高中物理--万有引力与天体运动--最全讲义及习题及答案详解说课讲解
高考物理一轮复习专题4.4万有引力定律与天体运动(精讲)(解析版)

专题万有引力定律与天体运动1.掌握万有引力定律的内容,并可以用万有引力定律求解有关问题。
2.理解第一宇宙速的意义。
3.认识第二宇宙速度和第三宇宙速度。
知识点一开普勒行星运动定律的应用定律内容图示或公式开普勒第一全部行星绕太阳运动的轨道都是椭圆,太定律 (轨道定律 )阳处在椭圆的一个焦点上开普勒第二对随意一个行星来说,它与太阳的连线在定律 (面积定律 )相等的时间内扫过的面积相等开普勒第三全部行星的轨道的半长轴的三次方跟它a3T2= k,k 是一个与行星没关的常量定律 (周期定律 )的公转周期的二次方的比值都相等知识点二万有引力定律的理解及应用1.内容(1)自然界中任何两个物体都互相吸引。
(2)引力的方向在它们的连线上。
(3)引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r 的二次方成反比。
2.表达式m1m2F=G r 2,此中G 为引力常量,G= 6.67 ×10-11 N ·m2/kg 2,由卡文迪许扭秤实验测定。
3.合用条件(1)两个质点之间的互相作用。
(2)对证量散布平均的球体,r 为两球心间的距离。
知识点三、宇宙速度1.三个宇宙速度第一宇宙速度1v = 7.9 km/s ,是人造卫星在地面邻近绕地球做匀速圆周运动的(环绕速度 ) 速度第二宇宙速度(离开速度 ) v 2= 11.2 km/s ,是物体摆脱地球引力约束的最小发射速度第三宇宙速度(逃逸速度 )v 3= 16.7 km/s ,是物体摆脱太阳引力约束的最小发射速度2.第一宇宙速度的理解:人造卫星的最大环绕速度,也是人造卫星的最小发射速度。
3.第一宇宙速度的计算方法Mmv 2GM (1) 由 G R 2=m R 得 v =R.v 2(2) 由 mg = m R 得 v = gR.知识点四、经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。
(2)在经典力学中,同一物理过程发生的位移和对应时间的丈量结果在不一样的参照系中是相同的。
高中物理万有引力与天体运动专题讲解

物理总复习:万有引力定律在天体运动中的应用考点一、应用万有引力定律分析天体的运动1、基本方法把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.公式为 2222224(2)Mm v F G m m r mr m f r r r Tπωπ===== 解决问题时可根据情况选择公式分析、计算。
2、黄金代换式 2GM gR =要点诠释:在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为2Mm G mg R=,且有2GM gR =。
在应用万有引力定律分析天体运动问题时,常把天体的运动近似看成是做匀速圆周运动,其所需要的向心力由万有引力提供,我们便可以应用变换式2GM gR =来分析讨论天体的运动。
如分析第一宇宙速度:22Mm v G m r r =,v == ,r R =,代入后得v =【典型例题】类型一、比较分析卫星运行的轨道参量问题例1、(2015 重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为 A. 0 B. 2GM R h +() C. 2GMm R h +() D. 2GM h【解析】对飞船受力分析知,所受到的万有引力提供匀速圆周运动的向心力,等于飞船所在位置的重力,即2()Mm G mg R h =+,可得飞船的重力加速度为2GM g R h =+(),故选B 。
【变式1】(多选)现有两颗绕地球匀速圆周运动的人造地球卫星A 和B ,它们的轨道半径分别为A r 和B r 。
如果A B r r <,则 ( ) A. 卫星A 的运动周期比卫星B 的运动周期大B. 卫星A 的线速度比卫星B 的线速度大C. 卫星A 的角速度比卫星B 的角速度大D. 卫星A 的加速度比卫星B 的加速度大【答案】BCDm h M R G【解析】由222()Mm G m r r T π=得234r T GMπ=, 轨道半径 r 越大,T 越大。
教科版高中物理必修第二册第三章万有引力定律1天体运动练习含答案

1.天体运动基础巩固1.(多选)下列说法正确的是()A.地心说认为:地球是宇宙的中心,太阳、月亮以及其他星球都绕地球运动B.哥白尼的日心说认为:宇宙的中心是太阳,所有行星都绕太阳做匀速圆周运动C.太阳是静止不动的,地球由西向东自转,使得太阳看起来自东向西运动D.地心说是错误的,日心说是正确的答案:AB解析:由物理学史可知,地心说认为地球是宇宙的中心,日心说认为太阳是宇宙的中心,日心说和地心说都有一定的局限性,可见A、B正确,C、D错误。
2.(多选)关于开普勒第三定律r 3T2=k ,下列说法正确的是()A.k值对所有的天体都相同B.该公式适用于围绕太阳运行的所有行星C.该公式也适用于围绕地球运行的所有卫星D.以上说法都不对答案:BC解析:开普勒第三定律r 3T2=k中的k只与中心天体有关,对于不同的中心天体,k不同,A 错。
此公式虽由行星运动规律总结所得,但它也适用于其他天体的运动,包括卫星绕地球的运动,B、C对,D错。
3.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳位于()A.F2B.AC.F1D.B答案:A解析:根据开普勒第二定律:太阳和行星的连线在相等的时间内扫过相同的面积,因为行星在A点的速率比在B点的速率大,所以太阳和行星的连线必然是行星与F2的连线,故太阳位于F2。
4.已知两颗行星的质量m1=2m2,公转周期T1=2T2,则它们绕太阳运转轨道的半长轴之比为()A.a1a2=12B.a1a2=21C.a1a2=√43 D.a1a2=√43答案:C解析:由a 3T2=k知,a13a23=T12T22,则a1a2=√43,与行星质量无关。
5.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同。
下列图像能反映周期与轨道半径关系的是()答案:D解析:由开普勒第三定律知R 3T2=k,所以R3=kT2,D正确。
6.行星A、B的质量分别为m1和m2,绕太阳运行的轨道半长轴分别为r1和r2,则A、B的公转周期之比为()A.√r1r2B.r13r23C.√r13r23D.无法确定答案:C解析:由开普勒第三定律r 3T2=k,得r13T12=r23T22,所以T12T22=r13r23,T1T2=√r13r23,C正确。
《万有引力与天体运动》习题及答案

地球abc 万有引力航天一、“中心天体-圆轨道”模型【应用知识】由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律列出圆周运动的动力学方程。
1、对中心天体可求质量和密度2、对环绕天体可求线速度、角速度、周期、向心加速度、向心力、轨道所在处的重力加速度3、可求第一宇宙速度例1.如图所示,a 、b 、c 是环绕地球在圆形轨道上运行的3颗人造卫星,它们质量关系是m a =m b <m c ,则: A .b 、c 的线速度大小相等,且大于a 的线速度 B .b 、c 的周期相等,且小于a 的周期C .b 、c 的向心加速度大小于相等,且大于a 的向心加速度D .b 所需向心力最小例2、我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( D )A .0.4km/sB .1.8km/sC .11km/sD .36km/s二、“同步卫星”模型同步卫星具有四个一定1、 定轨道平面2、 定运行周期:T =24h3、 定运动高度:km R GMT h 4322106.34⨯=-=π4、 定运行速率:s km /0.3=υ例3.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12h 内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g ,地球的自转周期为T ,不考虑大气对光的折射。
例4.地球赤道上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等.则( )A.F 1=F 2>F 3B.a 1=a 2=g >a 3 3122)4arcsin(gT R T t ππ=C.v 1=v 2=v >v 3D.ω1=ω3<ω2三、“天体相遇”模型 两天体相遇,实际上是指两天体相距最近,条件是)3,2,1(221 ==-n n t t πωω 两天体相距最远,条件是)3,2,1()12(21 =-=-n n t t πωω例5.A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h ,已知地球半径为R ,地球自转角速度ω0,地球表面的重力加速度为g ,O 为地球中心。
人教版高中物理必修第二册精品课件 第7章 万有引力与宇宙航行 习题课 万有引力定律在天体运动中的应用

大小
影响因素
运行
速度
卫星绕中心天体做匀
v=
速圆周运动的速度
发射
速度
在地面上发射卫星的 大于或
速度
等于 7.9 km/s
7.9 km/s
实现某种效果所需的
11.2 km/s
最小卫星发射速度
16.7 km/s
宇宙
速度
轨道半径 r 越大,v 越
小
卫星的发射高度越
高,发射速度越大
不同卫星发射要求
机或空气阻力作用),万有引力就不再等于所需向心力,卫星将
变轨运行。
①当卫星由于某种原因,速度 v 突然增大时,G
<m ,卫星将做
离心运动。
②当卫星由于某种原因, 速度 v 突然减小时,G
向心运动。
>m ,卫星将做
2.同步卫星变轨发射。
(1)发射过程(如图所示)。
(1)不同公式中r的含义不同。
在万有引力定律公式 =
在向心力公式 =
中,r 的含义是两质点间的距离;
= 中,r 的含义是质点运动的轨道半
径。
当一个天体绕另一个天体做匀速圆周运动时,两式中的r相
等。
(2)运行速度、发射速度和宇宙速度的含义不同。
三种速度的比较,如下表所示。
表面处自由落体的加速度大小约为3.7 m/s2,则天问一号的停
泊轨道与火星表面的最远距离约为(
)
A.6×105 m B.6×106 m
C.6×107 m D.6×108 m
答案:C
火
解析:忽略火星自转,则
高中物理第三章万有引力定律第一节认识天体运动训练含解析粤教版必修2

第一节认识天体运动A级合格达标1.日心说的代表人物是()A.托勒密B.哥白尼C.布鲁诺D.第谷解析:日心说的代表人物是哥白尼,布鲁诺是宣传日心说的代表人物.答案:B2.关于天体的运动以下说法正确的是()A.天体的运动毫无规律,无法研究B.天体的运动是最完美的、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都围绕太阳运动解析:天体运动是有规律的,不是做匀速圆周运动,轨迹是椭圆,地球绕太阳转动.日心说虽然最终战胜了地心说,但由于当时人们认知水平的局限性,它的一些观点也是不准确的,如运动轨道不是圆而是椭圆,做的不是匀速圆周运动而是变速曲线运动.故D项正确.答案:D3.(多选)关于开普勒第二定律,下列理解正确的是()A.行星绕太阳运动时,一定是做匀速曲线运动B.行星绕太阳运动时,一定是做变速曲线运动C.行星绕太阳运动时,由于角速度相等,故在近日点处的线速度小于它在远日点处的线速度D.行星绕太阳运动时,由于它与太阳的连线在相等的时间内扫过的面积相等,故它在近日点的线速度大于它在远日点的线速度解析:行星绕太阳运动的轨道是椭圆形的,故行星做变速曲线运动,A错,B对.行星绕太阳运动时,角速度不相等,根据开普勒第二定律可知,行星在近日点时的线速度最大,在远日点时的线速度最小,C错,D对.答案:BD4.开普勒分别于1609年和1619年发表了他发现的行星运动规律,后人称之为开普勒行星运动定律.关于开普勒行星运动定律,下列说法正确的是()A.所有行星绕太阳运动的轨道都是圆,太阳处在圆心上B.对任何一颗行星来说,离太阳越近,运行速率就越大C.在牛顿发现万有引力定律后,开普勒才发现了行星的运行规律D.开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运动规律等全部工作解析:根据第一定律——所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上,所以A错误;根据第二定律——对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,所以对任何一颗行星来说,离太阳越近,运行速率就越大,所以B正确;在开普勒发现了行星的运行规律后,牛顿才发现万有引力定律,故C错误;开普勒整理第谷的观测数据后,发现了行星运动的规律,所以D错误.答案:B5.有两颗行星环绕某恒星运动,它们的运动周期比为27∶1,则它们的轨道半径比为()A.3∶1B.27∶1C.9∶1D.1∶9解析:根据开普勒第三定律R3T2=k,有R3AT2A=R3BT2B,解得R AR B=3T2AT2B=9∶1,故选项C正确,A、B、D错误.答案:CB级等级提升6.太阳系各行星绕太阳轨道为椭圆,太阳位于椭圆的一个焦点上.如图为地球绕太阳运动的椭圆轨道,A为近日点,C为远日点,B、D为轨道短轴的两个端点,地球从B点经C点运动到D的时间为t1,地球从D点经A点运动到B的时间为t2,下列说法正确的是()A.t1>t2B.t1<t2C.t1=t2D.由于需要高等数学积分知识,高中阶段无法比较t1、t2的大小解析:根据开普勒第二定律可知,地球在AB段的速度大小大于BC段的速度大小,则有AB段的时间小于BC段的时间;地球在DA段的速度大小大于CD段的速度大小,则有DA段的时间小于CD段的时间,所以有t1>t2,故A正确,B、C、D错误.答案:A7.地球和金星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于金星运行轨道的中心B.它们在近日点速度小于远日点速度C.地球和金星公转周期的平方之比等于它们轨道半长轴的立方之比D.地球和金星绕太阳运行速度的大小始终相等解析:根据开普勒第一定律,所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故A 错误.根据开普勒第二定律,对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.所以行星距离太阳越近,速度越大,在近日点速度大于远日点速度,故B 错误.根据开普勒第三定律,可知r 3地T 2地=r 3金T 2金,则T 2金T 2地=r 3金r 3地,即地球和金星公转周期的平方之比等于它们轨道半长轴的立方之比,故C 正确.根据开普勒第二定律——对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等,速度始终在变化.对于处于不同轨道的地球和金星,绕太阳运行速度的大小不相等,故D 错误.答案:C8.(多选)如图所示,已知某卫星在赤道上空轨道半径为r 1的圆形轨道上绕地球运行的周期为T ,卫星运动方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到该卫星掠过其正上方.假设某时刻,该卫星在A 点变轨进入椭圆轨道,近地点B 到地心距离为r 2.设卫星由A 到B (只经B 点一次)运动的时间为t ,地球自转周期为T 0,不计空气阻力.则( )A.T =3T 05B.T =3T 08C.t =(r 1+r 2)T 4r 1r 1+r 22r 1 D.t =(r 1+r 2)T 6r 1r 1+r 22r 1解析:依题意有2πT ·3T 0-2πT 0·3T 0=5·2π,解得T =3T 08,故A 错误,B 正确;根据开普勒第三定律知,⎝ ⎛⎭⎪⎫r 1+r 223(2t )2=r 31T 2,解得t =T (r 1+r 2)4r 1r 1+r 22r 1,故C 正确,D 错误. 答案:BC 9.1781年,人们发现了太阳系中的第七颗行星——天王星,但是,它的运动轨迹有些“古怪”:根据万有引力定律计算出来的轨道与实际观测的结果总有一些偏差.有人认为是其轨道外侧还有未发现的行星影响其运动,后来据此发现了海王星.设从两行星离得最近时开始计时,到下一次两行星离得最近所经历的最短时间为t ;设天王星的轨道半径为R ,周期为T .忽略各行星之间的相互作用,那么海王星的轨道半径为( ) A. 3t 2t -T R B. 3⎝ ⎛⎭⎪⎫t -T t 2R C. 3⎝ ⎛⎭⎪⎫t t -T 2R D.tt -T R 解析:由题意可知:海王星与天王星相距最近时,对天体运动的影响最大,且每隔时间t 发生一次.设海王星的周期为T ′,轨道半径为R ′,则有⎝ ⎛⎭⎪⎫2πT -2πT ′t =2π,且R ′3T ′2=R 3T 2,联立解得R ′=3⎝ ⎛⎭⎪⎫t t -T 2R .故C 正确. 答案:C10. 土星直径为120 540 km ,是太阳系中的第二大行星,自转周期为10.546 h ,公转周期为29.5年,球心距离太阳1.429×109 km.土星最引人注目的是绕着其赤道的巨大光环.在地球上人们只需要一架小型望远镜就能清楚地看到光环,环的外沿直径约为274 000 km.请由上面提供的信息,估算地球距太阳有多远.(保留三位有效数字)解析:根据开普勒第三定律R 3T 2=k ,k 只与太阳的质量有关,则R 3地T 2地=R 3土T 2土,其中T 为公转周期,R 为行星到太阳的距离,代入数据可得R 3地(1年)2=(1.429×1012 m )3(29.5年)2, 解得R 地≈1.50×1011 m =1.50×108 km.答案:1.50×108 km。
高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与天体运动教学案(含解析)

第4讲 万有引力与天体运动➢ 教材知识梳理一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个________上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的________相等.3.开普勒第三定律:所有行星的轨道的________的三次方跟________的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成________,与它们之间距离的二次方成________.2.公式:________(其中引力常量G =6.67×10-11 N ·m 2/kg 2). 3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r 是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成________运动.2.动力学分析:(1)万有引力提供________,即F 向=G Mm r 2=ma =m v 2r =mω2r =m 2πT2r .(2)在星球表面附近的物体所受的万有引力近似等于________,即G Mm r 2=mg (g 为星球表面的重力加速度).四、三个宇宙速度1.第一宇宙速度(环绕速度):v 1=7.9 km/s ,是人造地球卫星的________,也是人造卫星绕地球做匀速圆周运动的________.2.第二宇宙速度(逃逸速度):v 2=11.2 km/s ,是卫星挣脱地球引力束缚的________.3.第三宇宙速度:v 3=16.7 km/s ,是卫星挣脱太阳引力束缚的________.答案:一、1.焦点 2.面积 3.半长轴 公转周期二、1.正比 反比 2.F =G m 1m 2r 2 三、1.匀速圆周 2.(1)向心力 (2)物体的重力四、1.最小发射速度 最大运行速度2.最小发射速度 3.最小发射速度【思维辨析】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.( )(2)两物体间的距离趋近于零时,万有引力趋近于无穷大.( )(3)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.( )(4)近地卫星距离地球最近,环绕速度最小.( )(5)地球同步卫星根据需要可以定点在北京正上空.( )(6)极地卫星通过地球两极,且始终和地球某一经线平面重合.( )(7)发射火星探测器的速度必须大于11.2 km/s.( )答案:(1)(×) (2)(×) (3)(√) (4)(×) (5)(×)(6)(×) (7)(√)【思维拓展】为了验证地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律,牛顿做了著名的“月-地”实验.请阐述“月-地”实验思路.答案:由于月球绕地球运行的周期T =27.3 d ≈2.36×106 s ,月球的轨道半径r =60R 地=3.84×108 m ,故从运动学角度可计算出月球的向心加速度为a n1=4π2T 2r =2.72×10-3 m/s 2① 牛顿设想,把一个物体放到月球轨道上,让它绕地球运行,地球对它的引力减小到F ,它的向心加速度减小到a n2,既然物体在地面上受到的重力G 和在月球轨道上运行时受到的引力F 都是来自地球引力,那么在引力与轨道半径的二次方成反比的关系成立的情况下,物体在月球轨道上的向心加速度a n2和在地面上的重力加速度g 的关系应为a n2g 地=F G =R 2地r 2=1602=13600, 进而从动力学角度可计算出月球轨道上的向心加速度为a n2=13600g 地=2.72×10-3 m/s 2②①式与②式的计算结果完全一致,从而证明了物体在地面上所受重力与地球吸引月球的力是同一性质的力、遵循同样规律的上述设想.需要说明的是,月球绕地球的向心加速度a n2=13600g 地与通常所说月球表面的重力加速度g 月=16g 地并不矛盾. 已知M 地=81M 月,R 地=113R 月,r =60R 地,由天文学黄金代换公式GM =gR 2可知g 月g 地=M 月R 2地M 地R 2月=121729≈16, 即g 月=16g 地③ 又有a n2=GM 地r 2=81GM 月3600R 2地=81g 月R 2月3600×113R 月2≈1600g 月④ 由③、④式可得a n2=13600g 地. ➢ 考点互动探究考点一 开普勒行星运动1 [2016·全国卷Ⅲ] 关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律 答案:B[解析] 开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B 正确.(多选)[2016·武汉调研] 水星或金星运行到地球和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星凌日”.已知地球的公转周期为365天,若将水星、金星和地球的公转轨道视为同一平面内的圆轨道,理论计算得到水星相邻两次凌日的时间间隔为116天,金星相邻两次凌日的时间间隔为584天,则下列判断合理的是( )A .地球的公转周期大约是水星的2倍B .地球的公转周期大约是金星的1.6倍C .金星的轨道半径大约是水星的3倍D .实际上水星、金星和地球的公转轨道平面存在一定的夹角,所以水星或金星相邻两次凌日的实际时间间隔均大于题干所给数据答案:BD [解析] 设水星、地球、金星的公转周期分别为T 水、T 地和T 金,水星两次凌日时间差为t 水,金星两次凌日时间差为t 金,由题意可知,2πT 水-2πT 地t 水=2π,2πT 金-2πT 地t 金=2π,解得T 水=88天,T 金=225天,所以地球公转周期大约是水星公转周期的4倍,大约是金星公转周期的1.6倍,A 错误,B 正确;由开普勒第三定律可知,R 3金T 2金=R 3水T 2水,解得R 金R 水=32252882≈36.5<3,C 错误;理论上发生凌日时,金星(或水星)、地球、太阳三者共线,如果金星(或水星)公转转道与地球公转轨道存在一定夹角,此时并不能产生凌日现象,所以金星(或水星)相邻两次凌日的实际时间间隔应大于理论上的时间间隔,D 正确.■ 要点总结对开普勒行星运动定律的理解:(1)行星绕太阳的运动通常按圆轨道处理,若按椭圆轨道处理,则利用其半长轴进行计算.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体对应的k 值不同.考点二 万有引力及其与重力的关系1.万有引力的特点:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向相反且沿两物体的连线,分别作用在两个物体上,其作用效果一般不同.2.万有引力的一般应用:主要涉及万有引力的基本计算、天体质量和密度的计算等.在这类问题的分析中应注意:(1)万有引力公式F =G m 1m 2r2中的r 应为两物体球心间距,如果某一物体内部存在球形空腔,则宜采取“割补法”分析;(2)对于万有引力提供向心力情景下的天体运动,根据万有引力定律和牛顿第二定律有G m 1m 2r 2=m 1a ,且a =ω2r =v 2r =⎝ ⎛⎭⎪⎫2πT 2r . 3.在地球或其他天体表面及某一高度处的重力加速度的计算:设天体表面重力加速度为g ,天体半径为R ,忽略天体自转,则有mg =G Mm R 2,得g =GM R 2或GM =gR 2;若物体距天体表面的高度为h ,则重力mg ′=G Mm (R +h )2,得g ′=GM (R +h )2=R 2(R +h )2g . ] 据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在地球表面附近以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后以线速度v ′在火星表面附近环绕火星飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7.设火星与地球表面的重力加速度分别为g ′和g .下列结论正确的是( )A .g ′∶g =1∶4B .g ′∶g =7∶10C .v ′∶v =528 D .v ′∶v =514答案:C[解析] 在地球表面附近,万有引力等于重力,即G MmR 2=mg ,解得g =GM R 2,在火星表面附近,万有引力等于重力,即G M ′m R ′2=mg ′,解得g ′=GM ′R ′2,又知M =ρV =ρ·43πR 3=43ρπR 3,火星与地球密度之比ρ′∶ρ=5∶7,半径之比R ′∶R =1∶2,联立解得g ′∶g =5∶14,选项A 、B 错误;探测器在火星表面附近环绕火星飞行的线速度与探测器在地球表面附近环绕地球飞行的线速度之比v ′∶v =g ′R ′gR =514·12=528,选项C 正确,选项D 错误. 1 “神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GM h2 答案:B [解析] 由题意知,飞船处于完全失重状态,飞船所受的重力等于万有引力,即G Mm (R +h )2=mg ,约去m ,得B 正确. 2 (多选)[2016·新疆适应性检测] 月球是离地球最近的天体.已知月球质量为M ,半径为R ,引力常量为G ,若忽略月球的自转,则关于在月球表面所做的实验,以下叙述正确的是( ) A .把质量为m 的物体竖直悬挂在弹簧测力计下,静止时弹簧测力计的示数为GMm R2B .以初速度v 0竖直上抛一个物体,则物体经时间2πR GM落回原处C .把羽毛和铁锤从同一高度同时释放,则铁锤先落地D .用长为l 的细绳拴一质量为m 的小球在竖直平面内做圆周运动,则小球的最小动能为GMml 2R2 答案:AD [解析] 在月球表面,月球对物体的引力等于物体的重力,即mg =G Mm R 2,选项A 正确;在月球表面,g =G M R2,以初速度v 0竖直上抛的物体落回原处的时间为t =2v 0g =2v 0R 2GM,选项B 错误;月球周围没有空气阻力,羽毛和铁锤从同一高度被释放后,同时落地,选项C 错误;小球在竖直面内做圆周运动,在最高点时,若mg =m v 2l ,则其动能最小,为E k =12mv 2=G Mml 2R2,选项D 正确. ■ 要点总结1.对万有引力和重力的关系要注意以下几点:(1)在地面上,忽略地球自转时,认为物体的向心力为零,各位置均有mg ≈GMm R2;(2)若考虑地球自转,对在赤道上的物体,有GMm R2-F N =F 向,其中F N 大小等于mg ,对处于南北两极的物体,则有GMm R2=mg . 2.在地球上所有只在重力作用下的运动形式,如自由落体运动、竖直上抛运动、平抛运动、斜抛运动等,其运动规律和研究方法同样适用于在其他星球表面的同类运动的分析,只是当地重力加速度取值不同而已.考点三 天体质量及密度的计算1.利用(卫)行星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mm r 2=m 4π2T 2r ,解得M =4π2r 3GT 2;ρ=M V =M 43πR 3=3πr 3GT 2R 3,R 为中心天体的半径,若为近地卫星,则R =r ,有ρ=3πGT 2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r 及运行周期T ,就可以算出中心天体的质量M .若再知道中心天体的半径,则可算出中心天体的密度.2.利用天体表面的重力加速度g 和天体半径R ,可得天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR . 3 [2016·济南模拟] “嫦娥五号”探测器预计2017年在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg 月球样品.某同学从网上得到一些信息,如下表中所示.根据表格中数据,可以计算出地球和月球的密度之比为( ) 月球半径 R 0A.3∶2 B .2∶3 C .4∶1 D .6∶1 答案:A[解析] 在星球表面附近,万有引力等于重力,即G MmR 2=mg ,解得星球质量M =gR 2G .地球和月球的质量之比M 地M 月=g g 0·R 2R 20=961,由密度公式ρ=M V ,体积公式V =43πR 3,联立解得地球和月球的密度之比ρ地ρ月=M 地M 月·R 30R 3=32,选项A 正确. [2015·江苏卷] 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕. “51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4 天,轨道半径约为地球绕太阳运动半径的120.该中心恒星与太阳的质量比约为( )A. 110B .1C .5D .10答案:B [解析] 题中这颗行星绕其中心天体做圆周运动,其向心力是由中心天体与行星间的万有引力提供,即G M 中心m 行r 2行=m 行ω2行r 行=m 行4π2r 行T 2行,可得M 中心=4π2r 3行GT 2行;同理,地球绕太阳运动,有M 太阳=4π2r 3地GT 2地;那么,中心天体与太阳的质量之比为M 中心M 太阳=4π2r 3行GT 2行4π2r 3地GT 2地=⎝ ⎛⎭⎪⎫r 行r 地3·⎝ ⎛⎭⎪⎫T 地T 行2=⎝ ⎛⎭⎪⎫1203·⎝ ⎛⎭⎪⎫36542≈1,选项B 正确.■ 规律总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r 和周期T ,可得中心天体的质量为M =4π2r 3GT2,并据此进一步得到该天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3(R 为中心天体的半径),尤其注意当r =R时,ρ=3πGT2.(2)利用天体表面的重力加速度g 和天体半径R ,可得天体质量M =gR 2G ,天体密度ρ=M V =M 43πR3=3g4πGR.热点四 宇宙速度 黑洞与多星系统 1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视星体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力另外三星球对其万有引力的合力4 [2015·安徽卷改编] 由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图4121为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,则下列说法正确的是( )图4121A .A 星体所受合力大小F A =2G m 2a 2B .B 星体所受合力大小F B =7G m 2a2C .C 星体的轨道半径R C =72aD .三星体做圆周运动的周期T =2πa 3GM答案:B[解析] 由万有引力定律可知,A 星体所受B 、C 星体的引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA ,方向如图所示,则合力大小为F A =23G m 2a 2;同理,B 星体所受A 、C 星体的引力大小分别为F AB =G m A m B r 2=G 2m 2a 2,F CB =G m C m B r 2=G m 2a 2,方向如图所示,由F Bx =F AB cos 60°+F CB =2G m 2a2,F By =F AB sin 60°=3G m 2a 2,可得F B =F 2Bx +F 2By =7G m 2a2;通过分析可知,圆心O 在中垂线AD 的中点,R C =34a 2+12a 2,可得R C =74a ;三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m ⎝ ⎛⎭⎪⎫2πT 2R C ,可得T =πa 3Gm,只有选项B 正确. 多选)[2016·武汉武昌区调研] 太空中存在一些离其他恒星很远的、由三颗星体组成的三星系统,可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是直线三星系统——三颗星体始终在一条直线上;另一种是三角形三星系统——三颗星体位于等边三角形的三个顶点上.已知某直线三星系统A 每颗星体的质量均为m ,相邻两颗星体中心间的距离都为R ;某三角形三星系统B 的每颗星体的质量恰好也均为m ,且三星系统A 外侧的两颗星体与三星系统B 每颗星体做匀速圆周运动的周期相等.引力常量为G ,则( )A .三星系统A 外侧两颗星体运动的线速度大小为v =Gm RB .三星系统A 外侧两颗星体运动的角速度大小为ω=12R 5GmRC .三星系统B 的运动周期为T =4πRR 5GmD .三星系统B 任意两颗星体中心间的距离为L =3125R答案:BCD[解析] 三星系统A 中,三颗星体位于同一直线上,外侧两颗星体围绕中央星体在半径为R 的同一圆轨道上运行,外侧的其中一颗星体由中央星体和另一颗外侧星体的万有引力的合力提供向心力,有G m 2R 2+G m 2(2R )2=m v 2R,解得v =5Gm4R,A 错误;三星系统A 中,周期T =2πRv=4πRR 5Gm ,则其角速度为ω=2πT =12R5GmR,B 正确;由于两种系统周期相等,即T =4πRR5Gm,C 正确;三星系统B 中,三颗星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,对其中一颗星体,由万有引力定律和牛顿第二定律,有2Gm 2L 2cos 30°=m L 2cos 30°4π2T2,解得L=3125R,D正确.[2016·兰州诊断考试] 北京时间2016年2月1日23∶40左右,激光干涉引力波天文台(LIGO)负责人宣布,人类首次发现了引力波.它来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并的过程.合并前两个黑洞互相绕转形成一个双星系统,关于此双星系统,下列说法正确的是( )A.两个黑洞绕行的角速度相等B.两个黑洞绕行的线速度相等C.两个黑洞绕行的向心加速度相等D.质量大的黑洞旋转半径大答案:A [解析] 对于两个黑洞互相绕转形成的双星系统,其角速度ω相等,周期相等,选项A正确;由于两个黑洞的质量不等,两个黑洞旋转的半径不等,质量较小的黑洞旋转半径较大,质量较大的黑洞旋转半径较小,选项D错误;由v=ωr可知,两个黑洞绕行的线速度不等,质量小的黑洞线速度较大,选项B错误;两个黑洞绕行时其向心力由两个黑洞之间的万有引力提供,向心力相等,而由于两个黑洞的质量不等,由牛顿第二定律可知,两个黑洞绕行的向心加速度不等,质量较小的黑洞向心加速度较大,选项C错误.■ 方法技巧多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动,向心力往往是由多个星的万有引力的合力提供.(3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.【教师备用习题】1.[2013·福建卷] 设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r3T 2B .GM =4π2r2T 2 C .GM =4π2r2T3 D .GM =4πr3T2[解析] A 行星绕太阳公转,由万有引力提供向心力,即G Mmr2=m ⎝ ⎛⎭⎪⎫2πT 2r ,解得GM =4π2r3T2,A 正确.2.“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127 min.已知引力常量G =6.67×10-11N ·m 2/kg 2,月球半径约为1.74×103km ,利用以上数据估算出月球的质量约为( )A .8.1×1010kg B .7.4×1013kg C .5.4×1019kg D .7.4×1022kg[解析] D 由万有引力充当向心力,有G Mm (r +h )2=m 4π2T 2(r +h ),可得月球质量M =4π2(r +h )3GT2=7.4×1022kg ,选项D 正确.3.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,火星的质量是地球质量的19.已知地球表面的重力加速度为g ,地球的半径为R ,王跃在地面上能向上竖直跳起的最大高度为h ,忽略自转的影响,引力常量为G ,下列说法正确的是( )A .火星的密度为2g3πGRB .火星表面的重力加速度是29gC .火星的第一宇宙速度与地球的第一宇宙速度之比为23D .王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是92h[解析] A 对地球表面上质量为m 的物体,由牛顿第二定律,有G Mm R 2=mg ,则M =gR 2G ,火星的密度为ρ=19M 4π3⎝ ⎛⎭⎪⎫R 23=2g3πGR ,选项A 正确;对火星表面上质量为m ′的物体,由牛顿第二定律,有GM9m ′R 22=m ′g ′,则g ′=49g ,选项B 错误;火星的第一宇宙速度与地球的第一宇宙速度之比v ′1v 1=g ′R2gR=23,选项C 错误;王跃跳高时,分别有h =v 202g 和h ′=v 202g ′,所以在火星上能达到的最大高度为94h ,选项D 错误. 4.[2014·北京卷] 万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.① 若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);② 若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式.(2)设想地球绕太阳公转的圆周轨道半径r 、太阳的半径R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长.[答案] (1)①F 1F 0=R 2(R +h )20.98②F 2F 0=1-4π2R 3GMT 2(2)1年[解析] (1)设小物体质量为m . ①在北极地面G MmR2=F 0 在北极上空高出地面h 处G Mm (R +h )2=F 1 F 1F 0=R 2(R +h )2当h =1.0%R 时F 1F 0=11.012≈0.98. ②在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G Mm R 2-F 2=m 4π2T 2R 得F 2F 0=1-4π2R 3GMT 2. (2)地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为M S ,地球质量为M ,地球公转周期为T E ,有G M S M r 2=Mr 4π2T 2E得T E =4π2r 3GM S =3πr 3G ρR 3S .其中ρ为太阳的密度.由上式可知,地球公转周期T E 仅与太阳的密度、地球公转轨道半径与太阳半径之比有关.因此“设想地球”的1年与现实地球的1年时间相同.5.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯舱沿着这条缆绳运行,如图所示,实现外太空和地球之间便捷的物资交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转角速度为ω,地球半径为R .(2)当电梯舱停在距地面高度h 2=4R 的站点时,求舱内质量m 2=50 kg 的人对水平地板的压力大小.地面附近重力加速度g 取10 m/s 2,地球自转角速度ω=7.3×10-5 rad/s ,地球半径R =6.4×103km.[答案] (1)12m 1ω2(R +h 1)2 (2)11.5 N [解析] (1)设货物相对地心的距离为r 1,线速度为v 1,则 r 1=R +h 1v 1=r 1ω货物相对地心的动能为E k =12m 1v 21 联立解得E k =12m 1ω2(R +h 1)2. (2)设地球质量为M ,人相对地心的距离为r 2,向心加速度为a n ,受地球的万有引力为F ,则r 2=R +h 2a n =ω2r 2F =GMm 2r 22g =GM R 2 设水平地板对人的支持力大小为F N ,人对水平地板的压力大小为F ′N ,则F -F N =m 2a nF′N=F N联立解得N′=11.5 N.。
高中物理 第5章 万有引力与航天 习题课 天体运动与万有引力练习(含解析)沪科版必修2-沪科版高一必

习题课 天体运动与万有引力1.(多项选择)关于开普勒第三定律中的公式a 3T2=k ,如下说法中正确的答案是( )A .k 值对所有的天体都一样B .该公式适用于围绕太阳运行的所有行星C .该公式也适用于围绕地球运行的所有卫星D .以上说法都不对解析:选BC .开普勒第三定律公式a 3T2=k 中的k 只与中心天体有关,对于不同的中心天体,k 不同,A 错.此公式虽由行星运动规律总结所得,但它也适用于其他天体的运动,包括卫星绕地球的运动,B 、C 对,D 错.2.一物体静置在平均密度为ρ的球形天体外表的赤道上.引力常量为G ,假设由于天体自转使物体对天体外表的压力恰好为零,如此天体自转周期为( )A . 4π3G ρ B .34πG ρ C .πG ρD .3πG ρ解析:选D .物体对天体外表的压力为零时,所做圆周运动的向心力由万有引力提供,即G Mm R 2=m ⎝ ⎛⎭⎪⎫2πT 2R解得天体质量M =4π2R 3GT2又由于M =ρV =ρ⎝ ⎛⎭⎪⎫43πR 3如此4π2R 3GT 2=ρ⎝ ⎛⎭⎪⎫43πR 3解得T = 3πG ρ,选项D 正确.3.(多项选择)如下列图,飞船从轨道1变轨至轨道2.假设飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )A .动能大B .向心加速度大C .运行周期长D .角速度小解析:选CD .飞船绕中心天体做匀速圆周运动,万有引力提供向心力,即F 引=F 向,所以GMm r 2=ma 向=mv 2r =4π2mr T 2=mrω2,即a 向=GM r 2,E k =12mv 2=GMm 2r,T = 4π2r3GM,ω=GMr 3(或用公式T =2πω求解).因为r 1<r 2,所以E k1>E k2,a 向1>a 向2,T 1<T 2,ω1>ω2,选项C 、D 正确.4.(多项选择)地球赤道上有一物体随地球的自转而做圆周运动,所需的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球外表附近做圆周运动的人造卫星所需的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所需的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.假设这三个物体的质量相等,如此( )A .F 1>F 2>F 3B .a 2>a 3>a 1C .v 1=v 2>v 3D .ω1=ω3<ω2解析:选BD .地球同步卫星绕行的角速度与地球自转的角速度一样,即ω1=ω3;由G Mmr 2=mω2r 得ω= GMr 3,因r 2<r 3,所以ω2>ω3.故在地球外表附近做圆周运动的人造卫星的角速度ω2与ω1和ω3的关系为ω1=ω3<ω2,故D 正确.地球赤道上的物体与地球同步卫星的角速度一样,但r 3>r 1,由向心力公式F =mω2r 得F 3>F 1;地球外表附近的人造卫星与地球同步卫星的向心力等于其万有引力,如此有F 2>F 3.如此三者向心力的关系为F 2>F 3>F 1,故A 错误.地球外表附近人造卫星的向心加速度近似等于地球外表的重力加速度,即a 2=g ;地球同步卫星的向心加速度a 3<g ;由a =ω2r 得,地球赤道上物体与地球同步卫星的向心加速度的关系为a 3>a 1.如此三者向心加速度的关系为a 2>a 3>a 1,故B 正确.地球外表附近的人造卫星的绕行速度等于第一宇宙速度,由v = GMr,得v 2>v 3;由v =ωr 得v 3>v 1.如此三者的关系为v 2>v 3>v 1,故C 错误.5.某星球“一天〞的时间T =6 h ,用弹簧测力计在星球的“赤道〞上比在“两极〞处测同一物体的重力时读数小10%,设想该星球自转的角速度加快,使赤道上的物体会自动飘起来,这时星球的“一天〞是多少小时?解析:设该物体在星球的“赤道〞上时重力为G 1,在“两极〞处时重力为G 2,在“赤道〞上G Mm R2-G 1=mω2R①在“两极〞处G Mm R2=G 2②依题意得G 2-G 1=0.1G 2③设该星球自转的角速度增大到ωx 时,赤道上的物体自动飘起来,这里的自动飘起来是指星球外表与物体间没有相互作用力,物体受到的万有引力全部提供其随星球自转所需的向心力,如此有G Mm R 2=mω2x R ④由于ωx =2πT x,ω=2πT⑤由①~⑤得T x =610h ≈1.9 h 即赤道上的物体自动飘起来时,这时星球的“一天〞是1.9 h . 答案:见解析。
北京专用高考物理总复习第五章第1讲万有引力定律与天体运动规律课件

解析
已知地球半径R和重力加速度g,则mg=G
MR地2m,所以M地=
gR2
,
G
可求M地;近地卫星做圆周运动,G
M地m R2
=mv2
R
,T=2 R
v
,可解得M地=v2R
G
=
v3T
2 G
,已知v、T可求M地;对于月球:G
M地m r2
=m4 2
T月2
r,则M地=4GT2月r23
,已知r、
T月可求M地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M太,故
GT 2
④ 周期 ,就可求得中心天体的密度。
1.(多选)牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理, 建立了万有引力定律。在创建万有引力定律的过程中,牛顿 ( ) A.接受了胡克等科学家关于“吸引力与两中心距离的平方成反比”的 猜想 B.根据地球上一切物体都以相同的加速度下落的事实,得出物体受地球 的引力与其质量成正比,即F∝m的结论
解析
由G
Mm r2
=mr(
2
T
)2有M=
4 2r3
GT 2
,可见当已知运行天体的运行周
期与轨道半径时,可求得中心天体的质量,故要求得木星的质量,还需
测量卫星绕木星做匀速圆周运动的轨道半径,D正确。
3.原香港中文大学校长、被誉为“光纤之父”的华裔科学家高锟和另
外两名美国科学家共同分享了2009年度的诺贝尔物理学奖。早在1996
=m
v2 r
②G
Mm r2
=mω2r
③GMr2m =m4T22 r
2.在地面附近万有引力近似等于物体的重力,F引=mg,即G
Mm R2
=mg,整理
天体运动复习讲义精简版(含经典例题后附习题及答案)

天体运动复习讲义1. 天体运动(1)万有引力提供向心力F 合外力=G Mmr 2 (万有引力为合外力,合外力提供向心力)G Mm r 2=m v 2r G Mmr2=mrω2 G Mm r 2=m 4π2T2r (2)天体问题的计算方法:万有引力G Mm r 2 = 向心力(m v 2r 或mrω2或m 4π2T2r )说明:等式左边为万有引力,等式右边为计算中常用的参数(线速度v , 角速度w , 周期 T ),计算时用万有引力G Mm r 2 等于带有参数线速度v 角速度w 周期 T 的向心力。
不能用m v2r=mrω2 = m 4π2T 2r ,因为m v 2r =mrω2 = m 4π2T2r 推算出V = WR = 2πR/T = 2πfR=2πnR 只能算出线速度v 角速度w 周期 T 的关系等式,没有用到万有引力公式。
例1:科学家们推测,太阳系的第十颗行星就在地球的轨道上.从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以推知( ) A.这颗行星的公转周期与地球相等 B.这颗行星的自转周期与地球相等 C.这颗行星的质量与地球质量相等 D.这颗行星的密度与地球密度相等(3)万有引力约等于重力G MmR2=mg → 2gR GM =(黄金代换式) 说明:①物体在地球表面且忽略物体随地球一起转动所需向心力②只有题目中说该行星地表重力加速度为g 时,等式才成立2. 人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎪⎨⎪⎪⎧ma →a =GM r 2→a ∝1r2m v2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r 3GM→T ∝r 3.说明:以地球为中心天体总结出:离地球越近的卫星线速度v 角速度W 加速度a 越大只有周期T 越小,即“越高越慢”)例2:一个卫星绕着某一星球作匀速圆周运动,轨道半径为R 1,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为R 2,则卫星的线速度、角速度,周期的变化情况是 ( )A.增大,增大,减小;B.减小,增大,增大;C.增大,减小,增大; D.减小,减小,减小。
人教版高中物理必修二第六章《万有引力与航天》知识点总结及习题和答案

第六章;万有引力与航天知识点总结一、人类认识天体运动的历史 1、“地心说”的内容及代表人物: 托勒密(欧多克斯、亚里士多德)内容;地心说认为地球是宇宙的中心,是静止不动的,太阳,月亮以及其他行星都绕地球运动。
2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略) 内容;日心说认为太阳是静止不动的,地球和其他行星都绕太阳运动。
二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
2、表达式:221r m m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。
6、推导:2224mM G m R R T π=3224R GMT π=四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。
五、黄金代换六;双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1:22121111121M M v G M M r L r ω== M 2:22122222222M M v G M M r L r ω== 相同的有:周期,角速度,向心力 ,因为12F F =,所以221122m r m r ωω=轨道半径之比与双星质量之比相反:1221r m r m = 线速度之比与质量比相反:1221v m v m =七、宇宙航行:1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……3、卫星轨道:可以是圆轨道,也可以是椭圆轨道。
高中物理--万有引力与天体运动--最全讲义及习题及答案详解资料

第四节 万有引力与天体运动[本章要点综述] 1、开普勒行星运动定律第一定律: 。
第二定律: 。
第三定律: 。
即: 2、万有引力定律(1)开普勒对行星运动规律的描述(开普勒定律)为万有引力定律的发现奠定了基础。
(2)万有引力定律公式: (3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。
3、万有引力定律在天文学上的应用 (1)基本方法:①把天体的运动看成 运动,其所需向心力由万有引力提供: (写出方程)____________________________ ②在忽略天体自转影响时,天体表面的重力加速度: 。
(写出方程) (2)天体质量,密度的估算测出环绕天体作匀速圆周运动的半径r ,周期为T ,由 (写出方程)得出被环绕天体的质量为 (写出表达式),密度为 (写出表达式),R 为被环绕天体的半径。
当环绕天体在被环绕天体的表面运行时,r =R ,则密度为 (写出表达式)。
(3)环绕天体的绕行线速度,角速度、周期与半径的关系。
①由22Mm v G mr r=得 ∴r 越大,v②由22MmG m r rω=得 ∴r 越大,ω 周期定律开普勒行星运动定律轨道定律面积定律发现万有引力定律 表述G 的测定天体质量的计算发现未知天体 人造卫星、宇宙速度应用万有引力定律③由2224MmG m rr Tπ=得∴r越大,T(4)三种宇宙速度①第一宇宙速度(地面附近的环绕速度):v1=7.9km/s,人造卫星在附近环绕地球作匀速圆周运动的速度。
②第二宇宙速度(地面附近的逃逸速度):v2=11.2km/s,使物体挣脱地球束缚,在附近的最小发射速度。
③第三宇宙速度:v3=16.7km/s,使物体挣脱太阳引力束缚,在附近的最小发射速度。
一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理--万有引力与天体运动--最全讲义及习题及答案详解第四节万有引力与天体运动一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。
当人造卫星进入地面附近的轨道速度大于7.9 km/s 时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.⑵第二宇宙速度:当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。
⑶第三宇宙速度:当物体的速度等于或大于16.7 km/s 时,物体将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间中去,我们把v3=16.7 km/s 称为第三宇宙速度,也称逃逸速度。
说明:宇宙速度是指发射速度,不是卫星的运行速度。
三、万有引力定律的应用例析 基本方法:⑴天体运动都可以近似地看成匀速圆周运动,其向心力由万有引力提供⑵在地面附近万有引力近似等于物体的重力1、人造卫星的v 、ω、T 、a 与轨道半径r 的关系r 越大,v 越小。
r 越大,ω越小。
r 越大,T 越大。
r 越大,a 向越小。
补充:V T W a 与r 的正比关系F ∝21r ;a ∝21r ; v ∝r 1; ∝31r ;T ∝3r 。
规律:越高越慢2、天体质量M 、密度ρ的估算(以地球为例) ⑴若已知卫星绕地球运行的周期T 和半径 r①地球的质量:②地球的密度(设地 球半径R 已知):⑵若已知卫星绕地 球运行的线速度v 和半径 r①地球的质量:②地球的密度(设地 球半径R 已知):⑶若已知卫星绕地球运行的线速度v 和周期T (或角速度ω)①地球的质量:②地球的密度(设地球半径R 已知):⑷若已知地球半径R 和地球表面的重力加速度g①地球的质量:②地球的密度(设地球半径R 已知):3、卫星变轨和卫星的能量问题⑴人造卫星在圆轨道变换时,总是主动或由于其他原因使速度发生变化,导致万有引力与向心力相等的关系被破坏,继而发生近心运动或者离心运动,发生变轨。
在变轨过程中,由于动能和势能的相互转化,可能出现万有引力与向心力再次相等,卫星即定位于新的圆轨道。
⑵轨道半径越大,速度越小,动能越小,重力势能越大,但机械能并不守恒,且总机械能也越大。
也就是轨道半径越大的卫星,运行速度虽小,但发射速度越大。
⑶解卫星变轨问题,可根据其向心力的供求平衡关系进行分析求解 ①若 F 供=F 求,供求平衡——物体做匀速圆周运动. ②若 F 供<F 求,供不应求——物体做离心运动. ③若 F 供>F 求,供过于求——物体做向心运动.卫星要达到由圆轨道变成椭圆轨道或由椭圆轨道变成圆轨道的目的,可以通过加速(离心)或减速(向心)实现.⑷速率比较:同一点上,外轨道速率大;同一轨道上,离恒星(或行星)越近速率越大.⑸加速度与向心加速度比较:同一点上加速度相同,外轨道向心加速度大;同一轨道上,近地点的向心加速度大于远地点的向心加速度。
4.近地卫星、赤道上物体及同步卫星的运行问题近地卫星、同步卫星和赤道上随地球自转的物体三种匀速圆周运动的异同: 1.轨道半径:r 同>r 近=r 物 2.运行周期:T 同=T 物>T 近 3.向心加速度:a 近>a 同>a 物5.双心问题在天体运动中,将两颗彼此距离较近的恒星称为双星.它们围绕两球连线上的某一点做圆周运动.由于两星间的引力而使它们在运动中距离保持不变.已知两星质量分别为 M1 和M2,相距 L ,求它们的角速度.如图 ,设 M1的轨道半径为 r1,M2 的轨道半径为 r2,由于两星绕 O 点做匀速圆周运动的角速度相同,都设为ω,根据万有引力定律有:1.双星系统模型的特点:(1)两星都绕它们连线上的一点做匀速圆周运动,故两星的角速度、周期相等.322)(33R h R GT GT +==远近ππρ(2)两星之间的万有引力提供各自做匀速圆周运动的向心力,所以它们的向心力大小相等;(3)两星的轨道半径之和等于两星间的距离,即r 1+r 2=L . 2.双星系统模型的三大规律: (1)双星系统的周期、角速度相同. (2)轨道半径之比与质量成反比.(3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星个体的质量无关.6.三星模型宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星等间距地位于同一直线上,外侧的两颗星绕中央星在同一圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.附录:万有引力相关公式1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)2公式:G 2rMm =ma n ,又a n =r )T 2(r r v 222π=ω=3求中心天体的质量M 和密度ρ由G 2rMm ==m 2ωr =m r)T 2(2π⇒M=232GT r 4π (恒量=23Tr) ρ=2333343T GR r R M ππ=(当r=R即近地卫星绕中心天体运行时)⇒ρ=2G T 3π=(M=ρV 球=ρπ34r 3) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠=2πRh轨道上正常转:题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。
【讨论】(v 或E K )与r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度); T 最小=84.8min=1.4h①沿圆轨道运动的卫星的几个结论: v=rGM ,3r GM =ω,T=GMr 23π②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v 第一宇宙=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h ③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V 同步=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o /h(地理上时区) a=0.23m/s 2 ④运行速度与发射速度、变轨速度的区别⑤卫星的能量,地面上需要的发射速度越大⑦卫星在轨道上正常运行时处于完全失重状态,与重力有关的实验不能进行⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天例题精讲1. 对万有引力定律的理解(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。
(2)公式表示:F=221r m Gm 。
(3)引力常量G :①适用于任何两物体。
②意义:它在数值上等于两个质量都是1kg 的物体(可看成质点)相距1m 时的相互作用力。
③G 的通常取值为G=6。
67×10-11Nm 2/kg 2。
是英国物理学家卡文迪许用实验测得。
④一个重要物理常量的意义:根据万有引力定律和牛顿第二定律可得:G2rMm =mr 2)2(T π∴k GMT r ==2234π.这实际上是开普勒第三定律。
它表明k T r =23是一个与行星无关的物理量,它仅仅取决于中心天体的质量。
在实际做题时,它具有重要的物理意义和广泛的应用。
它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。
(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。
当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。
②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r 是指两球心间的距离。
③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。
(此方法仅给学生提供一种思路) (5)万有引力具有以下三个特性:①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。
②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。
③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。
天体间的主要作用力就是万有引力了。
【例1】设地球的质量为M ,地球的半径为R ,物体的质量为m ,关于物体与地球间的万有引力的说法,正确的是: A 、地球对物体的引力大于物体对地球的引力。
B 、物体距地面的高度为h 时,物体与地球间的万有引力为F=2hGMm 。