压力容器分析设计分析
压力容器设计分析模型方案
![压力容器设计分析模型方案](https://img.taocdn.com/s3/m/4b1354da900ef12d2af90242a8956bec0975a5e7.png)
压力容器设计分析模型方案1问题分析本次分析是针对换热器标准椭圆形封头(S30408)开孔进行分析。
图1 部件图筒体内径D i=850mm,壁厚t=12mm;标准椭圆形封头内径D i=850mm,壁厚t=12mm;在椭圆封头顶端开孔,且接管尺寸为φ524×20mm,筒体侧面开孔尺寸DN=50mm,且距离筒体上端部为250mm。
根据GB150-2011第152页得,凸形封头D i,得本模型中最大开孔应为425mm,显然不符合或球壳上开孔最大直径d≤12GB150-2011的规定,因此不能采用常规设计。
则应按照JB4732-95进行分析设计,我们可以通过有限元建立模型进行应力评定。
在筒体上有一个开孔,对于一般钢材泊松比v=0.3,应力衰减长度x=2.5√Rt=178.54mm<250mm,因此在利用ansys建模时可以忽略其应力影响。
通过观察发现本模型可以采用对称型建立模型,同时在接管顶端施加端面平衡载荷P c=pD i2,其中内压p=1.6MPa。
(D i+2t)2−D i22基本参数2.1 设计参数由模型总图得管程设计压力p=1.6MPa,设计温度为-10~130℃,取T=130℃。
取筒体长度L=500mm,标准椭圆形封头直边段L1=25.5mm,大开空接管外伸长度L2=212mm,接管倒角R=5mm。
2.2 材料参数由GB150-2011和JB4732-95标准,查得S30408不锈钢在该温度下材料性能参数如下:根据GB150-2011第84页插值得:E130℃=187GPa根据GB150-2011第49页插值得:[σ]130℃=137MPa根据JB4732-95表6-2钢材的设计应力强度,通过插值得到相应设计温度下的S30408材料的设计应力强度为:σs20℃=205MPa;厚度为3~60mm时,S m130℃=137MPa3有限元建模3.1几何模型简化选用plane183单元,在options中K3设置Axisymmetric,建立几何模型。
压力容器的常规设计和分析设计
![压力容器的常规设计和分析设计](https://img.taocdn.com/s3/m/e8825d7ca417866fb84a8ebd.png)
科 技 圈 向导
21年第 2 期 02 l
压力容器的常规设计和分析设计
高 峰 f 矿 煤 化 工 程有 限公 司 山东 兖
【 摘
兖州
22 O ) 7 1 0
要】 当前 , 分析设计 目前 已成为压 力容 器的重要设计方 法。 文首先 阐述 了压力容器分析设计与常规设计的不同。 本 然后 分析设 计中应
形 而破坏 。一次应力又分总体薄膜应力 、 一次弯 曲应力 和局部 薄膜应 力 例如承受内压圆筒 的器壁 中的环 向应力 即为 总体薄膜应力: 平封 头或 顶盖 中央部分在 内压作用下产生 的应力 即为 一次弯曲应力: 壳体 在 固定支座或接管处 由外载荷和力矩产生的应力为局部薄膜应力 : 二 是二次应力 。 二次应力是 由于容器部件的 自身约束或相邻部件 的约束 而产 生的正应 力或剪应力。它 的基本特点具有 “ 自限性 ” , 即局部屈服 和小量变形 就会使约束缓 和 、 变形协调 . 只要不反复加载 , 二次应力不 会引起容器结构破坏 : 三是峰值应力 峰值应力是 因局部结构不连续 1常规设计与分析设计 . 它具有最高 的应力值 它的基本特 过去压力容器及其部件 的设计基本上属于常规设计 . 我国现在执 或形状 突变 引起 的局部应力集 中。 自限性” 局部性”峰值 应力不会 引起容器 明显 的变形 和“ , 行 的相应的设计规范是《 钢制压力容器) i S — 9 1 常规设计的特 点具有“ ) n 0 ( G 8。 3常 规设 计 和 分 析 设 计 比较 . 点是: 简体及其部件 的应 力不 允许超过弹性范围 内的某一许用 值 如 果达到这一要求 . 为筒体或部件就是 比较可靠 的 这样做 比较简 即认 常规设计是一种简单易行的传统设计方法. 而分析设计则不 同. 它 单. 以现成 的设 计公 式及 曲线为依 据 . 多年来 一直按这样 的方 法进行 需要详尽 的应力分析报告为依据 需要近代 的分析计算 工具和实验技 设 计。 然而 , 这种方法 比较粗糙 . 许多重要因素都 未考虑进去 。以内压 术为手段, 因而提供 了充分的强度数 据对 新工艺 、 新材料 、 新结构 和新 圆筒为例 , 常规设计 时只考虑薄膜应力 , 在 至于 温差应力 、 边缘应力以 工况更具科 学性 和可靠性 分析设计提高 了许用应力. 降低了安全系 及 交变应 力引起 的疲劳等 问题均未考虑 所 以在规范 中 . 为了保证容 数 3 多年来 的实际运行表 明: O 采用分析设计的容器安全 可靠. 且具有 器 的安全可靠在设 计中就采用 了较高 的安全 系数 。最早 的安 全系数 经济 胜; 与常规设 计相 比, 可节省材料 2 %~ 0 在一定程 度上有效减 0 3 %. n 5 4 年代末改为 n 4 这样做实 际上是企 图以高 的安全系数来包罗 少制造加工量 、 : .0 =。 降低运输费用 但对 于选 材 、 制造 、 检验和验收规定 了 各 种因素 的影 响. 存在一些 问题 比常规设计更为严格的要求 下面是 常规设计与分析设计的对比 近年来 , 由于锅 炉、 石油 、 化工 等行 业 的发展 , 压力容器设计 参数 ① 比较项 目: 设计准则。 常规设计 : 弹性失效 : 只允许存在弹性变 提高. 使用条件也越来 越苛刻 . 如果 单纯依靠提高 安全系数 的办法来 分析设计 : 弹性失效 ' 塑性失效 ; j 单 允许 出现 局部 的、 可控制 的塑性变 保 证强度 . 导致设计变得不合理 。 会 为了防止这种现象 的发生 . 我们在 形 (. 1 极限载荷( 一次加载 2安定 载荷反复加载) . 。 结构型式 与材料方 面采取相应措施外 . 还必须从设计观 点和设 计方法 ② 比较项 目: 载荷 。 常规设计 : 静载荷 。 分析设计 : 静载荷 、 交变载 上加以改进和发展 目前世 界上一些先进 的国家都在运用应力分析方 荷 。 法 . 国也 于 19 年颁 布 了f 我 95 钢制压 力容器一一 分析设计 标准) B 7 ( 4 J ③ 比较项 目: 分析方法。 常规设计 : 薄膜理论 、 材料力学方法 、 简化 犯 一 9 ) 要求把零部件 中的应力较为准确地设计 出来或用应 力测试 公式加经验 系数 。分析设计 : 5. 弹性或塑性力学分析f 理论方 法、 数值方 法 测定 出来 。其次是引入 了极 限分析与安定性分析 的概念 , 对求得的 法 、 实验方法)板壳理论 。 、 应力 加以分类和加 以限制 ④ 比较项 目: 应力评定。 常规设计 : 应力不分类 、 同一 的许用应力 、 分析设计和常规设计 的主要 区别如下: 用第一强度理论 、 基本安全系数较大 。分析设计 : 力分类 、 应 用应力强 用第 基本安全系数较小。 ①分 析设计 比常规设 计在选材 、 结构 、 设计 、 制造 、 检脸和使 用等 度对各类应力进行评定 、 三强度理论 、 方 面都提 出了较高 的要求和较多的限击峰件。 ⑤ 比较项 目: 材料。 常规要求 。 分析设计 : 质、 优 延性好 、 性能稳定 ②分析设计考虑容器低循环疲劳失效 。 而常规设计并未包 括疲劳 ⑥ 比较项 目: 制造 、 检验。 常规设计 : 常规要求。 分析设计 : 整体 陛、 连续性 、 相贯处光滑过渡 、 全焊透、0 % 10 探伤 。 分 析。 ③分 析设计考虑疲劳分析时要求详细计算温差应力 . 而常规设计 分析设计方法虽然合 理而先进- 却需要进行大量 复杂的分析计 f 旦 除个 别元件外一般无此要求 算. 需要计算机 才能完成, 因而提高 了设计 费用 和时间, 以。 所 只有当设 ④ 分析设计采用最 大剪应 力理论 . 而常规设计 . 最大主应 力 计高参数 、 采用 重要的容器时才 采用这种方法 。但有些容器必须采用分析 理论 。 设计而无其 它选 择 对 一般的常规容器. 长期的实践证 明采用传 统的 ⑤ 分析设计原则上要 求对容器元 件各个部位 的应力进行详 细计 常规设计方法完全可以满足容器 的安全性。 如采用 分析设 计方法. 虽然 算 . 根据各种应力对 元件失效所起不 同的作用予 以分类 . 并 然后对 不 节省部分钢材, 却提高了设计 、 制造 费用, 实际上是不合算的。 因而美国 同类别 的应力采用不同的应力校核条件加以限制。 而常规设甘一般不 A M S E规范 同时规定 了上述两种设计准则 ’ 我国也颁 布了 G 10 19 B5— 98 计算 某些 局部应力 . 针对具体结构 引人 不 同的结构 系数 . 仅 也不对应 《 钢制压 力容器》 J 4 3 — 5 钢制压力容 器—— 分析设计标准 》 和 B 729 《 , 根 力进行分类 。 据不 同情况进行不同选择 分析设计是一个整体。 计准则的不 同. 设 要 求与之配套 的一 系列规 范和措 施也不同, 包括材料选用 、 制造工艺 、 检 2分 析 设计 中应 力分 类 及 其 应 用 . 分析设 计涉 及了各种可能失效模式 中一些 主要 的失效模式 , 计 验要求 、 程序 、 制造资格 等方面 ; 常规设计 方法 简单易行, 设 计算 设计 而 具 但 根据 所考虑 的失效模 式 比较详 细地 计算 了容器及受 压元件 的各 种应 有丰 富的使用经 验, 有时却无法解释压力容器 出现 的一些事 故 所 设计者应 根据实践 经验, 经济 通过 力 . 根据各种应力本身 的性质及对失效模 式所起的不同作用予 以分 以 常规设 计和分析设 计不能混用 , 并
压力容器设计:技术策略与方案深度分析
![压力容器设计:技术策略与方案深度分析](https://img.taocdn.com/s3/m/92cc7c16443610661ed9ad51f01dc281e43a5677.png)
压力容器设计:技术策略与方案深度分析压力容器(Pressure Vessel)是一种普遍应用于工业领域的设备,它可以承受高压、高温等极端条件下的工作环境。
随着科技的不断发展,人们对压力容器的要求也越来越高,需要设计出更加稳定、可靠、安全的压力容器。
本文将就压力容器设计的技术策略与方案进行深入分析,并通过2023年的前瞻展望,展望未来压力容器领域的发展趋势。
一、压力容器设计中需要考虑的因素压力容器设计需要考虑的因素有很多,包括但不限于以下内容:1.材料选择压力容器的材料选择直接关系到容器的牢固程度和承载能力。
一般来说,压力容器可以采用不锈钢、合金钢、钛合金等材料。
2.结构设计良好的结构设计可以提高压力容器的抗压性能。
设计包括容器壳体结构形式、截面形状和尺寸、孔口的设置和布局等方面。
3.制造工艺制造工艺是保证压力容器制造质量和使用寿命的重要因素。
制造工艺包括热处理、造型、焊接、压力测试等过程。
4.使用环境压力容器的使用环境是影响容器使用寿命的关键因素,需要考虑温度、压力骤变等外界因素。
二、大规模工业制造对压力容器设计的影响随着制造业的不断发展,越来越多的企业开始使用大规模工业制造方法来生产压力容器。
大规模工业制造在提高生产效率的同时也加大了压力容器的制造难度。
这就需要在设计压力容器时更加注重规范标准和精细化技术。
为了保证生产效率和质量,压力容器制造需要遵循相关标准规范,例如ASME BPVC、EN 13445、GB 150等。
在设计过程中,应遵循相关标准规范,保证压力容器在材料选择、结构设计、制造工艺、压力测试等方面的安全性和可靠性,从而保障使用过程中的安全。
在大规模工业制造下,压力容器制造除了考虑工艺上的难点,还需要更高的自动化技术和专业化生产设备。
尤其在焊接技术方面,自动化水平提高将有利于提高生产效率,减少制造误差。
三、未来的压力容器设计趋势未来压力容器设计趋势主要表现在以下几个方面:1.轻量化设计轻量化设计是未来压力容器设计的一个重要趋势。
压力容器设计常见问题分析及解决措施
![压力容器设计常见问题分析及解决措施](https://img.taocdn.com/s3/m/52d01b30ba0d4a7303763a03.png)
压力容器设计常见问题分析及解决措施摘要:随着我国经济的飞速发展,工业领域取得了巨大的成就。
作为工业设计中的重要一部分,压力容器的设计也取得了很大的进步。
但是,随着压力容器设计的发展,压力容器在设计方面出现一些漏洞。
本文将对设计过程中的常见问题进行分析,并提出对应的防范措施,希望能为相关工作者提供一定的借鉴压力容器设计中时分析其设计合理性成本以及使用的安全性,非常重要。
分析了压力容器设计常见问题,提出几点提高压力容器使用效率的方法。
关键词:压力容器;设计;常见问题;应对方式引言随着压力容器的使用量越来越大,对设计提出了更高的要求,要保证其使用的安全性,同时还要求经济实惠,同时满足这两个方面,就要进行合理的设计,采取一个有效的、科学的方法设计压力容器。
而一个符合市场需求的压力容器,不仅仅是要具备基本功能,同时其使用安全性也是使用者提出的要求。
压力容器设计中一般包含有结构、刚度还有强度、密封设计等设计内容。
本文就压力容器设计常见问题进行解剖,并提出几点相应的处理措施。
1压力容器设计常见问题分析1.1经济性考虑其安全性能,针对材料的选择,就要考设备温度承受力、设计压力、材料之间焊接,以及各个介质之间的特性,对于冷热加工性能和容器结构进行整合分析,同时,还要分析其经济性。
压力容器造价一般与设备材料和总体的质量有直接联系。
而在设备总质量中,容器壳体质量占有很大一部分,特别是包含有较大内容的容器,它的壳体质量占有设备质量的80%~90%。
所以,在容器能正常使用的情况下,在利用材料方面,可以选择一些价格比较低但同样能满足正常容器的使用,从而有效的降低成本。
1.2材料许用应力跳档对压力有比较高要求的容器,一般它的封头是比较厚的,而封头的形成存在减薄量。
容器筒体在热成型过程中,也会出现一定的减薄量。
部分设计人员在进行这一环节的计算是,对封头和筒体的减薄量没有分析透彻,在制造过程中加入成形的减薄量,这样就很容易增加材料厚度,直接降低材料的许用应力,设厚度不足,因此,设计人员在设计过程就要对厚板类型的材料的许用应力跳档等问题进行分析。
低温压力容器的设计分析
![低温压力容器的设计分析](https://img.taocdn.com/s3/m/3984704be97101f69e3143323968011ca200f75f.png)
低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
压力容器设计与强度分析研究
![压力容器设计与强度分析研究](https://img.taocdn.com/s3/m/fd728fad162ded630b1c59eef8c75fbfc77d94aa.png)
压力容器设计与强度分析研究随着现代工业的不断发展,压力容器作为一种重要的设备,在许多工业领域发挥着重要的作用。
压力容器是指用于封装气体或液体的设备,其内部压力高于大气压力。
压力容器主要应用于石油化工、能源、化工、航空航天等领域。
首先,压力容器的设计至关重要。
在整个设计过程中,需要考虑许多因素,例如容器的尺寸、形状、承载能力等。
设计师需要根据使用环境和工作条件来选择合适的材料和结构。
此外,还需要遵循一系列国际标准和规范,确保容器的设计在实际运行中具有良好的可靠性和安全性。
在压力容器的设计中,其中一个重要的方面是强度分析。
强度分析是指对容器的主要应力和变形进行计算和评估。
通过强度分析可以确保容器在承受内外部压力的同时保持结构的稳定和完整性。
在进行强度分析时,需要考虑多种因素。
首先是容器的载荷计算,即确定所需承载力的大小。
载荷计算需要考虑到容器内外的压力、温度、材料特性以及各种工况下的加载情况,以确保设计的安全性和可靠性。
其次是材料的强度特性,包括材料的屈服强度、抗拉强度和断裂韧性等。
通过对材料的强度特性进行分析和测试,可以更好地选择适合的材料,对容器进行设计和优化。
最后还需要考虑到容器的边界条件和约束条件,以及在容器使用过程中可能产生的各种外力和环境因素。
在进行强度分析时,可以利用各种计算方法和工程软件。
常用的方法包括有限元分析、应力强度法和层板理论等。
有限元分析是一种广泛应用的计算方法,它可以将复杂的结构分割成许多小的有限元进行分析,通过求解各个有限元的应力和变形,最终得出整个结构的应力分布和变形情况。
应力强度法是一种基于结构应力的分析方法,通过计算结构的应力强度因子,来评估结构的抗裂性能。
层板理论是一种应用于薄壁结构的计算方法,通过分析结构的层板应力和变形,来评估结构的强度和稳定性。
除了设计和强度分析之外,还需要对压力容器进行一系列的检验和测试。
这些检验和测试包括可视检验、射线检验、超声波检验、涡流检验等。
压力容器设计与制造分析
![压力容器设计与制造分析](https://img.taocdn.com/s3/m/f13857a882d049649b6648d7c1c708a1284a0a07.png)
压力容器设计与制造分析徐宏超摘㊀要:关于如何改进作为复杂压力装置的压力容器的设计和制造的问题,目前正处于研究阶段㊂研究压力容器广泛应用于许多工业生产部门和日常生活㊂设计和制造也很好,要求压力容器,所设计和规范标准满足施工和生产的要求,考虑到设计和制造中可能出现的问题㊂制造考察压力容器的组合物和特性以及制造时的质量控制,分析了压力容器的设计和制造,并要求在整个制造过程中进行无损检测㊂关键词:压力容器;设计制造;质量提升一㊁引言目前,压力容器不仅在许多部门广泛使用,而且极有可能造成生产事故,并在容器质量有问题的情况下对公众财产造成损害㊂压力容器的制造过程总体包括设计与加工,焊接和检验等多个环节㊂该工艺的是相辅相成而来的,需要在每个部件的制造工艺完成之后才能实现互连㊂从材料选择到包装设计到国家标准的实施㊂二㊁压力容器的结构和特点(一)压力容器目前,在工业生产中使用,具有许多参数和结构特性,作为特殊设备㊂对于具有相同参数的产品,重新包装链中所需的工艺也因使用而不同㊂(二)生产制造可靠性㊁安全性必须确保可靠和安全,生产工艺必须符合国家安全标准,相应的生产工艺必须加以调整㊂加压材料的技术和经济置于制造的前沿,越来越多的新技术和材料工艺应用于特殊设备的制造,以及更多的不同标准年金标准化设备的设计和生产.新的设计标准和设计标准以整体的方式考虑到了设备制造和加工的要求,从而逐渐将经济考虑放在首位,这一点从以下方面可以看出,减少新标准中的安全因素㊂(三)压力容器制造中很多的参数有关于参数的相关信息,需要在统计信息工作中生产类似的产品,这项工作可以共同提高企业的加工水平和总体竞争力㊂(四)制造要具有很强的专业性使用复杂的特殊装置制造和制造多个压力容器装置,压力容器的制造质量必须通过调整过程来确定㊂为压力容器设计的设备是为焊接而制造的,焊接质量受到严格的控制㊂这也是许多控制过程中最薄弱的环节,需要良好的质量管理㊂三㊁设计制造压力容器时的参考条件(一)在安全的条件下进行设计压力容器,石化材料含有许多有毒物质和气体,具有高度的腐蚀性,而且许多介质易燃,很容易爆炸,因此必须确保压力容器的设计安全可靠,考虑到不寻常的工作温度条件和特性,例如腐蚀中间操作安全设计是将承载材料的腐蚀与压力容器的设计与寿命结合起来的㊂已经准备好缩短压力容器的寿命,特别是在化学工艺中,所以腐蚀应该保留㊂(二)疲劳设计压力容积疲劳可能导致超过两年或更长的监禁压力,而疲劳问题开始以较低的循环频率出现㊂(三)概率设计这一设计以现代数学统计数据为基础,这些统计数据允许对正在设计的集装箱进行全面评估,例如经济评估和安全评估㊂(四)压力容器的设计压力容器的设计,首先,先进性,而是便于制造,只有简单实用的标准才能够降低存在的缺陷㊂其次,便于无损检测因为它能够迅速准确地发现制造和使用中的缺陷,并迅速地进行修理或其他预测量㊂最后,最大限度地减少额外的应力和应力集中㊂容器的不同的故障和应力水平是密切相关的,压力容器及其部件的应力大小在很大程度上取决于其结构形状,而这种结构形状由于结构问题而导致压力容器内的事故,其中大多数事故是由结构问题引起的㊂对于不合理的结构损坏,大多数发生在焊接本身或其附近,也就是说,通常由于其强度特性和质量而决定㊂确保具有合理成本的压力容器安全可靠地设计和运行㊂经济上材料的合理选择在保证寿命的前提下,结构简单,易于制造㊁测试㊁维护和其他检查站,以尽量减少总成本㊂四㊁压力容器设计与制造中存在的问题(一)材料选择和工艺设计问题在现实中,由于选定材料质量差,与压力容器安全有关的事故较多,造成容器质量问题或破裂㊂例如,制造商试图通过降低产品标准和扰乱市场秩序来实现高成本效益㊂许多压力容器制造商为了最大限度地提高效益,制造压力容器的数据指数再次下降,许多压力容器的壁厚与工艺的目的不符,而且,压力容器内可能含有的压力值并不完全满足操作需要,因此,压力容器在安全条件下破裂㊂(二)制造过程容器变形问题压力容器的变形问题极有可能发生,由于制造焊接压力的方法而造成变形以及由于制造压力容器而造成的高瞬变温度受到许多问题的影响㊂焊接工艺导致焊接材料的变形㊂油罐第二种是由于使用压力容器期间的内部应力引起的裂缝或变形,由于过度处理错误或操作失误而导致压力容器变形㊂不适当的方法制造例如,当盖通过加热变形时,当高温脱模时,它导致盖严重变形㊂(三)焊接过程存在的问题在制造压力容器时的焊接工艺至关重要,因为在制造压力容器的焊接工艺的各个环节中,存在着许多压力容器质量问题㊂容器的破坏形状通常导致容器材料不一致或焊接断㊀㊀㊀(下转第166页)(三)露天矿山生产管理无人机遥感技术可为露天矿提供低成本㊁高质量的空间数据支撑,推进生产管理方式向智化㊁信息化转变㊂国内外学者对此开展了大量研究,为减小外业劳动强度㊁提升工作效率,引入无人机摄影测量技术成功实现露天矿山开采范围㊁开采面积㊁开挖土方量㊁开采过程㊁排水疏干㊁土地复垦的动态监测㊂从技术层面遏制违法采矿活动,保障新疆地区资源开发有序开展;以保加利亚一处采石场为例对比研究无人机遥感与传统人工测量手段在储量动态监测的应用效果,结果显示无人机遥感成果误差在1.1%左右,而数据采集耗时缩减90%以上,更适合大范围区域的数据快速获取;提出无人机遥感与地面激光扫描技术结合的露天矿三维成图与监测工作方法,现场测试表明成图精度达到dm级别㊂将实际测量野外点位与成图后在图上量取的点位进行对比分析,得出结论为内业加密点㊁地物点㊁内业加密高程点㊁内业高程注记点与实际测量野外点位的误差分别为0.88m㊁1.01m㊁0.70m㊁0.79m㊂具体情况见表1㊂表1 成图质量分析类别总点数/个识差分布/m<1<1 2>2检测识差/m内业加密点6460400.88地物点6458601.01内业加密高程点6461300.70内业高程注记点6462200.79五㊁结语近年来,高准确性技术的发展速度加快,小型POS系统被用于低空无人机遥感,从而提供了无缝绘图㊁三维激光扫描等功能的组合,已解决了负载㊁航程等方面的不足之处,并扩大了低空无人机遥感的使用范围,以更好地开展水利工程项目的测绘工作,水利工程测绘的附加值增高并降低了这些测量费用,从而形成发展水利工程测绘的新概念,促进水利工程项目测绘工作更加高效地完成,提高测绘结果的准确性,并与我国水利工程测绘行业的未来发展方向相一致㊂参考文献:[1]娄骏,于文娟.无人机遥感技术在测绘工程测量中的应用[J].交通世界,2019(34):20-21.[2]张沙千.试论无人机遥感技术在测绘工程测量中的应用[J].居舍,2019(31):84.[3]曾大文.无人机遥感技术在测绘工程测量中的应用[J].居舍,2019(27):196-197.[4]葛涛.探究无人机遥感技术在测绘工程测量中的应用[J].门窗,2019(14):262,265.[5]周晓妹.试论无人机遥感技术在测绘工程测量中的应用[J].居舍,2019(20):196.作者简介:杨娟珍,大同市勘察测绘院㊂(上接第164页)裂,压力容器质量下降㊂五㊁压力容器设计与制造的有效对策(一)材料及工艺设计标准选择问题的解决对策为了解决压力容器的选择问题,应根据包装的制造规格,制订一个选择计划和压力容器的采购计划,并由专门的材料检验人员选定,以检查包装材料是否符合规格㊂具有化学特性的容器按照腐蚀防护标准设计,并且压力容器的负载压力值必须与压力容器的最大负荷值相匹配或覆盖㊂在设计高压容器时,排泄阀设计要求的设计应允许开启低于容器最大值的极限㊂(二)容器变形问题的解决对策通过焊接加压容器使容器变形焊接工艺适合于容器的不同形状和Sphe容器的焊接设计㊂在装配前必须将集装箱焊接,将容器焊接到给定序列㊂压力容器必须组合焊接,并设计成防止容器在焊接变形发生的区域内变形,考虑保存的焊接收缩量的适当值,以防止由于体积不匹配而使外壳破裂,并通过制造的反向焊接方法减少或消除焊接变形㊂用于消除由内部应力引起的容器变形的溶液是一种处理焊接方法,热的由全球温度升高产生的内部应力容器或压力变化使得焊接容器整体㊂在一定温度下加热以进行焊接操作,同时防止热不规则的发生,并可通过加强或加强‘公约“的措施加以保护支撑由于连续设计错误造成的集装箱变形必须经过仔细检查,模具和模型的设计应避免由于集装箱形状错误造成的变形㊂同时,避免形状误差,同时,考虑到热膨胀冷却现象造成的误差的大小,并满足预缩回量设计的制造要求㊂(三)焊接过程中的缺陷问题的解决对策焊接缺陷必须加以控制,以控制焊接和重复焊接的通道,压力容器的焊接技术实际上是机械制造的过程中最为主要的关键环节,是直接与成品制造的质量相关㊂这个需要重视起来,对于缺陷问题提前设计和解决,才能够保证压力容器的质量㊂六㊁结语压力容器的设计和制造必须符合国家制造压力容器的规格,同时,考虑到整个容器选择和焊接过程,焊接技术需要达到焊接水平,生产工艺的监督和质量控制制造只有这样,压力容器行业才能迅速发展,才能满足压力容器设计和制造的要求㊂参考文献:[1]王娜.压力容器设计制造中的典型问题及对策[J].化工管理,2020(2):128-129.[2]刘秋实,王尚峰,佘虎君.压力容器设计与制造分析[J].南方农机,2019,50(8):172.[3]魏世民.解析柱压力容器爆炸事故调查分析[J].化工设计通讯,2018,44(3):242,254.作者简介:徐宏超,南京正源搪瓷设备制造有限公司㊂。
压力容器分析设计
![压力容器分析设计](https://img.taocdn.com/s3/m/49d0d1db50e2524de5187eca.png)
(3) 部位C
内压在球壳与接管中产生的应力 (PL+Q); 球壳与接管总体不连续效应产生的应 力(PL+Q); 径向温差产生的温差应力(Q+F); 因小圆角(局部不连续)应力集中产生 的峰值应力(F)。 总计应为(PL+Q十F)。 由于部位C未涉及管端的外加弯矩, 未涉及管端的外加弯矩 管子横截面中的一次弯曲应力Pb便不
一次应力 薄膜应力 一次总体薄 膜应力 (Pm)
一次总体薄膜应力是在容器 总体范围内存在的薄膜应力, 在容器筒体或封头在整体范 围内发生屈服后,应力不重 新分配 一次总体薄膜应力 新分配。 次总体薄膜应力 的一个实例 为承受内压的圆 柱形筒体。
一次弯曲应力(Pb) 一次局部薄膜 应力 (PL)
由内压或其他机械载荷 在结构不连续区产生的 薄膜应力和结构不连续 效应产生的薄膜应力。 一次局部薄膜应力的例 次局部薄膜应力的例 子有:在容器的支座或 接管处由外部的力或力 矩引起的薄膜应力. 由内压或其他机械 载荷作用而产生的 沿壁厚线性分布的 法向应力。典型实 例是平封头中部在 压力作用下产生的 弯曲应力.
7.2
压力容器的分析设计
压力容器的设计
常规设计
分析设计
GB150《 钢 制 压 力 容器》
JB4732 《钢制压力容器 ——分析设计标准》
一、概述 常规设计的局限性: (1)载荷性质
载荷 静载荷 交变载荷 常规设计 √ × 分析设计 √ √
(2)应力计算
应力计算 计算方法 研究的对象 常规设计 简单的公式计算 壳体 分析设计 解析法,数值法, 实验法 设备上的所有点
(1) 弹性失效设计准则 (韧性材料) ——将容器总体部位的初始屈服视为失效。 (2) 塑性失效设计准则 ——整个危险面屈服,极限设计。 (3) 爆破失效设计准则
压力容器的分析设计
![压力容器的分析设计](https://img.taocdn.com/s3/m/6921342cb90d6c85ec3ac64b.png)
过渡区或 与筒体连 接处 平 盖 中 心 区
內
压
內
压
与 筒 体 连 接 处
內
压
局部薄膜应力一次应力 弯曲应力二次应力
PL Q
表4-15 压力容器典型部位的应力分类
接 管 接 管 壁 內 压 一次总体薄膜应力 局部薄膜应力一次应力 弯曲应力二次应力 峰值应力 薄膜应力二次应力 弯曲应力二次应力 峰值应力 Pm PL Q F Q Q F Q F
4.4.2.1 应力分类
一次应力P (3)一次局部薄膜应力PL 在结构不连续区由内压或其它机械载荷产生的薄膜应力和 结构不连续效应产生的薄膜应力统称为一次局部薄膜应力。 作用范围是局部区域 。 具有一些自限性,表现出二次应力的一些特征,从保守 角度考虑,仍将它划为一次应力。
实例:壳体和封头连接处的薄膜应力; 在容器的支座或接管处由外部的力或力矩引起的薄膜应力。
一次总体薄膜应力强度SⅠ;
一次局部薄膜应力强度SⅡ; 一次薄膜(总体或局部)加一次弯曲应力(PL+Pb)强度SⅢ; 一次加二次应力(PL+Pb+Q)强度SⅣ; 峰值应力强度SⅤ(由PL+Pb+Q+F算得)。
4.4.3 应力强度计算
应力强度计算步骤 除峰值应力强度外 ,其余四类应力强度计算步骤为: (1)在所考虑的点上,选取一正交坐标系, 如经向、环向与法向分别用下标x 、q 、z表示, 用x、q和z表示该坐标系中的正应力, txq、txz、tzq表示该坐标系中的剪应力。 (2)计算各种载荷作用下的各应力分量,并根据定义将各 组应力分量分别归入以下的类别:一次总体薄膜应力 Pm;一次局部薄膜应力PL;一次弯曲应力Pb;二次应 力Q;峰值应力F。
4.4.3 应力强度计算
压力容器设计方法分析对比
![压力容器设计方法分析对比](https://img.taocdn.com/s3/m/10e78032bb1aa8114431b90d6c85ec3a87c28b20.png)
压力容器设计方法分析对比压力容器在化工、石化、工程机械等领域得到广泛的应用,而正确的设计是压力容器安全运行的基础。
本文将介绍三种常用的压力容器设计方法,并分析其各自的优缺点,以便应用者根据实际需求选用合适的设计方法。
1. ASME VIII-1 标准ASME VIII-1 标准是美国机械工程师学会发布的压力容器设计规范,适用于低压容器 (设计压力不大于 10MPa)。
该标准要求设计考虑容器的载荷、材料性能、焊接、校核、检验等各方面问题,并对各个部位的厚度、连接件的要求以及强度校核进行详细规定。
ASME VIII-1 标准以其全面、详细的设计要求而得到了广泛应用。
优点:•ASME VIII-1 标准设计要求全面、严谨,设计过程具有一定保障。
•认可度高,符合国际标准,可以接受国际认可。
缺点:•该标准要求详细、繁琐,需要对标准内容熟悉,且容器设计需要由认可的专业人员进行。
•需要经过审查与认证,过程较为繁琐。
2. CODAP 标准CODAP (Construction Operation Design of Pressure Vessels) 标准是欧洲标准委员会发布的压力容器设计规范,适用于设计压力不超过3000MPa 的容器。
通过规定基本要求、公差、厚度、防腐、焊接、检验、强度校核等方面的规范,保证了压力容器的安全性和可靠性。
优点:•CODAP 标准对压力容器的设计和制造过程提供了全面的规范,以保证容器在长时间的使用中保持良好的使用性能。
•该标准可以适用不同条件下的容器,使得设计者可以根据实际条件来选择不同的设计方案。
•CODAP 标准的认同度很高,在国际上具有广泛的通用性和识别度。
缺点:•该标准的设计过程繁琐,需要一定的设计经验和专业技能。
•CODAP 标准可能不适合一些非欧洲的国家,需要根据不同的国家标准进行认证。
3. CNS 三合标准CNS 三合标准是由中华民国国家标准局颁布的压力容器设计标准,适用于设计压力不超过 50MPa 的容器。
压力容器分析设计标准
![压力容器分析设计标准](https://img.taocdn.com/s3/m/3d0ea77c66ec102de2bd960590c69ec3d5bbdbcd.png)
压力容器分析设计标准
压力容器是工业生产中常见的设备,用于储存或加工压缩气体、液体或蒸汽。
由于其特殊的工作环境和功能,压力容器的设计、制造和使用需要严格遵守一系列的标准和规定,以确保其安全可靠地运行。
首先,压力容器的设计必须符合国家相关标准和规范,如《压力容器设计规范》GB150、《钢制压力容器》GB151等。
这些标准规定了压力容器的设计参数、结构要求、材料选用、焊接工艺、安全阀选型等方面的内容,确保了压力容器在设计阶段就具备了安全可靠的基础。
其次,压力容器的制造需要严格按照《压力容器制造规范》GB151中的要求进行。
制造过程中需要严格控制材料的质量、焊接工艺的可靠性、表面处理的完整性等,以确保制造出的压力容器符合设计要求,并且能够在实际工作中承受所需的压力和温度。
除了设计和制造阶段的标准要求,压力容器的安装、使用和维护也需要遵守相
应的标准和规范。
例如,在安装过程中需要保证容器的支撑结构稳固可靠,管道连接紧密无泄漏,安全阀和压力表的选型和安装符合要求。
在使用过程中需要定期进行压力测试和安全阀的调整,确保容器在正常工作范围内运行。
在维护过程中需要按照规定的周期进行检查和维护,及时发现并处理潜在的安全隐患。
总的来说,压力容器的分析设计标准涵盖了从设计、制造到使用和维护的全过程,这些标准的遵守是保证压力容器安全运行的基础。
只有严格按照标准要求进行设计、制造和使用,才能确保压力容器在工业生产中发挥应有的作用,避免因为安全隐患而导致事故发生。
因此,对于从事压力容器相关工作的人员来说,熟悉并遵守相关标准和规范是至关重要的。
压力容器结构特性分析与设计
![压力容器结构特性分析与设计](https://img.taocdn.com/s3/m/d382cf9e3086bceb19e8b8f67c1cfad6195fe9c1.png)
压力容器结构特性分析与设计1. 引言压力容器作为一种用于储存或输送物质的设备,广泛应用于工业生产和民用领域。
设计和使用压力容器需要考虑其结构特性,确保其能够安全可靠地承受内外压力。
本文将对压力容器结构的特性进行分析与设计。
2. 压力容器结构特性压力容器的结构特性主要包括强度、刚度和稳定性。
在设计中,强度是最基本的要求,即容器在最大工作压力下不发生塑性变形或破坏。
刚度则确保容器在内外压力作用下不会产生过大的变形,从而保证其功能的正常发挥。
稳定性考虑容器在受到外力或其他扰动时的抗倾覆和抗滚动能力。
3. 强度分析与设计压力容器的强度分析与设计主要考虑容器壁的应力分布和薄弱点的强化。
采用有限元分析等方法可以得到应力分布情况,进而对壁厚进行选择和优化。
例如,对于圆筒形容器,应力最大的地方一般位于筒体与头部的交界处,因此可以适当增加这一区域的壁厚以提高强度。
4. 刚度分析与设计刚度分析与设计旨在确保容器在工作过程中不变形或过度变形。
一种常用的方法是通过增加支撑结构或加装支撑环使容器刚度增加。
另外,也可以通过优化容器的几何形状来增加其刚度。
例如,对于圆筒形容器,增加半径或者长度可以大幅提高刚度。
5. 稳定性分析与设计稳定性分析与设计主要考虑容器在受到外力或其他扰动时倾覆和滚动的问题。
通过合理的设计和选择支撑结构、引入抗滚环或抗倾覆支撑装置等手段,可以提高容器的稳定性。
此外,对于高压容器,还可以考虑采用多层壳体结构,增加容器的整体刚度和稳定性。
6. 材料选择与焊接技术材料选择对压力容器的结构特性至关重要。
通常选择具有良好的强度和耐蚀性的材料,如碳钢、不锈钢、合金钢等。
对于一些耐高温或特殊介质的容器,还可以选择高温合金材料。
此外,焊接技术在容器的制造过程中也起到重要的作用,高质量的焊接可以提高容器的强度和密封性。
7. 结语压力容器作为一种重要的储存和输送设备,在设计和使用中必须考虑其结构特性,确保其安全可靠。
本文对压力容器结构的特性进行了分析与设计,并介绍了强度、刚度和稳定性的考虑要点。
压力容器结构设计要点分析及解读
![压力容器结构设计要点分析及解读](https://img.taocdn.com/s3/m/f945c088fc0a79563c1ec5da50e2524de518d0e8.png)
压力容器结构设计要点分析及解读摘要:随着现代化工企业的发展,压力容器越来越广泛地使用在石油、化工、制药、食品等各个领域。
压力容器作为承受压力等较高载荷的设备,若设计不合理,可能会导致容器变形甚至爆炸,给人员和环境带来严重危害。
为此,笔者结合多年的工作实践经验,对现代压力容器结构设计的要点进行了分析和总结。
关键词:压力容器;结构设计;要点引言随着工业化进程的不断推进,各类化工制品的需求量也与日俱增,压力容器作为一种安全系数较高的特种设备,在生产中承担了越来越重要的作用。
压力容器是一种封闭结构,通常用于储存或运输气体、液体或其他物质。
它们必须承受高压和高温等特殊工作状态,同时还必须防止泄漏和爆炸等危险。
这些要求使压力容器的设计变得至关重要,这不仅涉及容器中包含的介质,还涉及压力的大小、温度以及容器的结构、尺寸等方面。
因此,压力容器结构设计是至关重要的。
注重立足于安全、及时、经济和谐的原则,全面优化压力容器结构设计,会使其设计更加科学合理。
1压力容器结构设计要求压力容器广泛应用于精细化工、石化、医药行业、石化电子和机械电器等行业,特别是化工压力容器,其内部采用的材料大多为装配式的内件,设计过程复杂繁琐,如果产品设计有问题,将对压力容器的稳定性造成威胁,甚至可能形成重大安全隐患,影响设备的正常运行。
在压力容器的设计过程中,应根据其工况、介质特性、环境温度、工作气压、连接管口等使用条件,结合当前压力容器的相关设计法规和标准,进行系统风险评估,以确保产品在设计过程中不会出现风险问题,确保容器质量达到使用最高要求。
2压力容器结构设计的原则2.1 应力的均匀性在设计压力容器时,应该特别注意壳体结构的连续性,以确保它能够承受较大的应力变化,避免突变情况的发生。
如壳体结构有难于连续之处,为保证应力的均匀分布,应采用圆滑过渡的办法。
2.2应力集中或削弱强度的结构相互错开在设计压力容器时,应该尽量避开在结构强度较弱或应力集中的部位进行设计,以防止应力的叠加情况发生。
压力容器分析设计基础
![压力容器分析设计基础](https://img.taocdn.com/s3/m/7d416c40cd1755270722192e453610661fd95a52.png)
一、应力性质
1.薄壁容器
pr2 2T
pr2 2T
(2
r2 ) r1
应力特点:
➢ 沿壁厚均布;
➢ 平衡外载,无自限性;
➢ 外压时为压应力,需 考虑失稳。
一、应力性质
2. 厚壁容器
K
p 2
1
(1
R02 r2
)
r
K
p 2
1
(1
R02 r2
)
z
K
p 2 1
K R0 Ri
一、应力性质
2. 厚壁容器
为了分析应力的性质,将非线性分布的应力视为均 匀分布、线性分布和非线性分布的三部分的叠加。
许用应力分类 GB150-98,约27种
JB4732-95,约27种
15 制造与检验
按压力容器常规要求 比前者要求严格
制造资格 16 综合经济性
要有压力容器制造许可 证
一般结构的容器综合经 济性好
必须有相应的许可证,例如第三类 压力容器许可证
大型、复杂结构的容器综合经济性 好(用户需提供详细的设计任务书)
16MnR正火,6-100mm -20 ℃ 16MnDR正火,6-32mm, -40 ℃ 09Mn2VDR正火,6-20mm,-50 ℃ 09MnNiDR正火,6-60mm,-70 ℃
5 钢板的韧性要 20R
≥18J
求(以冲击功Akv 16MnR,15MnVR
≥20J
表示)
15MnVNR,18MnMoNbR,
2、分析设计
设计准则
塑性失效准则——只有当结构沿厚度方向全部屈服时, 结构才失效。
疲劳失效准则——一定许循环应力幅作用下的构件,只 有其循环次数超过允许的最大循环次数后,才会发生疲 劳破坏。
压力容器设计 分析设计
![压力容器设计 分析设计](https://img.taocdn.com/s3/m/c1089a34a32d7375a417802e.png)
常规设计
某些规定的结构形 式
分析设计 任何结构
分析设计的基本思w想ww.bzfxw.com
(1)不同种类的应力对容器失效的影响各不相同;
(2)如果能够对应力进行更严格而详细的计算, 压力容器的设计 就能够做到更合理、更科学。
6 标准分享网 免费下载
4.4.2 压力容器的应力分类
(4) 计算主应力 σ1, σ2 和 σ3,取 σ1>σ2>σ3. (5) 计算每组的最大主应力差
σ 13 = σ 1 − σ 3
σ13 即为分别与 Pm , PL , PL + Pb , PL + Pb + Q , PL + Pb + Q + F 相对应的应力强度 S I , SII , SIII , SIV 和 SV 。
过程设备设计
σ
t θ
O Ri
二次应力 Q
当量线性应力
当量线性应
力,是和实
际应力有相
同弯矩的线
Ro
性分布应力
峰值应力 F
峰值应力
图4-57 外加热厚壁圆筒环向热应力的
线性化处理
14
标准分享网 免费下载
4.4.3 应力强度计算
4.4.3 应力强度计算
应力强度: 该点最大主应力与最小主应力之差
25
内压
一次总体薄膜应力 沿厚度的应力梯度 二次应力
轴向温度 梯度
内压
薄膜应力-二次应力 弯曲应力-二次应力
局部薄膜应力 -一次 应力 弯曲应力-二次应力
过程设备设计
符号
Pm Q
Q Q
PL Q
在接管或其它开孔 附近
外部载荷或 力矩,或内
压力容器的稳定性分析与设计优化
![压力容器的稳定性分析与设计优化](https://img.taocdn.com/s3/m/819465bd70fe910ef12d2af90242a8956aecaa6d.png)
压力容器的稳定性分析与设计优化压力容器是一种能够储存和运输高压介质的设备,广泛应用于石化、化工、能源、医药等众多领域。
然而,由于高压环境下容器受力情况复杂,容器的稳定性问题一直是工程师们关注的焦点。
本文将从压力容器的稳定性分析和设计优化两个方面进行论述,探讨如何在容器设计中降低事故风险,提高运行安全性。
一、压力容器的稳定性分析1. 弯曲稳定性分析在高压环境下,容器会承受来自介质内部以及外部环境的力,容器壁的弯曲稳定性是保证容器不发生变形和破裂的重要因素。
因此,对容器的弯曲稳定性进行分析是容器设计的基础。
首先,需要计算容器在弯曲时的应力和应变分布情况,通过有限元分析等手段,确定容器壁的最大应力点和最大应力值。
然后,结合材料的力学性能,进行强度校核,确保容器能够满足正常使用条件下的强度需求。
2. 局部稳定性分析容器壁的局部几何缺陷或开口可能导致局部应力集中,引发容器的局部失稳或破裂。
因此,在容器设计中需要对局部稳定性进行充分考虑。
针对容器壁的几何缺陷或开口,可以采用应力集中系数和强度减少系数等方法进行评估。
通过计算得到的应力集中系数和强度减少系数,判断局部失稳的可能性,并进行优化设计,降低缺陷处的应力集中程度,提高容器的局部稳定性。
二、压力容器的设计优化1. 材料选择与工艺优化在压力容器的设计过程中,正确选择合适的材料对提高容器的稳定性至关重要。
材料的力学性能、耐腐蚀性能以及可焊接性等因素都应该被考虑。
同时,还需要优化焊接工艺,避免焊缝处的强度降低,以提高容器的整体稳定性。
2. 结构优化与加强设计容器的结构设计对其稳定性具有重要影响。
合理的结构设计可以提高容器的整体刚度,降低容器的应力集中程度,从而提高容器的稳定性。
在结构设计过程中,可以采用有限元分析等先进的计算方法,优化容器的结构,减少质量,提高容器的刚度,从而提高容器的整体稳定性。
3. 考虑温度和压力变化容器在运行过程中,温度和压力的变化会对容器的稳定性产生影响。
2024年压力容器的分析设计
![2024年压力容器的分析设计](https://img.taocdn.com/s3/m/9f3feb1603768e9951e79b89680203d8ce2f6ac6.png)
Methods Places
simple formulas shell
Analytic, numerical, experimental mathod
All points
(3) Pressure vessel structures
Codes structures
Design-by-rule Some structures
一次总体薄膜应力强度SⅠ; 一次局部薄膜应力强度SⅡ; 一次薄膜(总体或局部)加一次弯曲应力(PL+Pb)强度SⅢ; 一次加二次应力(PL+Pb+Q)强度SⅣ; 峰值应力强度SⅤ(由PL+Pb+Q+F算得)。
4.4.3 应力强度计算
应力强度计算步骤
除峰值应力强度外 ,其余四类应力强度计算步骤为:
(1)在所考虑的点上,选取一正交坐标系, 如经向、环向与法向分别用下标x 、q 、z表示, 用x、q和z表示该坐标系中的正应力, txq、txz、tzq表示该坐标系中的剪应力。
典型实例:平封头中部在压力作用下产生的弯曲应力。
4.4.2.1 应力分类
一次应力P
(3)一次局部薄膜应力PL 在结构不连续区由内压或其它机械载荷产生的薄膜应力和 结构不连续效应产生的薄膜应力统称为一次局部薄膜应力。 作用范围是局部区域 。
具有一些自限性,表现出二次应力的一些特征,从保守 角度考虑,仍将它划为一次应力。
PL
与 筒 体 內 压 局部薄膜应力一次应力 PL
连接处
弯曲应力二次应力
Q
表4-15 压力容器典型部位的应力分类
接管
接管壁
內 压 一次总体薄膜应力
Pm
局部薄膜应力一次应力 PL
压力容器分析设计的应力分类法与塑性分析法
![压力容器分析设计的应力分类法与塑性分析法](https://img.taocdn.com/s3/m/68f9f8c5f71fb7360b4c2e3f5727a5e9856a273e.png)
压力容器分析设计的应力分类法与塑性分析法压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。
进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。
标签:压力容器;应力分类法;塑性分析法近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。
以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。
但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。
1应力分类法1.1一次应力一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。
一次应力超过材料屈服极限时压力容器就会发生变形破坏。
主要可以分为以下几种情况:第一,总体薄膜应力。
因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。
第二,局部薄膜应力。
是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。
第三,一次弯曲应力。
由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。
1.2二次应力二次应力是指压力容器部件受到约束而出现的剪应力。
二次应力满足变形条件。
例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。
在这种情况下,连接部位会附加剪力应力,从而形成二次应力。
压力容器分析设计
![压力容器分析设计](https://img.taocdn.com/s3/m/10c8d3ccb14e852458fb5736.png)
2 应力特性
2.4 壳体不连续区
2 应力特性
2.4 壳体不连续区
边缘应力的特点: (Ⅰ)边缘局部范围,并非遍及整个容器; (Ⅱ)具有自限性; (Ⅲ)边缘应力中,内力引起均匀分布的正应力,内力 矩引起线性分布的弯曲应力,均匀分布应力的危害大于 线性分布应力的。
2 应力特性
2.5 容器支座区
2 应力特性
1分析设计概述 1.3 与常规设计的规范比较
2 应力特性
2.1 中低压容器
薄膜应力特点:
(Ⅰ)应力值决定于第一曲率半径与第二曲率半径;
(Ⅱ)存在整个壳体,沿壁厚均匀分布; (Ⅲ)与外载平衡,增大载荷,应力增大,无自限; (Ⅳ)承受外压,为薄膜压应力,失稳的临界应力。
1分析设计概述 1.2 分析设计的基本思想 分析设计的主要特点
(Ⅰ)采用塑性失效设计准则; (Ⅱ)进行详细应力分析; (Ⅲ)对不同性质的应力区别对待; (Ⅳ)引入虚拟应力概念。
分析设计的三大环节
(Ⅰ)应力分析:对容器各部位的各种应力进行详细计 算,或对模拟容器的应力进行实验测试; (Ⅱ)应力分类:根据不同应力引起失效的危害程度不 同,进行应力分类; (Ⅲ)应力评定:对不同类型的应力进行分析、组合,形 成当量应力,采用不同的失效准则给予限定。
(3)一次弯曲应力(代号
)
作用于整体结构,由机械载荷引起,沿截面线性分布
3 应力分类
3.2 二次应力(代号 )
特点:由变形不连续引起,自限性,总体结
构不连续引起的弯曲应力
3.3 峰值应力(代号 )
特点:由局部结构变形不连续引起,有自限 性,不引起结构明显变形,导致疲劳
4 应力评定
1 应力强度 应力强度:按一定强度理论对复杂应力状态组合为与 单向应力可以比较的当量应力。 具体内涵:按一定标准(强度理论),确定一个与应 力状态无关的应力值(当量应力),认为 一旦达到该应力值,材料就发生破坏。 应力强度 =2×最大剪应力 或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 问题描述
利用ANSYS软件对压力容器用标准椭圆形封头和半球形封头进行应力分析,并沿着压力容器轴向方向绘制笛卡尔坐标系下X、Y、Z方向应力曲线,三个主应力曲线以及第一强度理论,第三强度理论、第四强度理论计算方法下的应力理论值和应力曲线。
相关参数:筒体内径:400mm,筒体长度为1000mm,筒体、封头厚度均为5mm,材料弹性模量为206GPa,泊松比为0.3,内压P=1MPa。
2 建模过程:
单元选取:本题研究的是薄壁压力容器,对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
材料特性:ANSYS 结构分析材料属性有线性 (Linear)、非线性 (Nolinear)、密度(Density)、热膨胀 (Thermal Expansion)、阻尼 (Damping)、摩擦系数 ( Friction Coefficient)、特殊材料 (Specialized Materials) 等七种。
本题选取材料模型为线弹性材料,材料参数E=206GPa,μ=0.3。
几何建模:本题采用实体建模,该方法适合于复杂模型,尤其适合于3D实体建模,需人工处理的数据量小,效率高。
允许对节点和单元实施不同的几何操作,支持布尔操作(相加、相减、相交等),支持ANSYS优化设计功能,可以进行自适应网格划分,可以进行局部网格划分,便于修正与改进。
本题采用的是从下往上的建模方式。
先建立点,再连线画圆,然后将线沿轴线旋转,得到压力容器模型,上封头为标准椭圆形封头,下封头为球形封头。
网格划分:对有限元分析,ANSYS有四种网格划分方法,自由网格划分、映射网格划分,延伸网格划分和自适应网格划分。
本题采用自由网格划分,自由网格划分功能十分强大,没有单元形状的限制,网格也不遵循任何的模式,因此适用于对复杂形状的面和体网格划分。
对面进行网格划分,自由网格可以有四边形单元组成,或是只有三角形单元组成。
相比之下,四边形单元对本模型计算精度更高一些。
因而本次网格划分,采用四边形划分。
载荷、约束施加:本题研究的压力容器所受压力为内压,承受的压力值为1MPa。
因而设定压力值为1MPa。
为了防止容器移动,需要给其施加约束。
为满足需要,选定容器封头上一个节点,施加全约束。
而后选择分析方法,本题采取的是结构静力学分析,接着,计算处理,读取相应应力曲线与应力值。
3 结果分析
3.1 椭圆形封头应力分析
如图1所示,从椭圆封头顶点开始,逐一选取所有的节点,定义路径,然后沿着该路径画出各应力分布图,进而分析应力沿着该路径的分布情况。
(1)第一、二、三主应力分析结果
图2 椭圆形封头主应力曲线
如图2所示为容器沿着上述路径的第一、二、三主应力分布曲线。
从应力分布图可以看出,椭圆形封头上的三个应力值在顶点处最大,而后逐渐降低,直至出现负值。
说明封头上所受的力在靠近边缘处为压应力。
从筒体上远离椭圆形封头处任取一点,读取该点第一、二、三主应力值:
由薄膜理论计算筒体上第一、二、三主应力值为:
ANSYS 分析结果与理论计算结果基本一致,第一主应力与理论值的相对误差为
1.2%,第二主应力与理论值的相对误差为0.9%,符合要求。
因而可得知,本题所建立模型的正确性。
(2)X 、Y 、Z 方向应力结果分析 MPa 401===t Rp θσσMPa 2022===t Rp ϕσσMPa 03==r σσMPa MPa MPa 09.082.1952.39321===σσσ
图3 椭圆形封头X、Y、Z方向应力曲线
从图中可以看出,椭圆封头上X方向应力最大。
筒体上Z方向应力最大,Y方向其次,X方向应力最小。
(3)第一强度理论,第三强度理论、第四强度理论应力分析
图4 椭圆形封头不同强度理论下计算应力曲线
从图4可以看出,对于筒体来说,第一强度理论应力值与第三强度理论应力值基本相同,均大于第四强度理论值。
对于椭圆形封头,封头与筒体连接处第三、四强度理论应力值相差不大,与第一强度理论应力值相差较大。
从筒体上远离椭圆形封头处任取一点,读取该点第一、三、四强度理论应力值:
第一强度理论应力值:39.52MPa
第三强度理论应力值:39.77MPa
第四强度理论应力值:34.44MPa
由第一强度理论,最大拉应力理论计算应力值为: MPa 401==
t PR σ
由第三强度理论,最大切应力理论计算应力值为: MPa 4031=σσ-
由第四强度理论,畸变能理论计算应力值为:
MPa 64.34])()()[(21232231221=-+-+-σσσσσσ
通过比较发现,ANSYS 计算结果与理论值基本一致,第一强度理论应力值的相对误差为1.2%,第三强度理论应力值的相对误差为0.6%,第四强度理论应力值的相对误差为0.6%,满足工程要求。
3.2 球形封头应力分析
从球形封头顶点开始,逐一选取所有的节点,定义路径,然后沿着该路径画出各应力分布图,进而分析应力沿着该路径的分布情况。
(1)第一、二、三主应力分析结果
图5 球形封头主应力曲线
从图5中可以看出筒体三个主应力值与理论计算值基本一致,分别为40MPa ,20MPa ,0MPa 。
球形封头上应力值相对较小。
选取球形封头上一点(远离边缘连接处),读取其三个主应力值:
根据薄膜理论,计算球形封头三个主应力理论值:
通过比较发现,ANSYS 计算结果与理论值基本一致,符合要求。
(2)X ,Y ,Z 方向应力结果分析
MPa MPa MPa 08.091.1993.19321===σσσMPa 20221===t Rp σσMPa 03==r σσ
图6 球形封头X 、Y、Z方向应力曲线
从图中可以看出,球形封头Z方向应力值较大。
球形封头上应力值总体上要比筒体上应力值小。
(3)第一强度理论,第三强度理论、第四强度理论应力分析
图7 球形封头不同强度理论下计算应力曲线
从图7中可以看出,球形封头第一强度理论、第三强度理论、第四强度理论计算应
力值基本完全一致,且小于筒体上的各强度理论应力计算值。
选取球形封头上一点(远离边缘连接处),读取其第一强度理论、第三强度理论、第四强度理论计算应力值:
第一强度理论应力值:19.93MPa
第三强度理论应力值:19.95MPa
第四强度理论应力值:19.81MPa
由第一强度理论,最大拉应力理论计算应力值为: MPa 2021==t
PR σ
由第三强度理论,最大切应力理论计算应力值为:
MPa 203
1=σσ-
由第四强度理论,畸变能理论计算应力值为:
MPa 20])()()[(21232231221=-+-+-σσσσσσ
通过比较发现,ANSYS 计算结果与理论值基本一致,三个强度理论计算应力值的相对误差分别为:0.4%,0.3%,1%,符合要求。
3 结论
通过比较椭圆形封头与球形封头各应力值,发现椭圆形封头所受应力要大于球形封头所受应力。
且椭圆形封头在与筒体连接处应力值突变比较显著,部分区域会出现压应力。
因而在同等条件下,球形封头更加安全。