圆薄板弯曲分析

圆薄板弯曲分析
圆薄板弯曲分析

实验三 实木弯曲实验

实验三实木弯曲实验 一、实验目的 人们对木制品的要求,无论是功能需求方面,还是美学欣赏方面,在很多场合下,都需要将木材加工成各种弯曲结构,如曲木家具,运动器材等,工艺制品和拱形门窗等。但是木材是一种难以弯曲的材料,自足以来,人们一直在不断地探索将木材软化,然后弯曲成形的技术,木材成功弯曲的关键是要使木材充分地软化。而本次实验的目的则是使我们进一步地了解木材软化与弯曲成形的机理,了解和掌握木材软化和弯曲成形的工艺技术。 二、实验原理 木材弯曲时,以中性层为分界形成凹凸两面,在凸面产生拉伸应力,使凸面木材有不同程度的伸长;凹面产生压缩应力,使凹面木材有不同程度的压缩,其应力分布是由表面向中间逐渐减少,中间一层纤维(中性层)既不受拉伸,也不受压缩。当所受的拉伸和压缩应力超过该种材料的拉伸强度极限或压缩强度极限时,木材就遭到破坏。 三、实验步骤 实木弯曲成型可以分成三个阶段:塑化(软化)、弯曲和定型(在模型框架中干燥冷却)。 (1)塑化(软化)——将准备好的木材放在一定条件(压力、温度、湿度)的蒸汽中进行一段时间的软化,时间的长短与木材的初始含水率,树种和木材的厚度有关。木材弯曲最合适的含水率,是木材纤维饱和点的含水率,妈20%-30%,此时木材强度最小,可产生的变形最大。使用实木软化专用设备,可在较短的时间内以消耗较少的能量将木材转变为可以弯曲的状态。 (2)弯曲——在弯曲时,将工件自由地放在金属薄板中,以扼制弯曲过程中工件外表的拉伸,进而被弯曲成一定的形状。在弯曲过程中,弯曲构件内部将形成张力,这种张力在以后的定型阶段将完全消除。此外,还要对工件进行降温处理,并消除弯曲工艺流程中必须的水分,最好的方法是将其放在低温干燥室中进行干燥,为了使工件保持需要的形状,应将工件夹在一个干燥架上。

金属性能试验方法及标准

金属物理性能试验方法 GB/T351//1995金属材料电阻系数测量方法 GB/T1479//1984金属粉末松装密度的测定第1部分漏斗法 GB/T1480//1995金属粉末粒度组成的测定干筛分法 GB/T1481//1998金属粉末(不包括硬质合金粉末)在单轴压制中压缩性的测定GB/T1482//1984金属粉末流动性的测定标准漏斗法(霍尔流速计) GB/T2105//1991金属材料杨氏模量、切变模量及泊松比测量方法(动力学法)GB/T2522//1988电工钢片(带)层间电阻、涂层附着性、叠装系数测试方法GB/T2523//1990冷轧薄钢板(带)表面粗糙度测量方法 GB/T3651//1983金属高温导热系数测量方法 GB/T3655//2000用爱泼斯坦方圈测量电工钢片(带)磁性能的方法 GB/T3656//1983电工用纯铁磁性能测量方法 GB/T3657//1983软磁合金直流磁性能测量方法 GB/T3658//1990软磁合金交流磁性能测量方法 GB/T4067//1999金属材料电阻温度特征参数的测定 GB/T4339//1999金属材料热膨胀特征参数的测定 GB/T5026//1985软磁合金振幅磁导率测量方法 GB/T5158.4//2001金属粉末总氧含量的测定还原-提取法 GB/T5225//1985金属材料定量相分析X射线衍射K值法 GB/T5778//1986膨胀合金气密性试验方法 GB/T5985//1986热双金属弯曲常数测量方法 GB/T5986//2000热双金属弹性模量试验方法 GB/T5987//1986热双金属温曲率试验方法 GB/T6524//1986金属粉末粒度分布的测定光透法 …… 第二篇金属力学性能试验方法 GB/T228//2002金属材料室温拉伸试验方法 GB/T229//1994金属夏比缺口冲击试验方法 GB/T230//1991金属洛氏硬度试验方法 GB/T231//1984金属布氏硬度试验方法 GB/T1172//1999黑色金属硬度及强度换算值 GB/T1818//1994金属表面洛氏硬度试验方法 GB/T2038//1991金属材料延性断裂韧度J--IC-试验方法 GB/T2039//1997金属拉伸蠕变及持久试验方法 GB/T2107//1980金属高温旋转弯曲疲劳试验方法 GB/T3075//1982金属轴向疲劳试验方法 GB/T3808//2002摆锤式冲击试验方法 GB/T4157//1984金属抗硫化物应力腐蚀开裂恒负荷拉伸试验方法

薄板弯曲实验报告

金属薄板的弯曲实验报告 1.实验目的 1)了解金属薄板弯曲变形过程及变形特点。 2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影 响。 2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯 曲,分析板厚和弯曲角度对相对弯曲半径的影响。 3)观察弯曲过程和弯曲回弹现象。 4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a)所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…,l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…,r k。当板料弯曲到一定程度时,如图1(c)所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d)所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a)(b)(c)(d) 图1 弯曲过程示意图 和所有的塑性加工一样,弯曲时,在毛坯的变形区里,除产生塑性变形外,也一定存在有弹性变形。当弯曲工作完成并从模具中取出弯曲件时,外加的载荷消失,原有的弹性变形也随着完全或部分地消失掉,其结果表现为在卸载过程中弯曲毛坯形状与尺寸的变

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

T.金属材料的常用试验标准.

T.金属材料的常用试验标准: GB2280—87(金属拉伸-旧) GB228-2000(金属拉伸-新) GB7314-87(金属压缩) GB/T14452-93(金属弯曲) GB/T232-1999(金属弯曲) GB10120-1996(金属松弛)) GB/T4338-1995(金属高温拉伸) GB5027-85(金属薄板r值) GB5028-85(金属薄板n值) GB3355-82(纵横剪切) GB8653-1988(金属杨氏模量的测定方法) GB3851-83(硬质合金横向断裂强度的测定) HB5143-96(金属拉伸) HB5195-96(金属高温拉伸) HB5280-96(金属箔材拉伸) HB5177-96(金属丝材拉伸) HB5145-96(金属管材拉伸) ASTM E8-99(美标金属拉伸) ASTM E290-97a(美标金属弯曲) JIS Z2241-1998(日标金属拉伸) JIS Z2248-1998(日标金属弯曲) BS 4483-1985(英标金属拉伸) BS 1639:1964(英标金属弯曲) DIN 50125-1991(德标金属拉伸) DIN 50111-1987(德标金属弯曲) ISO 6892-1998 (E)(国际标准金属拉伸) ISO 7348-1985 (E)(国际标准金属弯曲) 橡胶材料常用试验标准: GB/T528-92(橡胶拉伸试验) GB/T529-1999(硫化橡胶或热塑橡胶撕裂强度测定) GB530-81(硫化橡胶撕裂强度的测定方法) GB1684-85(硫化橡胶短时间静压缩试验方法) GB9871-88(硫化橡胶老化性能的测定-拉伸应力松弛试验)GB/T15254-94(硫化橡胶与金属粘接180度剥离试验)GB/T1701-2001(硬质橡胶拉伸强度和拉断伸长率的测定)GB/T2438-2002(硬质橡胶压碎强度的测定) GB/T1696-2001(硬质橡胶弯曲强度的测定) GB11211-89(硫化橡胶与金属粘合强度的测定方法) HG4-852-81(硫化橡胶与金属粘接扯离强度的测定方法)HG4-853-81(硫化橡胶与金属粘接剪切强度的测定方法)HG/T2580-94橡胶拉伸强度和断裂伸长率的测定) GB/T13936-92(硫化橡胶与金属粘接拉剪强度的测定方法)GB/T1700-2001(硬质橡胶抗剪强度的测定)

冷轧薄钢板通用标准

冷轧薄钢板通用标准 LP—QB—001 1、适用范围 本标准规定碳素结构钢和低合金结构钢冷轧薄钢材的尺寸、外形、技术要求、试验方法、检验规范等。 本标准适用于厚度不大于4mm的冷轧薄钢板。 2、引用标准 GB222 钢的化学分析用试样取样法及成品化学成分允许偏差 GB223 钢铁及合金化学分析方法。 GB228 金属拉伸试验方法 GB232 金属弯曲试验方法 GB708 冷轧钢板的尺寸、外形、重量及允许偏差 GB2975 钢材力学等工艺性能试验取样规定 GB3076 金属薄板标准试验方法 GB700 碳素结构钢 GB1591 低压合金结构钢 3、尺寸、外形、重量及允许偏差 3.1.分类及代号 3.1.1. Q:切边 BQ:不切边 3.1.2: A:较高精度 B:普通精度 3.2.尺寸:所有钢板尺寸均为: a:1000*1500 b:1250*2500 c:1400*2500

3.3.尺寸允许偏差: 3.3.1.厚度允许偏差:见表1 表1 3.3.2.宽度偏差:见表2 表2 3.4.外形: 3.4.1.钢板的每米的不平度按表3 表3 mm

3.4.2.钢板相应切成直角,切斜不得使钢板长度和宽度小于公称尺寸,并须保证订货公称尺 寸的最小矩形。 3.4.3.钢板的同板差,不得大于厚度公差之半。 3.5.尺寸测量 3.5.1.钢板厚度:在距离边部不小于40mm处测量。 3.5.2.钢板的不平度:将钢板自由地放在平台上,除钢板本身重量外,不施加任何压力,用卡尺进行测量,测量钢板与平台之间的最大距离。 3.6.重量: 钢板按实际重量式理论重量交货,理论重量计算钢的密度,碳素钢为7.85g/cm3。 4、技术要求: 4.1.牌号和化学成分 4.1.1.钢的牌号和化学成份应符合GB700或GB1591的规定。 4.1.2.成品钢板的化学成份,允许偏差应符合GB222的规定。 4.2.交货状态 4.2.1钢板以退火状态交货 4.2.2.供应状态钢板的表面应为光亮的或粗糙的。 4.3.工艺性能 4.3.1.钢板均应作180度弯曲试验,弯芯直径符合GB700或GB1591的规定,试样弯曲处的外面和侧面不得有裂纹、断裂和起层。 4.3.2.根据需要,冷冲压用碳素结构钢Q235和低合金结构钢的钢板右进行弯芯直径d等于试样厚度a的弯曲试验。 4.3.3.碳素结构钢可进行宽试样(试样宽度b=25mm)的弯曲试验。 4.4.力学性能 4.4.1.碳素结构钢和低合金结构钢板的抗检强度和伸长率,应符合GB700和GB1591的规定, 但伸长率允许与GB700和GB1591的规定有表4的降低值(绝对值)。 表4

有限元4-薄板弯曲问题

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

有限元薄板弯曲问题分析

第4章 弹性薄板弯曲问题的有限元法 薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如杨耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。 在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为: 厚板(Thick plate )和 薄板(Thin plate)两种。 当1<t w 为绝对柔性板。) 4.1 基本理论 一、基本假定 1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定 0=zx τ,0=zy τ) 3、板弯曲时,中面不产生应力。(─中面中性层假定) 上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。 二、基本方法

圆形薄板在均布载荷作用下的挠度

第四节平板应力分析平板应力分析 3.4.1概述 3.4.2圆平板对称弯曲微分方程 3.4.3圆平板中的应力 3.4.4承受对称载荷时环板中的应力 3.4.1概述 1、应用:平封头:常压容器、高压容器; 贮槽底板:可以是各种形状; 换热器管板:薄管板、厚管板; 板式塔塔盘:圆平板、带加强筋的圆平板; 反应器触媒床支承板等。 2、平板的几何特征及平板分类 几何特征:中面是一平面厚度小于其它方向的尺寸。 t/b≤1/5时(薄板) w/t≤1/5时(小挠度)按小挠度薄板计算 3、载荷与内力

载荷:①平面载荷:作用于板中面内的载荷 ②横向载荷垂直于板中面的载荷 ③复合载荷 内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形 ②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形 ◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所以, 大挠度分析要比小挠度分析复杂的多。 ◆本书仅讨论弹性薄板的小挠度理论。 4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f ①板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面法 线w的挠度。只有横向力载荷 ②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上 各点间的距离不变。 类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且仍 然垂直于变形后的梁轴线。 ③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 ◆研究:弹性,薄板/受横向载荷/小挠度理论/近似双向弯曲问题 3.4.2圆平板对称弯曲微分方程 分析模型

ASTM E290-14金属材料延性弯曲试验方法

ASTM E290-2014 金属材料延性弯曲试验方法Standard Test Methods for Bend Testing of Material for Ductility

金属材料延性弯曲试验的标准试验方法① 本标准是以固定代号E290发布的。其后的数字表示原文本正式通过的年号;在有修订的情况下,为最后一次的修订年号;圆括号中数字为最后一次重新确认的年号。上标符号(ε)表示与上次修改或重新确定的版本有编辑上的变化。 本标准已经美国国防部认可采用。 1.范围 1.1本试验方法适用于金属材料延性弯曲试验方法。本方法包括4种试样在约束情况下的弯曲试验;采用规定尺寸的芯轴或芯棒,在试样中点部位施力将试样两臂弯曲至规定距离的导向弯曲试验;试样与芯轴接触,弯曲到规定的角度或弯曲到规定内半径曲线,并在保持弯曲力的情况下进行测量的半导向弯曲试验;将试样的两端弯曲到一起,但不施加横向的力,试样的内弯曲表面不与任何材料接触的自由弯曲试验;弯曲和压平试验,试验中向试样施加横向力,将试样的两臂弯曲至接触到一起。 1.2弯曲后,应对试样的凸表面进行检查,检查其是否有明显的裂纹或表面缺陷。如果试样断裂,则该材料未能通过试验。当试样没有彻底断裂时,用裸眼在试样的凸表面上观察到的裂纹的数量和尺寸或者其他表面缺陷就成为评判是否合格的标准,参照具体的产品标准。试样边部出现的缺陷不视为弯曲试验不合格。弯曲部位角部出现的裂纹不过多的给与考虑,除非裂纹的尺寸超过产品标准规定的数值。 1.3以国际单位为单位的数值视为标准值。英寸-磅单位仅作为参考。 1.4本标准无意提及所有的有关安全的事宜,如果需要的话,与其使用者有关。在使用本标准之前,使用者应采取适当的安全防护措施。 2.引用文件 2.1ASTM标准② E6力学试验方法相关术语 E8/E8M金属材料拉伸试验方法 E18金属材料洛氏硬度和洛氏表面硬度试验方法 ①本试验方法属ASTM E28力学试验委员会管辖,并且直接由“延伸和弯曲”E28.02分委员会负责。 现版本于2014年5月1日批准,2014年9月发布。原版为1966年发布。前一版为2013年批准为E290-13。DOI: 10.1520/E0290-14。 ②如需参照ASTM标准,访问ASTM网站https://www.360docs.net/doc/a88470108.html,,或联系ASTM客户服务Service@https://www.360docs.net/doc/a88470108.html,。如需要《ASTM 标准年鉴》的内容信息,浏览ASTM网站的标准索引页。

金属薄板成形性能试验

金属薄板成形性能试验 1. 简介 成形性能是指薄板对各种冲压成形的适应能力,即薄板在指定加工过程中产生塑性变形而不失效的能力。成形性能研究的重点是成形极限的大小,也就是薄板发生破裂前能够获得的最大变形程度。 1.1 模拟成形性能指标 选择或评定金属薄板冲压成形品级时,可对模拟成形性能指标提出要求。设计或分析冲压成形工艺过程,以及设计冲压成形模具时,经常需要参考模拟成形性能指标的数据。薄板常用模拟成形性能指标有: 1、胀形性能指标:杯突值IE; 2、拉深性能指标:极限拉深比LDR或载荷极限拉深比LDR(T); 3、扩孔(内孔外翻)性能指标:极限扩孔率(平均极限扩孔率)λ(λ); 4、弯曲性能指标:最小相对弯曲半径R min/t; 5、“拉深+胀形”复合成形性能指标:锥杯值CCV; 6、面内变形均匀性指标:凸耳率Z e; 7、贴模(抗皱)性指标:方板对角拉伸试验皱高; 8、定形性指标:张拉弯曲回弹值。 1.2 特定成形性能指标 选择或评定金属薄板冲压成形品级、协议金属薄板的订货供货、设计或分析冲压成形工艺过程时,可对金属薄板的材料特性指标或工艺性能指标提出要求,或参考它们的数据,它们统称为特定成形性能指标: 1、塑性应变比(r值)或平均塑性应变比(r); 2、应变硬化指数(n值); 3、塑性应变比平面各向异性度(r?)。 1.3 局部成形极限 评定、估测金属薄板的局部成形性能,或分析解决冲压成形破裂问题时,可使用金属薄板的成形极限图或成形极限曲线。 1.4 其他 以上所列举的各种成型性能试验方法均为我国冲压生产和冶金制造行业已经使用或比较熟悉的模拟成型性能试验方法,而且也属于国际上的主流成形性能

T.金属材料的常用试验标准.

T.金属材料的常用试验标准: GB2280 —87(金属拉伸-旧)GB228-2000 (金属拉伸-新)GB7314-87 (金属压缩)GB/T14452-93 (金属弯曲) GB/T232-1999 (金属弯曲)GB10120-1996 (金属松弛))GB/T4338-1995 (金属高温拉伸)GB5027-85 (金属薄板r 值)GB5028-85 (金属薄板n 值) GB3355-82 (纵横剪切) GB8653-1988 (金属杨氏模量的测定方法) GB3851-83 (硬质合金横向断裂强度的测定) HB5143-96 (金属拉伸) HB5195-96 (金属高温拉伸) HB5280-96 (金属箔材拉伸) HB5177-96 (金属丝材拉伸) HB5145-96 (金属管材拉伸) ASTM E8-99 (美标金属拉伸) ASTM E290-97a (美标金属弯曲) JIS Z2241-1998 (日标金属拉伸) JIS Z2248-1998 (日标金属弯曲) BS 4483-1985 (英标金属拉伸) BS 1639 :1964 (英标金属弯曲) DIN 50125-1991 (德标金属拉伸) DIN 50111-1987 (德标金属弯曲) ISO 6892-1998 (E)(国际标准金属拉伸) ISO 7348-1985 (E)(国际标准金属弯曲) 橡胶材料常用试验标准: GB/T528-92 (橡胶拉伸试验) GB/T529-1999 (硫化橡胶或热塑橡胶撕裂强度测定) GB530-81 (硫化橡胶撕裂强度的测定方法) GB1684-85 (硫化橡胶短时间静压缩试验方法) GB9871-88 (硫化橡胶老化性能的测定-拉伸应力松弛试验)GB/T15254-94 (硫化橡胶与金属粘接180 度剥离试验) GB/T1701-2001 (硬质橡胶拉伸强度和拉断伸长率的测定)GB/T2438-2002 (硬质橡胶压碎强度的测定) GB/T1696-2001 (硬质橡胶弯曲强度的测定) GB11211-89 (硫化橡胶与金属粘合强度的测定方法) HG4-852-81 (硫化橡胶与金属粘接扯离强度的测定方法)HG4-853-81 (硫化橡胶与金属粘接剪切强度的测定方法)HG/T2580-94 橡胶拉伸强度和断裂伸长率的测定) GB/T13936-92 (硫化橡胶与金属粘接拉剪强度的测定方法)GB/T1700-2001 (硬质橡胶抗剪强度的测定)

金属材料性能检验、试验标准号对照表

金属材料力学、工艺性能试验方法 GB/T10623—89 金属力学性能试验术语 GB/T 2975—82 钢材力学及工艺性能试验取样规定 GB/T 6396-95 复合钢板力学工艺性能试验方法 HB 5431—89 金属材料力学性能数据表达准则 HB 5488—91 金属材料应力一应变曲线测定方法 GB/T6401—86 铁素体奥氏体型双相不锈钢中α相面积含量金相测定法 GB/T 13305—91 奥氏体不锈钢中α相面积含量金相测定方法 GB/T 5225—85 金属材料定量相分析 x射线衍射K值法 GB/T 8360—87 金属点阵常数的测定方法 x射线衍射仪法 GB/T 8362—87 金属残余奥氏体定量测定 x射线衍射仪法 GB/* 5056—85 钢的临界点测定方法(膨胀法) GB/* 5057—85 钢的连续冷却转变曲线图的测定方法(膨胀法) GB/T 5058—82 钢的等温转变曲线图的测定方法(磁性法) CB/T 6526—86 自熔合金粉末固一液相线温度区间的测定方法

GB/T 4160—84 钢的应变时效敏感性试验方法(夏比冲击法) GB/T15757—95 表面缺陷术语 GB/T 2523—90 冷轧薄钢板(带)表面粗糙度测定方法 GB/* 6061—85 轮廓法测量表面粗糙度的仪器术语 GB/T13390—92 金属粉末比表面积的测定氮吸附法 GB/T11107—89 金属及其化合物粉末比表面积和粒度测定空气透过法 GB/T1423—78 贵金属及合金密度测试方法 GB/T 8653—88 金属杨氏模量、弦线模量、切线模量和泊松比试验方法(静态法) GB/T 4157—84 金属材料高温弹性模量测定方法圆盘振子法 GB/T 2105—91 金属材料杨氏模量、切变模量及泊松比测定方法(动力学法) CB/T13301—91 金属材料电阻应变灵敏系数试验方法 GB/T13012—91 钢材直流磁性能测定方法 GB 5027—85 金属薄板塑性应变比(γ值)试验方法 GB/T6397—86 金属拉伸试验试样

金属材料试验标准对照表

金属材料试验标准对照表 一、通用标准 ?GB/T1172-1999黑色金属硬度及强度换算值 ?GB/T2975-1998钢及钢产品力学性能试验取样位置及试验制备 ?GB/T10632-1989金属力学性能试验术语 二、金属拉伸、压缩、弯曲及扭转试验 ?GB/T228-2002金属材料室温拉伸试验方法 ?GB/T4338-1995金属材料高温拉伸试验 ?GB/T5027-1999金属薄板和薄带塑性应变比(r值)试验方法 ?GB/T5028-1999金属薄板和薄带拉伸应变硬化指数(n值)试验方法 ?GB/T7314-1987金属压缩试验方法 ?GB/T8358-1987钢丝绳破断拉伸试验方法 ?GB/T8653-1988金属杨氏模量、弦线模量、切线模量和泊松比试验方法(静态法) ?GB/T10128-1988金属室温扭转试验方法 ?GB/T13229-1991金属低温拉伸试验方法 ?GB/T14452-1993金属弯曲力学性能试验方法 ?GB/T17600.1-1998钢的伸长率换算第1部分:碳素钢和低合金钢 ?GB/T17600.2-1998钢的伸长率换算第2部分:奥氏体钢 三、金属硬度试验 ?GB/T230.1-2004金属洛氏硬度试验第1部分:试验方法 (A、B、C 、D 、E 、F 、G 、H 、K 、N 、T尺寸)?GB/T231.1-2002金属布氏硬度试验第1部分:试验方法 ?GB/T4340.1-1999-金属维氏硬度试验第1部分:试验方法 ?GB/T4341-2001金属肖氏硬度试验方法 ?GB/T17394-1998金属里氏硬度试验方法 ?GB/T18449.1-2001金属努氏硬度试验第1部分:试验方法 四、金属韧性试验 ?GB/T229-1994金属夏比缺口冲击试验方法

薄板弯曲问题弹性理论分析及数值计算

薄板弯曲问题弹性理论分析及数值计算 课程设计 指导教师:孙秦 学院:航空学院 姓名:程云鹤 学号: 2011300092 班级: 01011105

薄板弯曲问题弹性理论分析及数值计算 一、一般三维体弹性系统求解微分方程体系总结 1、弹性力学中的基本假定 (1)连续性,即假定整个物体的体积都被组成这个物体的介质所填满。 (2)完全弹性,物体在引起形变的外力被除去后可完全恢复原形 (3)均匀性,即假定物体是由同一材料组成的。 (4)各向同性,物体的弹性在所有各个方向都相同。 (5)和小变形假定,即假定位移和形变是微小的。 2、平衡微分方程 在一般空间问题中,包含15个未知函数,即6个应力分量、6个形变分量和3个位移分量,它们都是x,y,z 坐标变量的函数。对于空间问题,在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立平衡微分方程、几何方程和物理方程;并在给定约束面或面力的边界上,建立位移边界条件或应力边界条件。然后在边界条件下根据所建立的三套方程求解应力分量、形变分量和位移分量。 在物体内的任一点P ,割取一个微小的平行六面体,如图1-1所示。根据平衡条件即可建立方程。 (1)分别以连接六面体三对相对面中心的直线为矩轴,列出力矩的平衡方程 0=∑M ,可证明切应力的互等性:yx xy xz zx zy yz ττττττ===,, (2)分别以轴轴、轴、z y x 为投影轴,列出投影的平衡方程0=∑x F ,0=∑y F , 0=∑z F ,对方程进行约简和整理后,得到空间问题的平衡微分方程如下 ??? ? ?? ??? =+??+??+??=+??+??+??=+??+??+??000z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττσττσττσ (1-1)

金属力学及工艺性能试验方法国家标准

金属力学及工艺性能试验方法国家标准 一.金属力学试验通用标准 1.GB/T1172-99 黑色金属硬度及强度换算值 2.GB/T2975-98 钢及钢产品力学性能试验取样位置及试样制备 3.GB/T10623-08 金属力学性能试验术语 二.金属拉伸、压缩、弯曲、扭转试验 1. GB/T228-09 金属室温拉伸试验方法第1部分:试验方法 2. GB/T4338-06 金属材料高温拉伸试验 3. GB/Tl3239-05 金属低温拉伸试验方法 4. GB/T22315-08 金属弹性模量和泊松比试验方法 5. GB/T8358-06 钢丝绳破断拉伸试验方法 6. GB/T7314-05 金属材料室温压缩试验方法 7. GB/Tl0128-07 金属室温扭转试验方法 8. GB/T17600.1-98 钢的伸长率换算第1部分:碳钢和低合金钢 9. GB/T17600.2-98 钢的伸长率换算第2部分:奥氏体钢 三.金属硬度试验方法标准 1. GB/T231.1-09 金属布氏硬度试验第1部分:试验方法 2. GB/T 230.1-09 金属洛氏硬度试验第1部分:试验方法 3. GB/T4340.1-09 金属维氏硬度试验第1部分:试验方法 4. GB/T18449.1-09 金属努氏硬度试验方法 5. GB/T4341-0l 金属肖氏硬度试验方法 6. GB/T17394-98 金属里氏硬度试验方法 7. GB/T21838.1-08 金属材料硬度和材料参数的仪器化压痕试验第1部分:试验方法 四.韧性试验标准 1. GB/T229-07 金属材料夏比摆锤冲击试验方法 2. GB/T19748-05 钢材夏比V型缺口摆锤冲击试验仪器化试验方法 3. GB/T5482-07 金属材料动态撕裂试验方法 4. GB/T6803-08 铁素体钢无塑性转变温度落锤试验方法 5. GB/T8363-07 铁素体钢落锤撕裂试验方法 6. GB/T4160-04 钢的应变时效敏感性试验方法(夏比冲击法) 五.金属延性试验标准 1. GB/T232—99 金属材料弯曲试验方法

薄板弯曲问题的有限元分析

变分原理与有限元素法课程报告 报告名称:薄板弯曲问题的有限元分析 姓名: 学号: 导师: 专业: 2015.5.15

目录 1.问题描述 (3) 2.理论基础 (3) 2.1矩形薄板弯曲单元 (3) 2.1.1挠度函数 (3) 2.1.2单元刚度矩阵 (5) 2.2四边简支矩形板的纳维叶解法 (5) 3.有限元模型 (6) 4.结果与分析 (7) 4.1均布载荷作用下四边简支板 (7) 4.2集中载荷作用下四边简支板 (8) 4.2均布载荷作用下四边固支板 (9) 4.2集中载荷作用下四边固支板 (10) 4.5总结 (11)

1.问题描述 一块方板,边长为L,厚度为t( 5 1 /801≤≤t L ) ,材料为铝,分别用不同密度的四节点12个自由度的矩形单元来划分网格。 要求:考虑四边简支和四边固支两种边界情况,分别计算受均匀载荷q 和在板中心处受集中载荷P 两种载荷情况下,板的中心挠度max ω(不超过板厚t 的1/5),进而计算出不同情况下的方板的中心挠度系数;将计算出的系数与精确解进行比较,通过比较发现不同有限元网格密度对薄板弯曲问题计算结果的影响。 本例中,方板边长L=40mm,厚度t=1mm,铝的弹性模量E=70GPa,泊松比 3.0=μ,粗略计算当q=0.1MPa 或者P=50N 时,板中心挠度小于板厚的1/5,属 于小挠度弯曲,因此载荷可取这两个值。 2.理论基础 2.1矩形薄板弯曲单元2.1.1挠度函数 薄板弯曲单元中比较简单的是四节点12个自由度的矩形单元,将矩形薄板沿坐标方向划分为若干矩形单元,如图1所示,每个单元设有四个节点,每个节点位移有三个分量:挠度w,绕x 轴的转角y w x ??=/θ,绕y 轴的转角x w y ?-?=/θ,即 )4,3,2,1()/()/(}{=? ???????????-??=?? ?????? ??=i x w y w w w i i i yi xi i i ??δ图1

金属薄板的弯曲_实验报告

1.实验目的 1)了解金属薄板弯曲变形过程及变形特点。 2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影响。 2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯曲,分析板厚 和弯曲角度对相对弯曲半径的影响。 3)观察弯曲过程和弯曲回弹现象。 4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a) 所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…, l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…, r k。当板料弯曲到一定程度时,如图1(c) 所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d) 所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a) (b) (c) (d) 图1 弯曲过程示意图

实验六 金属薄板拉伸试验

实验六金属薄板拉伸试验 一、目的 通过拉伸试验确定金属薄板的力学性能,如屈服应力(σs)、抗拉强度(σb)、屈强比 (σs/σb),均匀延伸率(δu)、总延伸率(δk)、应变硬化指数(n)、塑性应变比(γ及-γ)、 凸耳参数(△γ)并绘制硬化曲线。 二、设备及工具 拉力试验机、千分尺、游标卡尺、直尺等。 三、试样 可以使用图1、图2中所示两种形状试样中的任一种,应在金属薄板平面上与轧制方向成0°、45°和90°三个方向切取试样。 试样厚度应当均匀,在标距长度内厚度变化不应大于0.01mm时,应不大于公称厚度的1%。 切取样坯和机加工试样时,应防止因加工硬化或热影响而改变材料的性能。 图1-1号样 图1-2号样 可用维氏金刚石压头或其它工具刻划标距点。标距点应位于试样的轴线上,并对称于平行长度部分的中心。 四、试验步骤和数据处理 将试样夹紧在试验机的夹头内,调整好测力刻度和载荷——伸长曲线记录装置。夹头的移动速度应在0.5~20mm/min范围内,并应保持加载速度恒定。 记录产生屈服时的载荷F s和最大载荷F max,并根据载荷——伸长曲线,进行数据处理

后,便可确定板材的σs 、σb 、σs /σb 、δu 、δ k 1、确定板材σs 、σb 、σs /σb 、δu 、δk σs 、σb 及σs /σb 由下式确定: σs =00A F 或σ0。2=2 02.0/.mm N A F (MPa ) σb =0max A F 2/,mm N (MPa ) 式中F s ——屈服时的载荷 ,N ; F 0.2——相对伸长为0.2时的载荷,N ; F max ——拉伸最大载荷,N ; A 0 ——试样原始横截面积,mm 2。 δu 及δk 由下式确定: δu =%10000?-L L L u δk =%10000?-L L L k 式中 0L ——试样原始标距长度,mm ; u L ——试样产生细颈时的标距长度,mm ; k L ——试样断裂时的标距长度,mm 。 2、绘制加工硬化曲线 对试验得到的拉伸曲线(图3)进行坐标变换: 图3 拉伸F-△L (σ-ε)曲线 横坐标变换为对数应变 ∈=ln 0L L = ln =?+00L L L ln (1+ε) (1) 纵坐标变换为真实应力 )1()1(00εσε+=+==A F A F S (2) 式中 ∈——对数应变(真实应变); ε——相对应变,ε=△L/L 0; △L ——试样标距的伸长,mm ; S ——真实应力,N/mm 2; σ0——名义应力,N/mm 2; 绘制方法如下:在拉伸曲线的横坐标取若干个△L ,再找到相应的载荷F 值,根据

薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题 一.内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二.重点 1. 基尔霍夫假设; 2. 薄板的应力、广义力和广义位移; 3. 薄板小挠度弯曲问题的基本方程; 4. 薄板的典型边界条件及其简化。 知识点 薄板的基本概念、薄板的位移与应变分量、薄板广义力、薄板小挠度弯曲问题基本方程、薄板自由边界条件的简化、薄板的莱维解、矩形简支薄板的挠度、基尔霍夫假设、薄板应力、广义位移与薄板的平衡、薄板的典型边界条件、薄板自由边界角点边界条件、挠度函数的分解

§12.1 薄板的基本概念和基本假设 学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤ /b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1. 薄板基本概念; 2. 基尔霍夫假设; 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。

相关文档
最新文档