1 不定积分的计算

1 不定积分的计算
1 不定积分的计算

一、不定积分的计算 1.求9

.

解: 原积分=555

5

1155=

=3522(1)15x c + 2. 计算?

+-+dx x x x

x )

1(ln )1ln(.

解:[]ln(1)ln 11

ln(1)ln ()(1)1x x dx x x dx x x x x

+-=+--++?

?

ln(1)ln ln(1)ln (

)11x x x x

dx dx dx x x x x

++=-+++++???

22

1ln ln ln (1)ln ln ln(1)211x x x x x x dx dx x x ????=-+++?+-+????++???? []2

1ln(1)ln 2

x x C =-

+-+. 3.求不定积分2dx

y

?

,其中22()y x y x -=. 解:令y tx =,代入22()y x y x -=,有222(1)t x t x x -=, 于是 23

21132

(1)(1)(1)

t x y d x d t t t t t t t -=

==---,,, 所以,原式=32332ln 2ln t y y dt t t c c t x x

-=-+=-+?

. 4. 设()f x 可导,且32()cos 4sin 6cos x f x dx x x x x x C '=--+?,求()f x .

解:由题设,有 32()2sin 2cos sin x f x x x x x x '=--,

322sin 2cos sin ()x x x

f x x x x '=

-- 于是 3

22sin 2cos sin ()x x x

f x dx dx dx x x x =--??? 22sin cos sin x x x dx dx x x x

=---??

2sin cos x x

C x x

=-

++. 5. 求不定积分2222

1

(0)sin cos dx ab a x b x

≠+?

. 解:22

221sin cos dx a x b x +?222

2

1cos tan x dx a x b =+? 2221

tan tan d x a x b =+? 1tan arctan a x C ab b

=+. 6. 计算arctan 322

(1)

x

xe dx x +?. 解:(方法一)设t x tan =,则原式

arctan 3

2

2

sin (1)

x

t xe dx e tdt x

=+??cos t e d t =-?

(c o s c o s )

t

t

e t e

tdt =--?

cos sin sin t t t e t e t e tdt =-+-?,

而.)cos (sin 2

1sin C t t e tdt e t

t +-=

? 故

a r c t a

n

a r c t a n 32

2

.(1)

x x xe dx C x =

++?

解:

(方法二)

arctan arctan 32

2

(1)

x

x xe dx x =+?

arctan arctan 322

(1)

x x e dx x =

-+?

a r c t a

n

a r c t a n

x x =

-

arctan arctan arctan 322

(1)

x x x xe dx x =

-

-+?

移项整理,得

a r c t a

n

a r c t a n 32

2

.(1)

x x xe dx C x =

++?

7. 已知

sec x

x

是函数)(x f 的一个原函数, 求dx x f x ?')(3. 解:由题意有 2

s e c s e c (t a n 1)

()()x x x x f x x x -'== 所以

33

()()x f x dx x df x '=??

32()3()x f x x f x dx =-?

32sec ()3x x f x x d x ??=- ????

32sec ()3(2sec )x

x f x x xdx x

=-?

-? =sec (tan 4)6ln sec tan .x x x x x x C -+++

8. 设)(x F 为)(x f 的原函数,当0>x 时,x x F x f 2sin )()(2=,且1)0(=F ,

0)(≥x F ,求)(x f .

解: 由条件知 2[()]2()()F x F x F x

''= 22()()2sin 2F x f x x == =x 4cos 1-

2()(1

c o s 4)F x x

d x =-?C x x +-=4s i n 41

再由1)0(2==C F ,有 )(2x F 14s i n 4

1

+-=x x

所以

()f x =

9. 设()F x 是()f x 的一个原函数,(0)0F =且2()()(1)x f x F x x x e =+,求()f x .

解:由条件知 2()()(1)x

F x F x x x e

'=+, 两边积分 2()'()d

(1)d x

F x F x x x x e x =+??

2211

()()22

x F x xe C =+, 又(0)0F =,得0C =,即()x F x xe =±;故()'()(1)x f x F x x e ==±+. 10. 已知()f x '是如图所示的抛物线,且()f x 有极小 值是2,极大值是6,求()f x .

解:由条件可设 '()(2)f x a x x =-,

所以 321

()(2)()3

f x ax x dx a x x C =-=-+?

由图形知()f x 在[0,2] 为单调增函数,所以

min

()(0)2f x f C ===,max 8

()(2)(4)63f x f a C ==-+=?3a =-,

故 32()32f x x x =-++.

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

不定积分例题与答案解析

第4章不定积分 容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★ (1)? 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 22 2 3 x dx x C -- ==-+ ? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

不定积分 计算题

计算题(共 200 小题) 1、 ??+=.d )( , sin d )()(x x f c x x x f n 求设 2、 ?'>+=.d )(),0()(2x x f x x x x f 试求设 3、 .d x x ?求 4、 .)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ? ??>≤= 5、 已知,求它的原函数.f x x F x ()()=-1 6、 .d x x ?求  7、 ? -233d x x 求  8、 .,d 2是常数其中求 a x x a ? 9、 .0,,d >?a a x e a x x 是常数其中求  10、 .d tan csc 22x x x ??求 11、 ? ?x x x d cot sec 22求 12、 ?+22d x x 求  13、 ? +82d 2x x 求

14、 ?-9d 2x x 求  15、 ? -.63d 2x x 求  16、 ?+232d x x 求  17、 .d 2432x x x x ?-求 18、 x x x d ??求  19、 .d )1(23 x x x ?+求  20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ?+ 21、 ?x x d cot 2求 22、 .d 11)(3x x x ?++求  23、 .d x x x x ?求  24、 ?+.d )arccos (arcsin x x x 求  25、 [].d )1(cos cos )1(sin sin x x x x x ?+++求  26、 ??.d 2 sin 22x x 求 27、

不定积分的计算

不 定义:如果在区间I 上,可导函数F (x )的导函数为f (x ),即对任一x ∈I ,都有 ()()dF(x)=f(x)dx F x f x '=或 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上连续,那么在区间I 上存在可导函数F (x ),使对任一x I ∈都有 ()()F x f x '= 简单地说:连续函数一定有原函数。 一、换元积分法 1、第一类换元法 定理:设f (u )具有原函数,()u x ?=可导,则有换元公式:()[()]()[()]u x f x x dx f u ???='=?, 设要求()g x dx ?,如果函数g (x )可以化为g x [()]()x x ??'?()=的形式,那么 ()()[()]()[()]u x g x dx f x x dx f u du ???='==?? . 这样,函数g (x )的积分即化为函数f (u )的积分,如果能求得f (u )的原函数,那么也 就求出了g(x)的原函数。 例,求 ? 解:被积函数中,cos2x 是一个复合函数:cos2x=cosu ,u=2x ,常数因子恰好是中间变量u 的导数,因此,作变换u2x ,便有: 2cos 2cos 22cos 22()cos sin 22cos 2sin 2xdx x dx x x dx udu u c u x xdx x c =?=?= =+==+?????即 将代入得 2、第二类换元法 定理:设()x t ?=是单调的可导的函数,并且()0t ?'≠,又设[()]()f t t ??'具有原函数,则有换元公式:1 x ()[[()]()]t f x dx f t t dt ???-='=??() (2) 其中1 x ?-()是()x t ?=的反函数。 证明:设[()]()f t t ??'的原函数为()t Φ,记1 [()](x F x ?-Φ=),利用复合函数及反函数的 求导法则。得到:1 F ()[()]()[()]()() d dt x f t t f t f x dt dx t ????Φ''= ? =? ==' 即F(x)是f (x )的原函数,所以有:1 ()()[()]f x dx F x c x c ?-=+=Φ+? =1 () [[()]()]t x f t t dt ? ??-='?

不定积分练习题及答案

不定积分练习题 一、选择题、填空题: 1、 ((1—sin 2 X )dx = 2 ------------- 2、 若 e x 是f (x)的原函数,贝x 2f(lnx)dx = ________ 3、sin (I n x)dx 二 __ 12、若 F '(x)工 f(x), ? '(x)工 f (x),则 f(x)dx = _______________________________________________ (A)F(x) (B) : (x) (C) : (x) - c (D)F(x) (x) c 13、下列各式中正确的是: (A) d[ f(x)dx]二 f(x) (B) —[ f(x)dxp f(x)dx dx L (C) df(x)二 f(x) (D) df(x)二 f(x) c 14、设 f(x)=e :则: f(lnx) dx = _____________ 2 已知e 公是f (x)的一个原函数,贝V f (tan x)sec xdx 二__ 在积分曲线族(卑中,过(1,1点的积分曲线是y=_ 'x\!x F'(x)= f (x),贝》J f'(ax+b)dx = ________ ; 设 [f (x)dx =丄 + c ,贝叮 "号)dx = _________ ; e 「dx= ____ ; "f(x) f '(ln x) =1 x,则f (x)二 ______ ; 10、 若 f (x)在(a, b)内连续,则在(a, b)内 f (x) ___ ; (A)必有导函数 (B)必有原函数 (C)必有界(D)必有极限 11、 ______________________________________________ 若 Jxf (x)dx = xs in x — [sin xdx,贝 V f (x) = ________ ; 4、 5、 6、 7、 9、 设 xf (x)dx =arcsin x c,贝V

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

积分运算法则

不定积分的运算法则,包含如下两个性质(注意性质适用条件):1、设函数f(x)的原函数存在(即f(x)可积,下同),k是常数,则:(1) (k≠0) (2) (k=0) 2、设f(x),g(x)两个函数存在原函数,则: 3、常见积分几种运算法 换元积分法: ①设f(u)具有原函数F(u) ,如果u是中间变量:u= (x),且 (x)可微,那么,根据复合函数微分法,有 dF=[ (x)]=f[ (x)] '(x)dx,从而根据不定积分的定义就得: 若要求 ,若 可化为

的形式,那么: 这种方法称为第一类换元法。 ②利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式x = φ(t)。此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。下面简单介绍第二类换元法中常用的方法: (1)根式代换:被积函数中带有根式 ,可直接令t = (2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:被积函数含根式 ,令 被积函数含根式 ,令 ;被积函数含根式 ,令 。 注:记住三角形示意图可为变量还原提供方便。 (3)倒代换(即令 ):设m,n 分别为被积函数的分子、分母关于x 的最高次数,当n-m>1时,用倒代换可望成功 (4)指数代换:适用于被积函数由指数

所构成的代数式; (5)万能代换(半角代换):被积函数是三角函数有理式,可令 ,则: 分部积分法: 设函数u=u(x)及v=v(x)具有连续导数,则其乘积的导数为: ,移项得: 对两边求不定积分,得: 也可写为: 如果求 有困难,而求 比较容易时,分部积分公式就可以发挥作用了。

不定积分例题及答案

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+? ?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

不定积分-定积分复习题及答案

(A ) F ( x ) = ? ;(B ) F ( x ) = ? ? -e - x + c , x < 0 ? -e - x + c + 2, x < 0 3、设 f ( x ) = ?0, x = 0 , F ( x ) = ? f (t )dt ,则( ) ? -1, x < 0 ? t sin tdt ? t 2dt 2 上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格 3 分,共 30 分) 1、设 sin x f (ax ) 为 f ( x ) 的一个原函数,且 a ≠ 0 ,则 ? x a dx 应等于( ) (A ) sin ax sin ax sin ax sin ax + C ; (B ) + C ; (C ) + C ; (D ) + C a 3 x a 2 x ax x 2、若 e x 在 (-∞, +∞) 上不定积分是 F ( x ) + C ,则 F ( x ) = ( ) ?e x + c , x ≥ 0 ?e x + c , x ≥ 0 1 2 ?e x , x ≥ 0 ?e x , x ≥ 0 (C ) F ( x ) = ? ;(D ) F ( x ) = ? ? -e - x + 2, x < 0 ? -e - x , x < 0 ?1, x > 0 ? x ; ? (A ) F ( x ) 在 x = 0 点不连续; (B ) F ( x ) 在 (-∞, +∞) 内连续,在 x = 0 点不可导; (C ) F ( x ) 在 (-∞, +∞) 内可导,且满足 F '( x ) = f ( x ) ; (D ) F ( x ) 在 (-∞, +∞) 内可导,但不一定满足 F '( x ) = f ( x ) 。 4、极限 lim x →0 x 0 x =( ) (A )-1; (B )0; (C )1; (D )2 5、设在区间[a , b ] 上 f ( x ) > 0, f '( x ) < 0, f ''( x ) > 0 。令 s = ? 1 b a f ( x )dx , s = f (b )(b - a ) 2 1 s = [ f (a ) + f (b )](b - a ) ,则( ) 3 (A ) s < s < s ; (B ) s < s < s ; (C ) s < s < s ; (D ) s < s < s 1 2 3 2 1 3 3 1 2 2 3 1 二、填空题:(每小格 3 分,共 30 分)

计算不定积分应该注意的几个问题

arccos求导目录 摘要 1 关键词 1 Abstract 1 Keywords 1 引言 1 1 基本概念、定理及公式 2 2 直接积分法易犯错误举例剖析 3 2.1 运算中漏掉“”、“” 3 2.2 自创运算法则致误 3 2.3 对公式的错误运用 4 2.4 对公式的错误运用 4 3 第一换元积分法应注意问题 5 3.1 牢记凑微分公式 5 3.2 注意解的不同表示方法 6 4 第二换元积分法中易犯错误剖析 6 5 分部积分法应注意事项 8 6 计算某类特殊积分注意事项 9 6.1 有理函数的不定积分 9 6.2 分段函数的不定积分 10 参考文献 12 致谢 13

计算不定积分应该注意的几个问题 关键词不定积分直接积分法换元积分法分部积分法特殊积分法 Indefinite Integral Calculation Should Be Noted That Several Issues Abstract Indefinite integral is a concept which is basic and important,we shoud use various techniques flexibily and the type of product function and features to calculate the indefinite integral, Integration becomes into an area of mathematics teaching which is rich in paper collates and analyzes the error-prone issues which we use various methods to calculate the indefinite integral, these issues are analyzed and as: direct integration method, integration by first substitution, integration by second substitution,division integral method,and special integral method. Key words Indefinite integral Direct integral method Integration by substitution 引言不定积分是求导的逆运算,对不定积分的理解和掌握不仅涉及到微积分本身的学习,而且影响到学习线积分、面积分及重积分等后继内容学习,我们在初学这些内容时容易出现一些普遍的错误,下面我们将对这些错误进行剖析,以便更好的掌握这部分知识. 定义1 设函数与在区间上有定义.若 则称为在区间上的一个原函数. 定义2 函数在区间上的全体原函数称为在上的不定积分,记作 其中称为积分号,为被积函数,为被积表达式,为积分变量. 注意函数不定积分是一个函数族,求函数的不定积分或原函数时,注意被积函数的定义域是很重要的因素,要引起足够的重视. 定理2 设是在区间上的一个原函数,则 也是在上的原函数,其中为任意常量函数; 在上的任意两个原函数之间,只可能相差一个常数. 定理3 若函数与在区间上都存在原函数,、为两个任意常数,则 上也存在原函数,且