西电数字信号处理大作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安电子科技大学数字信号处理大作业
学院:电子工程学院
班级:
学号:
姓名:
指导老师:吕雁
题目一:查找资料,写一篇关于奈奎斯特采样率与稀疏采样的学习报告。
奈奎斯特采样定理即采样定理。
在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。表达式为:
C = B * log2 N ( bps )
嗯
1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高码元传输速率的公式:
理想低通信道的最高码元传输速率B=2W Baud (其中W是带宽)
理想信道的极限信息速率(信道容量),其公式如下:
C = B * log2 N ( bps )
采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。
时域采样定理
频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/(2F),便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。
时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/(2fM)的采样值来确定,即采样点的重复频率f≥(2fM)。图为模拟信号和采样样本的示意图。
时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。
频域采样定理
对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔ω≦π/ tm 。
传统采样的依据是奈奎斯特采样定理,即信号的采样频率必须是信号带宽的2倍以上。然而随着信号的带宽越来越宽,据此定理进行信号采样,必然对采样率提出更高的要求,对信号处理和硬件系统也带来了巨大的压力。能否降低信号的采样率?能否寻找新的信号描述方式与信号处理的方法?能否减少信号处理的成本?引起人们越来越大的研究兴趣。
目前,Candes,Romberg,Tao和Donoho等人提出了一种全新的理论一压缩感知理论(Compressed Sensing)。该理论是一种崭新的信号采样、信号编码和信号解码理论。采样速率不再像Nyquist速率一样,与信号的带宽密切相关,而是与信息在信号中的结构和位置息息相关。编码过程是围绕观测器即观测矩阵展开的,而解码过程是一个优化计算过程。该理论已经被证明能够用较低采样速率准确的进行信号采样,并且能够以很高的概率重构原始信号。目前国内已经有科研单位的学者对其展开研究。如我们学校课题组基于该理论提出采用超低速率采样检测超宽带回波信号。
。
其CS理论如图:
稀疏采样,也被称为压缩感知、压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。稀疏采样跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。其理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,稀疏采样理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者稀疏性和等距约束性。
显然,在压缩感知理论中,图像/信号的采样和压缩同时以低速率进行,使传感器的采样和计算成本大大降低,而信号的恢复过程是一个优化计算的过程.因此,该理论指出了将模拟信号直接采样压缩为数字形式的有效途径。从
理论上讲任何信号都具有可压缩性,只要能找到其相应的稀疏表示空间,就可以有效地进行压缩采样。
当前,压缩感知理论主要涉及三个核心问题:
(1) 具有稀疏表示能力的过完备字典设计;
(2) 满足非相干性或等距约束性准则的测量矩阵设计;
(3) 快速鲁棒的信号重建算法设计。
压缩感知理论必将给信号采样方法带来一次新的革命。这一理论的引人之处还在于它对应用科学的许多领域具有重要的影响,如统计学、信息论、编码等。目前,学者们已经在模拟-信息采样、合成孔径雷达成像、遥感成像、核磁共振成像、深空探测成像、无线传感器网络、信源编码、人脸识别、语音识别、探地雷达成像等诸多领域对压缩感知展开了广泛的应用研究。Rice大学已经成功设计出了一种基于压缩感知的新型单像素相机,在实践中为取代传统相机迈出了实质性的一步。
压缩感知理论框架
传统的信号采集、编解码过程如图所示:编码端先对信号进行采样,再对所有采样值进行变换,并将其中重要系数的幅度和位置进行编码,最后将编码值进行存储或传输:信号的解码过程仅仅是编码的逆过程,接收的信号经解压缩、反变换后得到恢复信号。采用这种传统的编解码方法,由于信号的采样速率不得低于信号带宽的2倍,使得硬件系统面临着很大的采样速率的压力。此外在压缩编码过程中,大量变换计算得到的小系数被丢弃,造成了数据计算和内存资源的浪费。
传统编解码理论的框图
压缩感知理论对信号的采样、压缩编码发生在同一个步骤,利用信号的稀疏性,以远低于Nyquist采样率的速率对信号进行非自适应的测量编码。测量值并非信号本身,而是从高维到低维的投影值,从数学角度看,每个测量值是传统理论下的每个样本信号的组合函数,即一个测量值已经包含了所有样本信号的少量信息。解码过程不是编码的简单逆过程,而是在盲源分离中的求逆思想下。利用信号稀疏分解中已有的重构方法在概率意义上实现信号的精确重构或者一定误差下的近似重构。解码所需测量值的数目远小于传统理论下的样本数。