入初冷器,在初冷器冷却到35~40°C,然后通过鼓风机送往下道工序。
如图1所示。
2.2 影响集气管压力的因素通过分析,影响焦炉集气管压力的因素[2>:①炭化室内间歇地装煤和推焦对集气管压力产生较大的冲击;②各焦炉之间的相互耦合,在器前吸力稳定的情况下,任一焦炉压力的波动,都会影响另一焦炉压力;③器前吸力变化的影响,在鼓风机抽力不变的情况下,机后设备的阻力发生变化或煤气用户的用量发生变化时,都会引起机后压力的变化,进而引起器前吸力的变化,在煤气发生量稳定的情况下,该吸力势必引起集气管压力的波动;④结焦时间的变更和加热制度的变化使得产气量存在明显波动;煤的成分、装煤量的变化以及实际推焦时间的变化也会影响到集气管的压力变化;⑤循环氨水流量和温度的变化,荒煤气冷却系统是否畅通、阻力大小也影响压力的稳定及气量传输的动态特性,鼓风机入口排液系统、鼓风机后管线是否畅通直接影响压力系统的稳定;⑥荒煤气的温度高低直接影响输气系统正常运行,过高时风机负荷加重且易发生危险,过低时则会导致冷却系统结萘;⑦炉门、炉盖密封不严引起集气管压力降低;⑧氨水量的变化形成瀑布,从而增加荒煤气的流动阻力。
浅谈焦炉集气管压力控制
浅谈焦炉集气管压力控制一、集气管压力控制的重要性。
我公司集气管压力定为120Pa,要求控制波动范围为±20Pa。
集气管压力过高,会引起炭化室内压力过大,造成炉门冒烟冒火,污染环境,影响化产回收。
集气管压力过低,会导致炭化室产生负压,一方面会造成炭化室与燃烧室之间的串漏,影响焦炉寿命。
另一方面,使焦炭灰分增高,化产品回收率和煤气热值降低,还会使荒煤气燃烧而温度升高,增加后续煤气冷却系统压力。
影响集气管压力的主要因素有:装煤操作、换向、开启高压氨水清理作业等。
二、压力控制系统设备概述。
1、控制系统。
炼焦中控、风机中控、化产中控、备煤中控、循环水、筛焦等,均使用和利时DCS和PLC系统。
集气管压力调节、高压氨水控制设在风机中控。
2、集气管压力调节设备。
沈鼓鼓风机两台,配套1120kw 10kv电机两台,东方日历高压变频器两台。
无锡工装大循环气动调节阀一台。
每个集气管均安装两台EJA120微差压变送器,一台备用,信号同时送入DCS。
一方面方便实时判断压力信号是否准确,另一方面可通过常用、备用自动切换提高信号采集可靠性以及实现无干扰维护校验变送器。
集气管使用进口罗托克电动执行器。
高压氨水泵两台,配套上海和平变频器,正常装煤高压氨水压力最高可升至3.7MPa。
三、控制方式。
1、鼓风机保护与电机定子三相线圈温度、电机轴承温度、风机轴瓦温度、轴位移、油站供油压力等连锁。
转速可与煤气量、风机前吸力、集气管压力连锁,实现自动调速。
同时采集高压氨水流量信号实现装煤补偿提速、采集换向信号实现换向补偿提速,也可根据实际煤气量选择不投入补偿或改变补偿幅度。
由于风机转速的改变对集气管压力的影响非常明显,DCS调节灵敏度要降低。
根据我们实际工况,生产中风机转速一般采用手动控制,并投入装煤补偿、换向补偿以及机前吸力超限补偿。
2、大循环执行器自动控制可选择与集气管平均压力或者初冷器前吸力连锁。
平时调整风机转速使大循环开度有一定调节余量。
集气管压力
冶金工程术语
01 简介
03 集气管
目录
02 的控制 04 集气管温度
集气管压力 (gas pressure in collecting main)是指焦炉集气管煤气通向吸气管处的压力。是焦炉加 热调节的压力指标之一。
简介
集气管压力(gas pressure in collecting main)是指焦炉集气管煤气通向吸气管处的压力。是焦炉加热 调节的压力指煤气的绝热饱和温度。集气管压力是保持各炭化室底部在整个结焦过程 内都处炉正压的关键。为调节集气管压力,在集气管和吸气管间的管上,设有手动和自动调节翻板。集气管内的 氨水、煤焦抽和焦油渣通过焦油盒导入吸气管 。沿集气管全长设有若干焦油液清扫孔。集气管上设有放散管, 以便在集气管压力过大时放散粗煤气。在集气管端部设有蒸汽清扫管、工业水管和氨水管,以备在焦炉开工和发 生事故时使用。
的控制
因为集气管下面的炭化室的压力是全炉各炭化室中小的,所以集气管压力就根据确保该炭化室底部压力在结 焦末期不低于5Pa来确定。由于浮力受大气温度影响,冬季集气管的压力比夏季要高些。集气管的压力要保待稳 定,由安装在吸气管入口端的自动调节翻板来控制 。
集气管
集气管(collecting main )是指汇集从各炭化室寻出的粗煤气的胶炉附属设备。集气管是由钢板焊接或铆 接而成的圆形或槽形管道,安装在由炉柱支承的许多托架上,与上升管相连。为了便于氨水和煤焦油从集气管流 出,集气管朝氨水流出口方向有6-10%的倾斜度 。各炭化室的粗煤气经上升管进人集气管。由炭化室逸出的粗煤 气温度约800℃。在上升管桥管和集气管内,粗煤气被喷洒的热氨水降温并冷凝出大部分煤焦油。
感谢观看
7.63米焦炉集气管压力平衡控制方法
7.63米焦炉集气管压力平衡控制方法摘要:本文主要阐述了焦炉集气管压力平衡控制在焦炉生产中的重要性及为了保证集气管压力稳定所采取的控制方法、措施。
关键词:焦炉荒煤气集气管压力鼓风机初冷器中图分类号:tu855 文献标识码:a 文章编号:1009-914x(2013)23-367-01一、引言:集气管压力是焦炉生产中重要的工艺参数,在焦炉生产过程中,它因受(出焦、装煤、换向、生产周期的安排、工艺设备及管道阻力等)因素的影响而常常发生波动。
当集气管压力过低时,会造成碳化室负压,空气进入炭化室,导致焦炭燃烧、灰分增加、焦炭质量下降,而且焦炭燃烧后的灰分在高温下会侵蚀炉墙砖,造成炉体损伤;另外,漏入的空气会烧掉一部分荒煤气,使化产品产量减少、煤气热值降低;当压力过高时,荒煤气将从炉门及其他不严密处漏入大气,造成炉门冒烟冒火烧坏护炉设备,降低荒煤气的回收率并恶化、污染环境。
因此,对焦炉集气管压力进行控制使其稳定在生产工艺所需范围内是保证系统安全生产、提高产品质量、减少环境污染、延长炉龄的重要技术措施。
二、控制方案和措施介绍:兖矿国际焦化7.63米焦炉是亚洲首家特大型焦炉,引进德国先进技术,系统有两座对称的焦炉组成,集气管压力采取分段控制(具体结构见图1),设计要求集气管压力稳定在140pa--160pa之间,才能保证结焦末期炭化室底部压力不会形成负压(≥5pa),同时保证焦炉在生产过程中避免炉门冒烟冒火现象,保护护炉铁件不受损伤。
图1焦炉煤气简要流程在焦炉实际生产中,主要通过以下手段对集气管压力的波动进行调节以实现集气管压力平衡:1、通过集气管中段的电液执行机构自动调节,带动翻板阀动作,消除每段集气管小范围的压力波动。
电动执行的调节采取传统的pid控制,由取压点采集的压力信号值(prcsa01)作为参考,通过简单的反馈回路达到控制压力的目的(如图2)。
2、由于整个系统的煤气是汇集后由煤气总管送往后续工段,不同段集气管离总管的距离不一样,造成吸力有所差异,为了平衡吸力,通过调节集气管末端的电动闸阀开度,合理分配吸力,消除段间严重不平衡。
【2017年整理】确定正确的集气管压力
确定正确的集气管压力尚文彬[编者按]本文作者针对焦炉集为生产过程中的集气管压力气管压力制度提出了不同的看法,并通过分析和确定了新的原则。
本着百家争鸣的方针,现刊发此文。
在焦炉的工艺管观中,焦炉各部位压力值的确定,直接关系到焦炉的温度控制、炉体寿命、产品质量、环境污染等问题,其重要性普遍为焦炉专家及炼焦生产的管理者所重视。
焦炉的压力控制分为燃烧系统压力控制和炭化室压力控制两部分。
燃烧系统压力的确定经过了科学的理论分析及理论计算,形成了一项比较完善的压力制度。
炭化室压力的大小由集气管压力控制,集气管压力是根据“炭化室底部压力在结焦末期不小于0.5毫米水柱”这一原则,测量结焦末期炭化室底部压力来确定的。
与燃烧系统压力制度的形成比较,确定集气管压力的原则实际上没有建立在科学理论分析和理论计算之上,而是片面地分析了炼焦生产中的一些问题,规定了这一原则。
如何确定集气管压力呢?旧原则及理论是这样闸述的:“为保证炭化室在整个结焦时间内各部位的压力稍大于加热系统的压力,并防止吸入外界的空气,以炭化室底部压力在结焦末期不小于0.5毫米水柱为原则,确定集气管压力。
这样可以保持炭化室产生的荒煤气,不与燃烧系统相互串漏,因为新砌焦炉的炭化室墙砌体不可能非常严密,但规定了上述集气管压力,最初荒煤气会通过砖缝串入燃烧系统,砖缝逐渐被荒煤气热解生成的游离石墨填塞而密封。
若集气管压力不能保持炭化室底部结焦末期为正压,或压力低于燃烧系统,则炭化室砌体砖缝中的石墨将被烧掉,引起串漏。
严重时砌体还会出现熔洞和渣蚀现象”。
这一理论有三个要点,下面逐一分析其错误所在。
(一)“为保证炭化室在整个结焦时间内各部位的压力稍大于加热系统的压力,并防止吸入外界的空气,以炭化室底部压力在结焦末期不小于0.5毫米水柱为原则,确定集气管压力。
”当确定了投化室底部在结焦末期不小于0.5毫米水柱时,因燃烧系统为负压,所以在客观上已经不存在炭化室压力梢大于加热系统压力,而应该说它们之间存在相当大的压差。
PID调节器在焦炉集气管压力调节中的应用
PID调节器在焦炉集气管压力调节中的应用王飓【摘要】详细介绍说明了PID控制的原理和特点,各参数的物理意义和在实际应用中的有利方面;将PID调节器的控制原理应用在焦炉集气管压力的调节中,实现快速、稳定、可靠的调节性能.【期刊名称】《机械管理开发》【年(卷),期】2011(000)006【总页数】3页(P111-113)【关键词】焦炉集气管压力;PID调节器;调控原理【作者】王飓【作者单位】太原煤气化焦化厂,山西太原 030024【正文语种】中文【中图分类】TQ520.50 引言在焦炉生产工艺中,为保证焦炭在炭化室里稳定、安全结焦,需要规定炭化室底部压力结焦末期的压力稍大于燃烧系统的压力和外界的大气压力,该压力由集气管压力来控制。
焦炉集气管压力直接关系着焦炭的质量、炉体的寿命、化工产品的回收率、回炉煤气的消耗量和环境污染等;而鼓风机前吸力也是影响焦炉集气管压力和整个化产回收工艺系统的关键因素。
PID调节器在集气管压力自动调节中表现出良好的可靠性和准确性。
1 焦炉集气管压力调节系统太原煤气化焦化厂有两座58-Ⅱ型和一座80型焦炉,三座焦炉的三根集气管并用一套冷却器系统进行收集和冷却,如图1所示。
图1 三座焦炉集气管流程示意图1.1 焦炉集气管压力调节组成1#、2#、3#焦炉集气管压力调节分别由智能调节器、压力变送器、ZSLD-21气动执行器等仪表组成单回路控制系统来控制各自的集气管的压力;1#、2#、鼓风机是手动控制阀门开度大小来控制机前吸力的大小,而3#鼓风机采用可调式液力耦合器传动达到控制机前吸力的目的。
1.2 调节系统工作原理由计算机对系统各个重要参数进行实时监控,通过采集到的集气管压力,鼓风机吸力和转速,系统各环节的阻力值,以及影响集气管压力波动的信号等参数信号都上计算机实时显示监测。
集气管压力的调节过程是:1#、2#、3#焦炉的集气管压力通过现场压力变送器将测得压力信号转换为4~20 mA DC模拟信号并输入到智能PID调节器,调节器把模拟信号转换成设定的压力信号,根据当前压力值同内部给定值的偏差大小,对其产生的偏差进行比例(p)、积分(I)、微分(D)运算之后,从而输出相应的4~20 mA DC模拟信号给气动执行机构;气动执行机构把接收来的4~20 mA DC模拟信号通过阀门定位器相应地控制阀门的开度,4 mA DC对应阀门全开,20 mA DC对应阀门全关,达到控制集气管压力的目的,如图2所示:图2 集气管压力调节反馈控制回路鼓风机前吸力调控。
浅谈焦炉集气管压力控制
浅谈焦炉集气管压力控制鑫森 5.5米捣固侧装煤高压氨水消烟除尘王玉平一、集气管压力控制的重要性。
我公司集气管压力定为120Pa,要求控制波动范围为±20Pa。
集气管压力过高,会引起炭化室内压力过大,造成炉门冒烟冒火,污染环境,影响化产回收。
集气管压力过低,会导致炭化室产生负压,一方面会造成炭化室与燃烧室之间的串漏,影响焦炉寿命。
另一方面,使焦炭灰分增高,化产品回收率和煤气热值降低,还会使荒煤气燃烧而温度升高,增加后续煤气冷却系统压力。
同时炭化室频繁负压,还会造成过多粉尘吸入集气管,带入后续管道造成管道堵塞。
影响集气管压力的主要因素有:装煤操作、换向、开启高压氨水清理作业等。
二、压力控制系统设备概述。
1、控制系统。
炼焦中控、风机中控、化产中控、备煤中控、循环水、筛焦等,均使用和利时DCS和PLC系统。
集气管压力调节、高压氨水控制设在风机中控。
2、集气管压力调节设备。
沈鼓鼓风机两台,配套1120kw 10kv电机两台,东方日历高压变频器两台。
无锡工装大循环气动调节阀一台。
每个集气管均安装两台EJA120微差压变送器,一台备用,信号同时送入DCS。
一方面方便实时判断压力信号是否准确,另一方面可通过常用、备用自动切换提高信号采集可靠性以及实现无干扰维护校验变送器。
集气管使用进口罗托克电动执行器。
高压氨水泵两台,配套上海和平变频器,正常装煤高压氨水压力最高可升至3.7MPa。
三、控制方式。
1、鼓风机保护与电机定子三相线圈温度、电机轴承温度、风机轴瓦温度、轴位移、油站供油压力等连锁。
转速可与煤气量、风机前吸力、集气管压力连锁,实现自动调速。
同时采集高压氨水流量信号实现装煤补偿提速、采集换向信号实现换向补偿提速,也可根据实际煤气量选择不投入补偿或改变补偿幅度。
由于风机转速的改变对集气管压力的影响非常明显,DCS调节灵敏度要降低。
根据我们实际工况,生产中风机转速一般采用手动控制,并投入装煤自动补偿、换向自动补偿。
焦炉集气管压力的优化控制
第2 6卷第 4期
20 0 6年 8月
山
西
化
工
V0. 6 No. 12 4
Au .2 0 g 06
S HANXIC HEM I L NDUS CA I TRY
: : : : :× : : : : : = :
::: ::: xx
3 运行效果分析
影响集气管压力的因素是多样 的, 诸如装煤、 平 煤、 推焦和交换机换 向等 , 当这些 因素暂时不存在
时, 焦炉工艺系统较为稳定 , 控制系统 的作用是使集
性; 离散控制则使经典控制法适时地“ 有效 ” “ 或 禁
止”同时 , , 考虑到焦炉生产情况的变化对集 气管压 力调节 的影 响, 时需 要进 行 手动操作 , 了使 有 为 D S和手动操作能进行无扰动切换 , C 这里在每个集
学士 , 工程师 , 助理 主要从事仪表与 自动化工作 。
维普资讯
20 0 6年 8月
田晓兰 。 焦炉集气管压力 的优化控 制
・7 ・ 3
互相产生耦合 , 因此首先应设计一个解耦算法 , 解耦 的本质在于设计一个计算网络 , 以减少或消除耦合 , 保证各个单 回路系统能独立地工作 。本控制算法采
气管调节阀上配套 安装一个具体手操器 , 系统正常 时用 D S 自动控制 , C 工艺异常时转入手动操作 , 两
者之间可平滑切换 , 其控制思想如下 : 2 1 集 气 管压 力平衡 条件 下的调 节规律 .
气管压力控制在合适 的压力范围内, 以使煤 的干馏 过程顺 利进 行 。
当工艺系统处于装煤、 平煤 、 推煤或换向机换向 等情况 中的一种或几种时 , 系统会 由稳定期向波动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集气管压力的影响因素及改进措施
高明利(中冶焦耐工程技术有限公司,鞍山114002)
钱如刚李法柱(沙钢焦化厂,张家港215625)
焦炉集气管是焦炉荒煤气导出的重要设备之一,其压力控制得好坏是焦炉稳定生产的重要因素,解决集气管压力波动大的问题已经成为焦化行业的共同难题。
沙钢焦化厂1~4号焦炉的集气管压力相对比较稳定,90%以上的时间可稳定在设定值的±20Pa,而5~6号焦炉则存在集气管压力波动较大的问题,在焦炉自身DCS自动调节的情况下无法保持稳定,波动范围在-70~300Pa之间,甚至会出现长时间负压或冲开上升管导致放散的情况,对安全生产和环保节能均带来了一定的影响。
1 影响集气管压力的因素分析
影响焦炉集气管压力稳定的因素主要有吸煤气管道的调节灵敏度、装煤操作的均匀性、稳定性、高压氨水使用的规范性、鼓风机前吸力调节、机后压力的稳定性及加热系统的换向均匀性等。
沙钢焦炉的操作水平较好,K
系数均保持在0.9以上,只有3号和4号
3
焦炉使用的是焦炉煤气加热,其他焦炉均使用高炉煤气加热。
由图1、图2比较可看出,一回收与二回收相比,工艺布置有所不同,一回收与焦炉距离相对较远,且在出煤气净化系统后与配套的煤气柜相连,洗苯塔后煤气压力波动小于500Pa , 1~4号焦炉粗苯后煤气压力通常为7.5~
7.8kPa。
而因地理位置的原因,二回收与焦炉距离比较近,加上与此配套的煤气柜离焦化厂达数公里远,而与煤气柜相连的煤气管道上还有直接用户,洗苯塔后的煤气压力波动经常超过1kPa 。
5号和6号炉粗苯后煤气压力通常为8.5~9.2kPa,影响煤气鼓风机前后压力的稳定。
初冷器前的吸力受到鼓风机前后回收系统的影响,如回收车间各工段的煤气系统阻力变化以及回炉煤气受到焦炉交换的影响等,最终会影响到集气管压力的稳定。
二回收的初冷器前吸力波动较大,主要靠人工通过大循环进行调节,波动范围在600~1600Pa之间。
由于1~4号焦炉集气管压力相对比较稳定,而5、6号焦炉则存在集气管压力波动较大的问题,根据比较分析,影响焦炉集气管的压力稳定的主要因素是煤气鼓风机前后压力的稳定。
2 解决方法
(1) 焦化厂与煤气柜之间不能有用户,且煤气柜必须靠近焦化厂才能起到稳压作用,确保机后压力的稳定。
(2) 保持机前吸力的稳定。
通过调节鼓风机转速或煤气大循环的调节翻板来保持机前吸力的稳定,如鼓风机转速采用变频调节、液力偶合器进行自动调节,或鼓风机大循环煤气翻板进行自动调卫。
(3) 将分属于两个不同系统的焦炉集气管压力和鼓风机前吸力的调节统一考虑,将吸煤气管道的集气管压力自动调节翻板和鼓风机转速或鼓风机大循环自动调节翻板进行联动调节,避免两个单独调节时的相互影响。
(4) 化产操作要稳定,时刻关注各工段的煤气阻力,避免煤气系统阻力波动影响鼓风机前后压力的稳定。
3 结论
焦炉集气管压力波动引起的原因是多方面的,焦炉集气管压力控制可以通过考虑集气管压力调节翻板、煤气鼓风机前后压力、大循环管道调节以及回炉煤气换向等之间的关系统筹考虑。
要控制焦化厂煤气鼓风机前后压力保持稳定,减少集气管压力的波动,最好的方法是在煤气净化系统后与用户之间建立相当储量的煤气柜,既可稳定煤气系统的压力,又能起到储配作用,减少煤气因用户短时间故障引起的煤气放散,提高煤气利用率,增加经济效益。