能被2,4等数整除的数的特征
能被整除的数的特征
能被整除的数的特征整除是数学中常见的概念,指的是某个数能够被另一个数整除,不留下余数。
在计算机编程和数据分析等领域中,也经常需要判断一个数是否能被另一个数整除。
本文将探讨能被整除的数的特征和相关的数论知识。
整数的定义在数学中,整数是没有小数部分的数,可以是正数、负数和零。
整数分为自然数、负整数和零三种情况。
自然数是从1开始的正整数,负整数是正整数的相反数,零是一个特殊的整数,不属于自然数和负整数。
整除的定义在数学中,整除指的是一个整数能够被另一个整数整除,不留下余数。
例如,4能够被2整除,因为4÷2=2,没有余数;而5不能被2整除,因为5÷2=2余1。
可以用符号“|”表示整除的关系,例如,a|b表示a能够被b整除。
能被整除的数的特征在数论中,有许多关于能被整除的数的特征的研究。
下面列举了一些比较常见的特征。
奇偶性整数可以分为奇数和偶数两类。
其中,奇数是不被2整除的整数,偶数是能被2整除的整数。
有一个是,如果一个整数是偶数,那么它一定能被2整除;反之,如果一个整数能被2整除,那么它一定是偶数。
因此,判断一个整数是否是偶数,就相当于判断它是否能被2整除。
能被哪些数整除一个整数能否被另一个整数整除,往往取决于这两个数的约数关系。
所谓约数,就是能够整除另一个数的数。
例如,6的约数是1、2、3和6。
一个数能够被整除,当且仅当它是另一个数的倍数,即除以那个数所得到的商是一个整数。
例如,9能够被3整除,因为9÷3=3;而8不能被3整除,因为8÷3=2余2。
质数和合数质数是只能被1和自身整除的正整数,例如2、3、5、7、11、13等。
合数是不是质数的正整数,例如4、6、8、9、10等。
有一个是,一个正整数大于1且不是质数,则它一定可以分解成几个质数的乘积。
例如,12可以分解成2x2x3的形式,其中2和3都是质数。
因此,判断一个数是否是质数,就相当于判断它能否被分解成质数的乘积。
2345789125的倍数特征
2345789125的倍数特征
2的倍数特征:2的倍数是指能被2整除的数,这些数的最后一位数
字只能是0、2、4、6、8、例如:2、4、6、8、10、12等等。
3的倍数特征:3的倍数是指能被3整除的数,这些数的数字之和能
被3整除。
例如:3、6、9、12、15等等。
4的倍数特征:4的倍数是指能被4整除的数,这些数的最后两位数
字可以被4整除。
例如:4、8、12、16、20等等。
5的倍数特征:5的倍数是指能被5整除的数,这些数的个位数字只
能是0或者5、例如:5、10、15、20等等。
7的倍数特征:7的倍数是指能被7整除的数,这些数的个位数字乘
以2,并减去十位数字,最后的差值能被7整除。
例如:7、14、21、28
等等。
8的倍数特征:8的倍数是指能被8整除的数,这些数的最后三位数
字可以被8整除。
例如:8、16、24、32等等。
9的倍数特征:9的倍数是指能被9整除的数,这些数的数字之和能
被9整除。
例如:9、18、27、36等等。
125的倍数特征:125的倍数是指能被125整除的数,这些数的末尾
三个数字都为0。
例如:125、250、375等等。
以上是2、3、4、5、7、8、9、125的倍数特征,它们都有不同的特
点和规律。
对于这些倍数特征,我们可以利用它们的特点进行判断和计算,方便做数学题目和解决实际问题。
能被2、3、4、5、6、7等数整除的数的特征
能被2、3、4、5、6、7等数整除的数的特征能被2、3、4、5、6、7、8、9等数整除的数的特征A.能被2整除的数,个位上的数能被2整除(偶数0,2,4,6,8都能被2整除),那么这个数能被2整除。
B.能被3整除的数,各个数位上的数字和能被3或9整除,那么这个数能被3或9整除。
C.能被4或25整除的数,个位和十位所组成的两位数能被4或25整除,那么这个数能被4或25整除。
D.能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除。
E.能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除。
F.被7整除的数。
方法一:一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
H.被11整除的数的特征,把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23 ,—→偶位数位的和4+1+7=12 ,23-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
I.被13整除的数的特征,把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1284322能不能被13整除。
128432+2×4=128440 ,12844+0×4=12844,1284+4×4=1300,1300÷13=100所以,1284322能被13整除。
整除的特征
整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。
(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。
例如:10、72、34、56、98都能被2整除。
(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。
例如:180、315都能被5整除。
(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。
例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。
4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。
能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。
一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。
(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。
例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。
975的末尾两倍数是75,75是25的倍数,所以975能被25整除。
如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。
如700、2800都能同时被4 和25整除。
(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。
例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。
9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。
如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。
如1000、3000、78000等。
(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。
例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。
能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习
能被2、3、4、5、6、7、8、9等数整除的数的特征能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被234567等数整除的数的特征
能被234567等数整除的数的特征一个数能否被2、3、4、5、6、7等数整除,取决于这个数的特征和性质。
在本文中,我们将探讨以下几个关键因素来确定一个数能否被这些数整除的特征。
1.末位数字:一个数能否被2整除取决于它的末位数字。
如果一个数的末位数字是0、2、4、6或8,那么它可以被2整除。
如果一个数的末位数字是0或5,那么它可以被5整除。
因此,如果一个数能被2和5同时整除,它也能被10整除。
3.末位数字和:如果一个数的末位数字和倒数第二位数字组成的两位数能被4整除,那么这个数也能被4整除。
例如,数字152的倒数第二位数字是5,末位数字是2,它们组成的两位数52能被4整除,所以152也能被4整除。
4.末位数字:一个数能否被5整除取决于它的末位数字。
如果一个数的末位数字是0或5,那么它可以被5整除。
5.可被2整除的数中,末位数字是0或5的数,再判断这个数能否被3整除。
如果能被3整除,则说明这个数也能被6整除。
例如,数字30能被2整除,末位数字是0,它也能被3整除,所以30能被6整除。
6.数字和:一个数能否被6整除取决于它各个位数上数字之和。
如果一个数各个位数上的数字之和能被3整除,并且末位数字是0、2、4、6或8,那么它也能被6整除。
7.数字重复:一个数能否被7整除取决于它的数字组成是否存在循环数字。
如果一个数的数字组成中存在循环数字,那么这个数可以被7整除。
例如,数字17的数字组成是1和7,它们是重复的,所以17能被7整除。
综上所述,一个数能否被2、3、4、5、6、7等数整除的特征是:它的末位数字必须是0、2、4、5、6、8中的一个;它的数字和必须能被3整除;如果末位数字和倒数第二位数字组成的两位数能被4整除,那么该数也能被4整除;它的数字组成中存在循环数字。
能被2,3,5,7整除的数的特征
能被2,3,5,7整除的数的特征“嘿,同学们,今天咱们来聊聊能被 2、3、5、7 整除的数的特征哈。
”能被 2 整除的数的特征很简单,就是个位数是 0、2、4、6、8 的数。
比如说 10、12、14 这些数,它们的个位数都是偶数,所以都能被 2 整除。
就好像咱们排队分组,2 个一组,这些数都能正好分完,没有剩余。
能被 3 整除的数呢,它的特征是这个数的各个数位上的数字之和能被 3 整除。
举个例子哈,123,1+2+3=6,6 能被 3 整除,所以 123 就能被 3 整除。
再比如 369,3+6+9=18,18 能被 3 整除,那 369 也就可以。
这就好比是把一堆东西分成 3 份,每份的数量加起来能被 3 整除才行。
能被 5 整除的数,特征就是个位是 0 或 5 的数。
像 5、10、15 等等,很容易看出来吧。
这个就像是分组,5 个一组,这些数都能刚好分完。
那能被 7 整除的数呢,这个稍微有点复杂。
有一种方法是把这个数的末三位数与末三位以前的数字所组成的数之差,如果能被 7 整除,那么这个数就能被 7 整除。
比如说 1059,末三位 059,前面是 1,1000-59=941,941 能被 7 整除,所以 1059 能被 7 整除。
还有一种割尾法,就是用这个数去掉末位数字后再减去末位数字的 2 倍,如果差是 7 的倍数,那么原来这个数就能被 7 整除。
比如 147,去掉 7 后是 14,14-7×2=0,0 是 7 的倍数,所以 147 能被 7 整除。
咱再来说说实际应用。
比如说在分东西的时候,知道总数,想知道能不能平均分给 2 个人、3 个人、5 个人或者 7 个人,就可以用这些特征来判断。
或者在一些数学竞赛中,也经常会出现判断一个数能不能被这些数整除的题目。
再比如在编程中,也会用到这些整除的特征来进行一些算法的设计。
同学们,这些特征都记住了吧?多练习练习,以后遇到这种问题就轻松解决啦。
能被2整除的数的特征
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为64不是25的倍数,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为5不是11的倍数,所以11不是123456789的因数。
再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。
数的整除
2. 与3有同种倍数特征的数据: 9的倍数的特征:一个数的各个数位上的数的和 是9的倍数,这个数就是9的倍数。 例:4536是9的倍数吗? 解答:(4+5+3+6)÷9=2,是9的倍数, 所以4536是9的倍数。
3. 其他一些数据的倍数的特征:
7的倍数的特征:把一个数的末尾数字割去,从留下的 数中减去所割去的数字的2倍,这样继续 做下去,如果最后的结果是7的倍数,那么 原来这个数就是7的倍数。 例:判断:4151能否被7整除?
判断1884924与2560437, 能否被27或37整除。 能被27(或37)整除的数的特征:对于任何一个 自然数,从个位开始,每三位为一节将其分成若 干节,然后将每一节上的数连加,如果所得的和 能被27(或37)整除,那么这个数一定能被27 (或37)整除。
判断1884924与2560437,能 否被27或37整除。 解:1884924=1,884,924, 1+884+924=1809。 因为,1809能被27整除,不能被37整除。 所以,1884924能被27整除,但不能被37整除。
所有六位数是:123654、321654
5. 一个整数乘以17后,乘积的后四位数是2002, 这样的整数中最小的是多少? 解答:用□2002除以17,要求整数中最小的 是多少?这个数字最小就是12002。 12002÷17=706, 符合题目要求的最小的整数是706。
ABC分别是几时,使得七位数A6474BC能分别 被8、9和25整除。 分析:本体可以利用能被8、9和25整除的数的特 征,以及整除的性质3来解决。 ① 能被8整除的数的特征:一个数的末三位能被8整除。 ② 能被9整除的数的特征:一个数各个数位上的数字 之和能被9整除。 ③ 能被25整除的数的特征:一个数的末两位能被25整除。
能被2、3、4、5、6、7、8、9等数整除的数的特征
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
能被23456789等数整除的数的特征
能被 2、3、4、5、6、7、8、9 等数整除的数的特征性质1:如果数a b都能被c整除,那么它们的和(a+b)或差(a —b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2 整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46X100+ 75由于100 能被25 整除,100 的倍数也一定能被25 整除,4600 与75 均能被25 整除,它们的和也必然能被25 整除.因此,一个数只要末两位数能被25 整除,这个数就一定能被25 整除.又如:832 =8X 1 00+32由于100能被4整除,1 00的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4 整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5 整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2 整除又能被3 整除,那么这个数能被6 整除能被7 整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7的倍数,则原数能被7 整除。
如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3X2= 7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613—9X 2= 595 ,59 - 5X 2= 49,所以6139 是7 的倍数,余类推。
能被23456789等数整除的数的特征讲解学习
能被23456789等数整除的数的特征讲解学习被2、3、4、5、6、7、8、9等数整除的数具有以下特征:1.能被2整除:一个数能被2整除,意味着它是偶数。
偶数的特点是个位数字可以是0、2、4、6或82.能被3整除:一个数能被3整除,意味着它的各位数字之和能被3整除。
例如,27是3的倍数,因为2+7=9,而9能被3整除。
3.能被4整除:一个数能被4整除,意味着它的末两位能被4整除。
例如,236可以被4整除,因为36能够整除44.能被5整除:一个数能被5整除,意味着它的个位数字是0或5、例如,75能够被5整除。
5.能被6整除:一个数能被6整除,意味着它能被2和3同时整除。
因此,它必须是一个偶数且各位数字之和能被3整除。
6.能被7整除:一个数能被7整除的特征比较复杂,但是以下特征可以帮助判断:将这个数的个位数字翻倍,然后从原数中减去翻倍后的个位数字。
如果所得的差能被7整除,则原数能被7整除。
例如,196是7的倍数,因为19-2×6=19-12=77.能被8整除:一个数能被8整除,意味着它的末三位能被8整除。
例如,520可以被8整除,因为520是8的65倍。
8.能被9整除:一个数能被9整除,意味着它的各位数字之和能被9整除。
例如,81是9的倍数,因为8+1=9综上所述,一个数能被2、3、4、5、6、7、8、9整除的特征可以通过前述规则判断。
这些规则不仅在数学学科中有应用,还在解决实际问题、判断数字的性质和特征等方面起着重要的作用。
为了提高对这些规则的熟悉程度,可以进行练习和应用这些规则解决具体问题的实践。
数的整除的特征归类
数的整除的特征归类--蒋睿宇学习资料在小学阶段,数的整除的特征无非就是以下几种形式:第一类:看被整除的这个数的末一位。
(也就是这个数的个位)。
这主要是,判断能否被2和5 整除的数的特征。
其特征是:(1)能被2整除的数,个位上的数字一定是0、2、4、6、8。
例如:12、24、36、28、50(2)能被5整除的数,个位上的数字一定是0和5。
例如:20、45第二类:看被整除的这个数的末两位。
(也就是这个数的个位和十位)这是判断能否被4和25整除的数的特征。
其特征是:末两位数能被4和25整除的数,一定能被4和25整除。
例如:1320÷4=440 (20÷4=5) 750÷25=30(50÷25=2)第三类:看被整除的这个数的末三位。
(也就是这个数的个位和十位以及百位)这是判断能否被8和125整除的数的特征。
例如:789160÷8=98645(160÷8=20)456375÷125=3651(375÷125=3)第四类:看被整除的数的末三位数字,组成的数与末三位数前面的数字组成的数之间的差,(大数减小数)能否被7、11、13整除,它们之间的差能被7、11、13整除,则这个数就能被7、11、13整除。
例如:789803(803-789=14,14÷7=2)584628(628-584=44,44÷11=4)26299(299-26=273,273÷13=21)第五类:看被整除的这个数的各个数位上的数字相加的和能否被3和9整除,如果它们相加的和能被3和9整除,则这个数就能被3和9整除。
这是判断能否被3和9整除的数的特征。
例如:12345678(1+2+3+4+5+6+7+8=36,36÷3=12,36÷9=4)。
能被某数整除的数的特征
能被某数整除的数的特征1.能被2(4、8)或5(25、125)整除的数的特征:未位上的数字所表示的数能被2或5整除,这个数的末位数能被2或5整除。
(未位数是0、2、4、6、8的数能被2整除;未位数是0、5的数能被5整除)未两位数字所表示的数能被4或25整除,这个数能被4或25整除;未两位数能被25整除是00、25、50、75。
未三位数字所表示的数能被8或125整除,这个数能被8或125整除;2.能被3或9整除的数的特征:这个数的各个数位上的数字之和能被3或9整除,这个数能被3或9整除。
3.能被7、11、13整除的数的特征:这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数的差(大减小)能被7、11、13整除,这个数能被7、11、13整除。
例如:701239末三位:239 末三位之前的数为701701-239=462 462÷7=66 701239能被7整除462÷11=42 701239能被11整除462÷13=35……7 701239不能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:694378906末三位:906 末三位之前的数为694378694378-906=693472太大了,不能直接看出被7、11、13整除,继续运用此方法检查:末三位:472 末三位之前的数为693693-472=221 221÷7=31……4 694378906不能被13整除221÷11=20……1 694378906不能被11整除221÷13=33 694378906能被13整除个位数字以前的数字按顺序组成的数字与个位数字的2倍之差(大减小)能被7整除,则这个数能被7整除。
能被等数整除的数的特征
能被2、3、4、5、6、7、8、9等数整除得数得特征A、能被2整除得数,个位上得数能被2整除(偶数0,2,4,6,8都能被2整除),那么这个数能被2整除。
B。
能被3整除得数,各个数位上得数字与能被3或9整除,那么这个数能被3或9整除。
C.能被4或25整除得数,个位与十位所组成得两位数能被4或25整除,那么这个数能被4或25整除。
D.能被5整除得数,个位上为0或5得数都能被5整除,那么这个数能被5整除。
E、能被6整除得数,各数位上得数字与能被3整除得偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除、F.被7整除得数。
方法一:一个数割去末位数字,再从留下来得数中减去所割去数字得2倍,这样,一次次减下去,如果最后得结果就是7得倍数(包括0),那么,原来得这个数就一定能被7整除。
例如:判断133就是否7得倍数得过程如下:13-3×2=7,所以133就是7得倍数;又例如判断6139就是否7得倍数得过程如下:613-9×2=595 , 59-5×2=49,所以6139就是7得倍数,余类推。
方法二:、(适用于数字位数在三位以上)一个多位数得末三位数与末三位以前得数字所组成得数之差(大数减小数),如果能被7整除,那么,这个多位数就一定能被7整除、如判断数280679末三位数字就是679,末三位以前数字所组成得数就是280,679—280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除得问题。
如:283679得末三位数字就是679,末三位以前数字所组成得数就是283,679—283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数得未三位数字就是357,末三位以前得数字所组成得数就是383,这两个数得差就是:383-357=26,26能被13整除,因此,383357也一定能被13整除.G。
能被整除的数的特征
能被整除的数的特征
1.能够被另一个数整除:如果一个数能够被另一个数整除,那么它就
是被整除的数的一个特征。
例如,4能够被2整除,因此4是被整除的数。
2.余数为0:当两个数进行整除运算时,如果余数为0,那么被除数
就是被整除的数。
例如,10除以5的余数为0,因此10是被整除的数。
3.可以被同一个数整除多次:如果一个数能够被同一个数整除多次,
那么它也是被整除的数的一个特征。
例如,12可以被2整除多次,因此
12是被整除的数。
4.能够被一组数整除:除了能够被单个数整除外,还有一些数能够被
一组数整除。
例如,15能够被3和5整除,因此15是被整除的数。
5.能够整除自己:除了能够被其他数整除外,数还可以被自己整除。
例如,5可以被自己整除,因此5是被整除的数。
6.能够被任意数整除:有一些数能够被任意数整除,这些数被称为无
穷整数。
例如,0、正负无穷大以及自然数的倍数都属于无穷整数。
7.有规律的整除性质:有一些数具有特殊的整除性质。
例如,能够被
2整除的数都是偶数,能够被3整除的数如果各个位上的数字之和能被3
整除,那么这个数也能被3整除。
总的来说,能够被整除的数具有上述特征之一或多个。
这些特征使我
们能够对数的整除性质进行计算和推理。
在数学和实际应用中,能够被整
除的数的特征是十分重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能被2、3、4、5、6、7、8、9 等数整除的
数的特征
A.能被2整除的数
个位上的数能被2整除(偶数0,2,4,6,8都能被2整除),那么这个数能被2整除。
B.能被3整除的数
各个数位上的数字和能被3或9整除,那么这个数能被3或9整除。
C.能被4或25整除的数
个位和十位所组成的两位数能被4或25整除,那么这个数能被4或25整除。
D.能被5整除的数
个位上为0或5的数都能被5整除,那么这个数能被5整除。
E.能被6整除的数
各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除。
F.被7整除的数
方法一:
一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.
例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133
是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法二:
(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差(大数减小数),如果能被7整除,那么,这个多位数就一定能被7整除.
如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题。
如:判断283679能不能被11整除:
283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.
G.被8整除的数
如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.例如: 9864的末三位是864,864能被8整除,9864就一定能被8整除.72375的末三位数是375,375能被125整除,72375就一定能被125整除。
H.被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23 ,—→偶位数位的和4+1+7=12 ,23-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
I.被13整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1284322能不能被13整除。
128432+2×4=128440,12844+0×4=12844,1284+4×4=1300,1300÷13=100 所以,1284322能被13整除。
PS:整除性质:
(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。
例245能被35整除,35能被7整除,则245必能被7整除。
(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。
(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。
反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。
奇偶性:
(1)奇数±奇数=偶数(2)偶数±偶数=偶数
(3)奇数±偶数=奇数(4)奇数×奇数=奇数
(5)偶数×偶数=偶数(6)奇数×偶数=偶数
(7)奇数÷奇数=奇数(8)…。