12秋期中考试九年级数学试题

合集下载

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.观察下列图案,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是()A .∠D =∠B B .∠E =∠C C .AD AE AB AC =D .AD DE AB BC=3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B .C .D .4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =100°,AD ∥OC ,则∠AOD =()A .20°B .60°C .50°D .40°5.如图,在Rt △ABC 中,∠ACB =Rt ∠,CD ⊥AB ,D 为垂足,且AD =3,AC =,则斜边AB 的长为()A .6B .15C .5D .56.如图,若将△ABC 绕点C 顺时针旋转90°后得到△A ′B ′C ′,则A 点的对应点A ′的坐标是()A .(﹣3,﹣2)B .(2,2)C .(3,0)D .(2,1)7.下列方程中,一元二次方程有()①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+=A .2个B .3个C .4个D .5个8.已知二次函数y =kx 2-7x-7的图象与x 轴没有交点,则k 的取值范围为()A .k >74-B .k≥74-且k≠0C .k <74-D .k >74-且k≠09.二次函数2y 2x 13=--+()的图象的顶点坐标是()A .(1,3)B .(,3)C .(1,)D .(,)10.将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A .y=3(x+2)2﹣1B .y=3(x ﹣2)2+1C .y=3(x ﹣2)2﹣1D .y=3(x+2)2+1二、填空题11.已知方程ax 2+7x ﹣2=0的一个根是﹣2,则a 的值是_____.12.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a +b 的值为_____.13.如图,D 是等腰直角三角形ABC 内一点,BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,则∠DAD ′的度数是_____.14.在相同时刻物高与影长成比例,如果高为1.5m 的测竿的影长为2.5m ,那么影长为30m 的旗杆的高度是_____m .15.如图,在半径为13的⊙O 中,OC 垂直弦AB 于点B ,交⊙O 于点C ,AB=24,则CD 的长是_____.16.如图,DF ∥EG ∥BC .AD =DE =EB ,则DF 、EG 把△ABC 分成三部分的面积比S 1:S 2:S 3为_____.三、解答题17.解下列方程:(1)2230x x --=;(2)()()2323x x +=+18.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠BDC .(1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.19.如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC绕点O顺时针旋转90画出旋转后得到的△A1B1C1;(2)画出△ABC以坐标原点O为位似中心的位似图形△A2B2C2,使△A2B2C2在第二象限,与△ABC的位似比是1 2.20.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.21.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22.已知:m,n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积.23.如图,在▱ABCD中,AB⊥AC,AB=1,BC,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA 边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<103),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.25.如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)参考答案1.C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点睛】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D【分析】根据∠1=∠2,可知∠DAE =∠BAC ,因此只要再找一组角或一组对应边成比例即可.【详解】解:A 和B 符合有两组角对应相等的两个三角形相似;C 、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D 、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D .【点睛】考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4.D【解析】试题分析:此题考查平行线性质及三角形内角和定理的运用.根据三角形内角和定理可求得∠AOC 的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.解:∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°.∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°-2∠A=40°.故选D.考点:1.圆周角定理;2.平行线的性质;3.等腰三角形的性质.5.B【分析】先确定△ADC与△ACB相似,再根据相似三角形对应边成比例求出AB的长.【详解】解:∵∠ACB=∠ADC=90°,∠A=∠A∴△ADC∽△ACB∴AD:AC=AC:AB∵AD=3,∴AB=15故选B.【点睛】此题考查学生对相似三角形的性质的理解及运用,解题关键是由相似三角形的性质得出比例式.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.6.C【详解】试题分析:根据旋转的概念结合坐标系内点的坐标特征解答.解:由图知A点的坐标为(﹣1,2),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(3,0).故选C.考点:坐标与图形变化-旋转.7.B【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B .【点睛】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.8.C【分析】根据二次函数图像与x 轴没有交点说明240b ac -<,建立一个关于k 的不等式,解不等式即可.【详解】∵二次函数277y kx x =--的图象与x 轴无交点,∴2040k b ac ≠⎧⎨-<⎩即049280k k ≠⎧⎨+<⎩解得74k <-故选C .【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x 轴交点个数的关系,掌握根的判别式是解题的关键.9.A【解析】直接根据顶点式写出顶点坐标是(1,3).故选A.10.A【详解】函数图象的平移法则为:左加右减,上加下减;根据这个平移法则,抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为y=3(x+2)2﹣1.故选A.考点:二次函数图象的平移法则.11.4【解析】【分析】根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.【详解】解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则4a﹣14﹣2=0,即4a﹣16=0,解得,a=4.故答案是:4.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.7【解析】【分析】首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b的值.【详解】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴b=20,a=﹣13,∴a+b=20﹣13=7,故答案是:7.【点睛】考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.13.90°【解析】∵D是等腰直角三角形ABC内一点,BC是斜边,∴∠BAC=90°,∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴∠DAD′=∠BAC=90°.故答案为90°.点睛:本题考查了旋转的性质,先由等腰直角三角形的性质得出∠BAC=90°,再根据对应点与旋转中心所连线段的夹角等于旋转角即可作答.14.18【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高即可.【详解】∵同一时刻物高与影长成正比例∴1.5:2.5=旗杆的高:30∴旗杆的高为18米.【点睛】本题考查了相似三角形的应用,解题的关键是掌握相似三角形的性质.15.8.【详解】垂径定理,勾股定理.连接OA,∵OC⊥AB,AB=24,∴AD=AB=12,在Rt△AOD中,∵OA=13,AD=12,∴.∴CD=OC﹣OD=13﹣5=8.16.1:3:5.【解析】【分析】由题可知△ADF∽△AEG∽△ABC,因而得到相似比,从而推出面积比.【详解】解:∵DF∥EG∥BC,∴△ADF∽△AEG∽△ABC,∵AD=DE=EB,∴得到三角形的相似比是1:2:3,因而面积的比是1:4:9,=3x,S四边形EBCG 设△ADF的面积是x,则△AEG,△ABC的面积分别是4x,9x,则S四边形DEGF=5x,∴S1:S2:S3=1:3:5.故答案是:1:3:5.【点睛】考查了相似三角形的判定和性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.17.(1)x1=-1,x2=3(2)x1=-1,x2=-3【解析】【分析】(1)用因式分解的十字相乘法求解比较简便;(2)用因式分解的提公因式法求解比较简便.【详解】解:(1)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)移项,得(x+3)2﹣2(x+3)=0,∴(x+3)(x+3﹣2)=0∴(x+3)(x+1)=0∴x1=﹣3,x2=﹣1.【点睛】考查了一元二次方程的解法,选择适当的方法解一元二次方程可事半功倍.解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.18.(1)证明见解析;(2)10.【详解】试题分析:(1)由AD//BC可得∠ADB=∠DBC,又因为∠A=∠BDC,所以可以证明△ABD∽△DCB;(2)由(1)得:AB ADDC DB=,将已知线段长度代入即可求出BD.试题解析:解:(1)∵AD//BC,∴∠ADB=∠DBC,又∵∠A=∠BDC,∴△ABD∽△DCB;(2)由(1)得△ABD∽△DCB,∴AB AD DC DB=,即12815DB=,∴BD=10.点睛:(1)判定两个三角形相似,优先找两组角相等条件.19.(1)详见解析;(2)详见解析;【分析】(1)根据旋转变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得;(2)根据位似变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.【点睛】考查作图﹣位似变换与旋转变换,解题的关键是熟练掌握位似变换与旋转变换的定义与性质.20.(1)3;(2)BE=DF,BE⊥DF.【分析】(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【详解】解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点睛】考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【分析】(1)设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6000元,同时顾客又得到了实惠,可列方程求解;(2)利用总利润y=销量×每千克利润,进而求出最值即可.【详解】(1)设每千克应涨价x 元,则(10+x )(500﹣20x )=6000解得x =5或x =10,为了使顾客得到实惠,所以x =5.(2)设涨价z 元时总利润为y ,则y =(10+z )(500﹣20z )=﹣20z 2+300z +5000=﹣20(z 2﹣15z )+5000=22252252015500044z z ⎛⎫--+-+ ⎪⎝⎭=﹣20(z ﹣7.5)2+6125当z =7.5时,y 取得最大值,最大值为6125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】考核知识点:二次函数的的应用.根据题意列出等量关系是解题的关键.22.(1)y =﹣x 2﹣4x +5;(2)15.【解析】【分析】(1)首先解方程求得m 和n 的值,得到A 和B 的坐标,然后利用待定系数法即可求得解析式;(2)首先求得C 和D 的坐标,作DE ⊥y 轴于点E ,根据S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC 求解.【详解】解:(1)解方程x 2﹣6x +5=0,解得:x 1=1,x 2=5,则m =1,n =5.A 的坐标是(1,0),B 的坐标是(0,5).代入二次函数解析式得:105b C c -++=⎧⎨=⎩,解得:45b c =-⎧⎨=⎩,则函数的解析式是y =﹣x 2﹣4x +5;(2)解方程﹣x 2﹣4x +5=0,解得:x 1=﹣5,x 2=1.则C 的坐标是(﹣5,0).y =﹣x 2﹣4x +5=﹣(x 2+4x +4)+9=﹣(x +2)2+9则D 的坐标是(﹣2,9).作DE ⊥y 轴于点E ,则E 坐标是(0,9).则S 梯形OCDE =12(OC +DE )•OE =12×(2+5)×9=632,S △DEB =12BE •DE =12×4×2=4,S △OBC =12OC •OB =12×5×5=252,则S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC =632﹣4﹣252=15.【点睛】考查了待定系数法求函数的解析式以及图形的面积的计算,正确作出辅助线转化为易求面积的图形的和、差是关键.23.(1)证明见解析;(2)证明见解析;(3)四边形BEDF 可以是菱形.理由见解析;AC 绕点O 顺时针旋转45°时,四边形BEDF 为菱形.【详解】试题分析:(1)当旋转角为90°时,∠AOF=90°,由AB ⊥AC ,可得AB ∥EF ,即可证明四边形ABEF 为平行四边形;(2)根据平行四边形的性质证得△AOF ≌△COE 即可;(3)EF ⊥BD 时,四边形BEDF 为菱形,可根据勾股定理求得AC=2,则OA=1=AB ,又AB ⊥AC ,即可求得结果.(1)当∠AOF=90°时,AB ∥EF ,又∵AF∥BE,∴四边形ABEF为平行四边形.(2)∵四边形ABCD为平行四边形,在△AOF和△COE中∵∠FAO=∠ECO,AO=CO,∠AOF=∠ECO∴△AOF≌△COE(ASA)∴AF=EC;(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,∴OA=1=AB,又∵AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.考点:旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定,勾股定理点评:本题知识点较多,综合性强,是中考常见题,难度不大,学生需熟练掌握平面图形的基本概念.24.(1)MG=95t;(2)t=2秒时,S四边形ACNM最小=845cm2;(3)△BMN与△ABC相似,t的值为2011秒或43秒.【解析】【分析】(1)先利用勾股定理求出AB =10,再判断出△BGM ∽△BCA ,得出比例式即可得出结论;(2)先表示出MN ,最后利用三角形的面积差即可建立函数关系式,即可得出结论;(3)先表示出BM ,BN ,再分两种情况,利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)由运动知,BM =3t ,在Rt △ABC 中,AC =6,BC =8,∴AB =10,∵MG ⊥BC ,∴∠MGB =90°=∠ACB ,∵∠B =∠B ,∴△BGM ∽△BCA ,∴MG BM CA AB =,∴3610MG t =,∴MG =95t ;(2)由运动知,CN =2t ,∴BN =BC ﹣CN =8﹣2t ,由(1)知,MG =95t ,∴S 四边形ACNM =S △ABC ﹣S △BNM =12BC ×AC ﹣12BN ×MG =×8×6﹣12(8﹣2t )×95t =95(t ﹣2)2+845,∵0<t <103,∴t =2秒时,S 四边形ACNM 最小=845cm 2;(3)由(1)(2)知,BM =3t ,BN =8﹣2t ,∵△BMN 与△ABC 相似,∴①当△BMN ∽BAC 时,BM BN AB BC=,∴382 108t t-=,∴t=2011秒,②当△BMN∽△BCA时,BM BN BC AB=,∴382 810t t-=,∴t=43秒,即:△BMN与△ABC相似,t的值为2011秒或43秒.【点睛】相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程是思想解决问题是解本题的关键.25.(1)y=﹣x2+2x+3;(2)P点坐标为(1,0)或(2,0);(3)33y x44=+或44y x33=+.【分析】(1)利用待定系数法求出抛物线的解析式.(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标.(3)利用中心对称的性质求解:平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF 对称中心的直线平分 ODEF的面积.【详解】解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴309330a ba b-+=⎧⎨++=⎩,解得a1{b2=-=.∴抛物线的解析式为:y=﹣x2+2x+3.(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:3k b0{b3+==,解得k1{b3=-=.∴直线BC的解析式为y=﹣x+3.设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3).∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2.∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2.∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF对称中心的直线平分ODEF的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(12,2).设直线AG的解析式为y=k1x+b1,将A(﹣1,0),G(12,2)坐标代入得:2222k b0{3k b2-+=+=,解得223k4{3b4==.∴所求直线的解析式为:33 y x44 =+.②当P(2,0)时,点F坐标为(2,1),又D(0,2).设对角线DF的中点为G,则G(1,3 2).设直线AG的解析式为y=k2x+b2,将A(﹣1,0),G(1,32)坐标代入得:2222k b03k b2-+=⎧⎪⎨+=⎪⎩,解得223k43b4⎧=⎪⎪⎨⎪=⎪⎩.∴所求直线的解析式为44 y x33 =+.综上所述,所求直线的解析式为33y x44=+或44y x33=+.21。

福建省泉州市晋江市2024-2025学年九年级上学期期中测试数学试卷[含答案]

福建省泉州市晋江市2024-2025学年九年级上学期期中测试数学试卷[含答案]

2024年秋九年级期中质量监测数学试题满分: 150分 考试时间: 120分钟一、选择题:本题共10小题,每小题4边,共40分.1 )A .3x >-B .3x ³C .3x <D .3x £2.下列各组中的四条线段成比例的是( )A .1234a b c d ====,,, B .2345a b c d ====,,, C .2346a b c d ====,,,D .2468a b c d ====,,,3.下列方程中是关于x 的一元二次方程的是( )A .2120x x-+=B .20ax bx c ++=C .()()23 1x x -+=D .22220x xy y -+=4.在Rt ABC V 中,90512C AC BC Ð=°==,,,则cos A 的值为( )A .513B .512C .1213D .1355.方程2440x x +-=经过配方后的结果是( )A .()228x -=B .()228x +=C .()224x +=D .()224x -=6.如图,已知AB CD EF ∥∥,那么下列结论正确的是( )A .CE ADCB DF=B .DF BCAD CE=C .AD BEAF BC=D .AD BCDF CE=7.如图,已知,AD 是ABC V 的中线, 点G 是ABC V 的重心, 过G 作GE AB P 交BC 于点E ,GF AC ∥交BC 于点F . 若ABC V 面积为36, 则EFG V 的面积为( )A .4B .6C .8D .98.如图,已知12Ð=Ð,那么添加下列一个条件后,仍无法判定ABC ADE △△∽的是()A .B ADE Ð=ÐB .AC BCAE DE=C .AB ACAD AE=D .C EÐ=Ð9.若α、β是一元二次方程2350x x +-=的两个根,则22a a b +-的值是( )A .2B .3C .5D .810.(2016湖南省娄底市)如图,已知在Rt △ABC 中,∠ABC =90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE +CF 的值( )A .不变B .增大C .减小D .先变大再变小二、填空题:本题共6小题,每小题4分,共24分.11.已知32a b =,则a ba b +-= .12.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB= .13.如图,CD 是平面镜,光线从点A 出发经CD 上点O 反射后照射到点 B ,若入射角为α,反射角为β (反射角等于入射角),AC CD ^于点C ,BD CD ^于点D , 且3OC =,6OD =,2AC =,则BD =14.已知12,x x 是方程22310x x --=的两根,则1211x x += .15.如图, 在ABC V 中, 点D 、E 为边AB 的三等分点, 点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若24AC =,则DH 的长为16.如图,B Ð的平分线BE 与BC 边上的中线AD 互相垂直,并且4BE AD ==,则BC 为三、解答题(共86分)17.计算:32cos45-+°18.解方程:228=0x x --19.如图, 在ABC V 中, 点D 、E 分别在边AC 、AB 上,2AB AD =,2AC AE =.(1)求证:ADE ABC △△∽;(2)若ADE V 的周长是8, 求△ABC 的周长.20.如图,O 为原点,B ,C 两点坐标分别为()()3121-,,,.(1)以O 为位似中心在y 轴左侧将OBC △放大两倍,并画出图形;(2)已知()M a b ,为OBC △内部一点,写出M 的对应点M ¢的坐标.21. 某水果店经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)则每次降价的百分率为 ;(2)经市场调查发现,若水果每千克盈利10元,每天可售出500千克.在进货价不变的情况下,商店决定采取适当的降价措施,若每千克降价1元,日销售量将增加20千克,现商店要保证该水果每天盈利3000元,且要尽快减少库存,那么每千克应降价多少元?22. 如图,在Rt ABC △中,90ACB Ð=°,(1)已知AE 平分BAC Ð,求作菱形ADEF , 使得D F 、分别在边AB AC 、上;(要求:尺规作图, 不写作法,保留作图痕迹)(2)在(1)的条件下, 若2CF =,23AD DB =::,求CE 的长23.课题:《杠杠原理与相似三角形》杠杆原理:也称为“杠杆平衡条件”:杠杆原理是几何学在物理学的体现.相关概念:支点:杠杆绕着转动的固定点;动力:使杠杆转动的力;阻力:阻碍杠杆转动的力;动力臂:从支点到动力作用线的距离;阻力臂:从支点到阻力作用线的距离.基本模型:当一个力通过一个支点施加在杠杆上时,通过作图,可以观察到两个相似的三角形如图,因为90CAO DBO Ð=Ð=°,COA DOB Ð=Ð,所以AOC BOD V V ∽, 则有OAOB= ①又因为12AC F BD F ×=×(消耗的功W F S =×一致),可得 21F AC BD F =,所以21F OA OB F =可得②2F OB ×=______(1F 为阻力的反作用力).即,动力´动力臂=阻力´阻力臂.得出结论:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等(1)补全①、②所缺的内容,课题证明杠杆原理过程中运用到的几何知识是(2)如图,小明用实心钢管制作了一个自带支点杠杆A -O -B ,O 为支点,90AOB Ð=°,30cm AO =,90cm BO =,30OBC Ð=°,AD 方向上因撑起一物体产生450牛顿(国际单位制中,力的单位)的阻力1F ,BC 方向上施加一个力2F 使杠杆平衡,AD BC ∥.请利用“动力臂”,“阻力臂”与“支点”概念构造相似三角形 ,并运用“杠杆原理”相关知识,求出2F 的大小.24.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如20x x +=是“差1方程”.(1)判断下列方程是不是“差1方程”:①2104x -=;②2560x x --=;(2)已知关于x 的方程()210x m x m +--=(m 是常数)是“差1方程”,求m 的值:(3)若关于x 的方程210ax bx ++=(a ,b 是常数,0a >)是“差1方程”,设 210t a b =-,求t 的最大值.25. AB 与x 轴、y 轴分别交于A 、B 两点,4AO =,cos BAO Ð=(1)求点B 的坐标;(2) D 为第一象限上的一点,射线AD 与线段OB 交于点 C .BD AC ^于点 D ,连接OD .①求证:BAD BOD Ð=Ð;②设DCn CA=,试问:是否存在实数n ,使得满足条件的点C 有且只有一个? 若存在,求实数n 的值; 若不存在,请说明理由.1.D【分析】根据二次根式有意义的条件:二次根式中的被开方数是非负数,可得3-x≥0,再解不等式即可.【详解】解:∵∴3-x≥0,∴x≤3.故选D .【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.C【分析】此题考查了成比例线段,若ad bc =,则a ,b ,c ,d 成比例,据此进行计算判断即可.【详解】解:A 、1423´¹´,故此选项中四条线段不成比例,不符合题意;B 、2534´¹´,故此选项中四条线段不成比例,不符合题意;C 、2634´=´,故此选项中四条线段成比例,符合题意;D 、2846´¹´,故此选项中四条线段不成比例,不符合题意,故选:C .3.C【分析】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、是分式方程,故A 错误;B 、0a =时不是一元二次方程,故B 错误;C 、()()23 1x x -+=整理后为270x x +-=,是一元二次方程,故C 正确;D 、是二元二次方程,故D 错误;故选:C .4.A【分析】本题考查的是锐角三角函数的定义,勾股定理,掌握锐角A 的邻边与斜边的比叫做A Ð的余弦是解题的关键.根据勾股定理求出AB ,根据余弦的定义计算即可.【详解】如图所示,∵在Rt ABC V 中,90,5,12C AC BC Ð=°==,∴由勾股定理得,13AB ===,则5cos 13AC A AB ==,故选:A .5.B【分析】先移项,然后利用完全平方公式配方即可.【详解】解:移项,得:244x x +=,两边同时加4,得:24444x x ++=+,配方,得:()228x +=,故选:B .【点睛】本题主要考查了用配方法解一元二次方程,解题的关键是熟练掌握配方的方法和步骤.6.D【分析】根据“两条直线被一组平行线所截,所得的对应线段成比例”进行判断即可.【详解】解:两条直线被一组平行线所截,所得的对应线段成比例,∵BC 和AD 对应,CE 和DF 对应,BE 和AF 对应,∴CE DF CB AD=,AD BCAF BE =,故D 正确.故选:D .【点睛】本题主要考查两条直线被一组平行线所截,所得的对应线段成比例,确定出对应线段是解题的关键.7.A【分析】本题考查三角形重心的性质,三角形的中线的性质,相似三角形的判定和性质.理解和掌握相似三角形的判定和性质是解题的关键.根据重心的性质可得13GD GD AD AG GD ==+,再根据三角形的中线平分三角形的面积可得18ABD ACD S S ==△△,接着证明DEG DBA △∽△,DFG DCA △∽△,然后根据相似三角形的面积之比等于相似比的平方可得219DEG DBA S DG S DA æö==ç÷èø△△,219DFG DCAS DG S DA æö==ç÷èø△△,从而求出129DEG DBA S S ==△△,129DFG DCA S S ==△△,进而可求解.【详解】解:∵点G 是ABC V 的重心,∴2AG GD =,∴13GD GD AD AG GD ==+,∵AD 是ABC V 的中线,∴11361822ABD ACD ABC S S S ===´=V V V ,∵GE AB P ,GF AC ∥,∴DEG DBA △∽△,DFG DCA △∽△,∴219DEG DBA S DG S DA æö==ç÷èø△△,219DFG DCA S DG S DA æö==ç÷èø△△,∴129DEG DBA S S ==△△,129DFG DCA S S ==△△,∴4EFG DEG DFG S S S =+=△△△,故选:A .8.B【分析】本考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.根据相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似,逐项判断即可.【详解】解:12Ð=ÐQ ,12CAD CAD\Ð+Ð=Ð+ÐBAC DAE\Ð=ÐA 、由两个三角形的两个对应角相等可得ABC ADE △△∽,故不符合题意;B 、不符合两个三角形的两条对应边的比相等,且夹角相等,无法判定ABC ADE △△∽,故符合题意;C 、由两个三角形的两条对应边的比相等,且夹角相等可得ABC ADE △△∽,故不符合题意;D 、由两个三角形的两个对应角相等可得ABC ADE △△∽,故不符合题意;故选:B .9.D【分析】本题主要考查一元二次方程的解,以及一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.根据题意得出2350a a +-=,3a b +=-,然后变形代入计算即可.【详解】解:∵α、β是一元二次方程2350x x +-=的两个根,∴2350a a +-=,3a b +=-,即225a a a +=-,∴()2258a a b a b +-=-+=,故选:D .10.C【详解】试题分析:已知BE ⊥AD 于E ,CF ⊥AD 于F ,可得CF ∥BE ,根据平行线的性质得∠DCF=∠DBE ,设CD=a ,DB=b ,∠DCF=∠DBE=α,所以CF=DC•cosα,BE=DB•cosα,即可得BE+CF=(DB+DC )cosα=BC•cosα,因∠ABC=90°,所以O <α<90°,当点D 从B→D 运动时,α是逐渐增大的,cos α的值是逐渐减小的,所以BE+CF=BC•cos α的值是逐渐减小的.故答案选C .考点:锐角三角函数的增减性.11.5【分析】根据比例设a =3k ,b =2k ,然后代入比例式进行计算即可得解.【详解】解:∵32a b =,∴设a =3k ,b =2k ,则32532a b k ka b k k++==--,故答案为:5.【点睛】本题考查了比例的性质,利用“设k 法”求解更简便.12.12.【详解】试题分析:过点A 作AD ⊥OB 垂足为D ,如图,在直角△ABD 中,AD=1,OD=2,则tan ∠AOB=AD OD =12.故答案为12.考点:1.锐角三角函数的定义;2.网格型.13.4【分析】本题主要考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.根据a b =,得AOC BOD ÐÐ=,进而证明ACO BDO △∽△,再利用相似三角形的性质即可求解.【详解】解:由题意得,a b =,如图,∵PO CD ^,∴90POC POD Ð=Ð=°,∴POC POD a b Ð-=Ð-,∴AOC BOD ÐÐ=,∵AC CD ^,BD CD ^,∴90ACO BDO Ð=Ð=°,∴ACO BDO △∽△,∴AC CO BD DO=,即236BD =,∴4BD =,故答案为:4.14.-3【分析】根据一元二次方程的根与系数关系得到1232x x +=,1212x x =-,代入12121211x x x x x x ++=即可得到答案.【详解】解:∵12,x x 是方程22310x x --=的两根,∴1232x x +=,1212x x =-,∴1212123112312x x x x x x ++===--,故答案为:﹣3【点睛】此题考查了一元二次方程的根与系数关系,熟练掌握一元二次方程的根与系数关系的内容是解题的关键.15.4【分析】本题考查了相似三角形的判定与性质,三角形的中位线,熟练掌握相似三角形的性质与判定是解题的关键.由三等分点的定义与平行线的性质得出3AB BE =,DH 是AEF △的中位线,证BEF BAC ∽△△,得8EF =,再根据中位线的性质即可求解.【详解】解:∵点D 、E 为边AB 的三等分点,AC DG EF ∥∥,∴BE DE AD ==,BF GF CG ==,AH HF =,∴3AB BE =,DH 是AEF △的中位线,∴12DH EF =,∵AC EF P ,∴BEF BAC ∽△△,∴EF BE AC BA =,∴243EF BE BE=,解得:8EF =,∴142DH EF ==.故答案为:4.16.【分析】先证明()ASA ABG DBG V V ≌,得到122AG DG AD ===,取CE 的中点F ,连接DF ,由三角形中位线定理得到1,22DF BE DF BE ==∥,则ADF AGE △∽△,得12GE AG DF AD ==,求出112GE DF ==,则3BG BE GE =-=,由勾股定理得到BD =,即可得到答案.【详解】解:∵ABC Ð的平分线BE 与BC 边上的中线AD 互相垂直,∴ABG DBG Ð=Ð,90AGB DGB Ð=Ð=°,BD DC =,又∵BG BG =,∴()ASA ABG DBG V V ≌,∴122AG DG AD ===,取CE 的中点F ,连接DF ,∵点D 是BC 的中点,∴1,22DF BE DF BE ==∥,∴ADF AGE △∽△,∴12GE AG DF AD ==,∴112GE DF ==,∴3BG BE GE =-=,∴BD ===,∴2BC BD ==,故答案为:【点睛】此题考查了相似三角形的判定和性质、三角形中位线的性质、全等三角形的判定和性质、勾股定理等知识,构造中位线是解题的关键.17.3【分析】此题主要考查了实数的混合运算,涉及二次根式、绝对值、特殊角的三角函数值等知识点,熟练掌握运算顺序是解题的关键.首先化简二次根式、计算绝对值,特殊角的三角函数值,然后进行合并计算即可.【详解】解:原式32=++3=+-+3=18.1224x x =-=,【分析】本题主要考查了解一元二次方程,利用十字相乘法把方程左边分解因式,然后解方程即可.【详解】解:∵228=0x x --,∴()()420x x -+=,∴20x +=或40x -=,解得1224x x =-=,.19.(1)证明见解析(2)16【分析】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质与判定是解题的关键.(1)首先得到12AD AE AB AC ==,然后结合A A Ð=Ð得到ADE ABC △△∽;(2)根据相似三角形的性质求解即可.【详解】(1)解:∵2AB AD =,2AC AE =,∴12AD AE AB AC ==,又∵A A Ð=Ð,∴ADE ABC △△∽.(2)解:∵ADE ABC △△∽,∴12ADEABC l AD l AB ==△△,∴216ABC ADE l l ==△△.20.(1)见解析(2)()22a b --,【分析】本题主要考查作图-位似变换、坐标规律等知识点,熟练掌握位似的性质是解答本题的关键.(1)先根据位似的性质作出B ,C 两点的对应点B C ¢¢、,然后顺次连接即可;(2)观察点的变化规律,并运用规律即可解答.【详解】(1)解:如图,OB C ¢¢△即为所求.(2)解:由图可得,点()()6242B C ¢¢---,,,,即对应点的是原点横、纵坐标的2-倍.所以点()M a b ,的对应点M ¢的坐标为()22a b --,.21.(1)20%(2)5元【分析】本题主要考查了一元二次方程应用,根据题意找准等量关系、列出方程是解答本题的关键.(1)设每次下降的百分率为a ,再根据题意列一元二次方程求解即可;(2)设每千克应降价x 元,根据题意列出一元二次方程求解即可.【详解】(1)解:设每次下降的百分率为a ,根据题意可得:()250132x -=,解得:1 1.8180x ==%(舍)或20.220x ==%,答:每次下降的百分率为20%.(2)解:设每千克应降价x 元,由题意,得()()10500203000x x -+=,整理,得2151000x x +-=,解得:15x =,120x =-(舍),答:该商场要保证每天盈利3000元,那么每千克应降价5元.22.(1)图见详解(2)CE =【分析】(1)由菱形的对角线互相垂直平分可作AE 的垂直平分线交AB 于点D ,交AC 于点F ,则以A D E F 、、、四点为顶点的四边形就是所求的菱形;(2)设CE x =,则EF AF AD DF EF ====,再根据比例的性质和平行线分线段定理可得32BD AD ==32BE x =,然后再说明90BED Ð=°,最后运用勾股定理即可解答.【详解】(1)解:作AE 的垂直平分线交AB 于点D ,交AC 于点F ,则以A D E F 、、、四点为顶点的四边形就是所求的菱形,如图所示:(2)解:设CE x =,∵90ACB Ð=°,2CF =,∴EF ==∵四边形ADEF 是菱形,∴AF AD DF EF ====,∵∥D E A C ,23AD DB =::,∴32BD AD ==23CE AD BE BD ==,∴32BE x =,∵∥D E A C ,90ACB Ð=°,∴90BED Ð=°,∴222DE BE BD +=,即:22232x æö+=ç÷èø,解得:x =∴CE =【点睛】本题主要考查尺规作图、菱形的判定与性质、线段的垂直平分线的性质,平行线分线段成比例定理,勾股定理等知识点,灵活应用相关知识成为解答本题的关键.23.(1)AC BD;1F OA ×;相似三角形的对应边成比例(2)150牛顿【分析】本题主要考查了相似三角形的性质与判定,作辅助线构造相似三角形是解题的关键.(1)依据相似三角形的对应边成比例进行推导即可;(2)过点O 作OE AD ^,交DA 延长线于点E ,延长BC 交EO 的延长线于点F ,先证得AOE BOF V V ∽,推出301903OE OF ==,再利用“动力´动力臂=阻力´阻力臂”代入进行求解即可.【详解】(1)解:∵AOC BOD V V ∽,∴OA AC OB BD=,∵21P OA OB F =,∴21F OB F OA ×=×,运用到的几何知识是相似三角形对应边成比例,故答案为:AC BD;1F OA ×;相似三角形对应边成比例.(2)解:如图,过点O 作OE AD ^,交DA 延长线于点E ,延长BC 交EO 的延长线于点F ,∵AD BC ∥,∴18090F E Ð=°-Ð=°,∴90F E Ð=Ð=°,∵90AOB Ð=°,∴90AOE BOF Ð+Ð=°,又∵90B BOF Ð+Ð=°,∴AOE B Ð=Ð,∴AOE BOF V V ∽,∴OA OE OB OF=,即301903OE OF ==,∴12F OE F OF ×=×,即245014501503OE F OF ×==´=(牛顿),答:2F 的大小为150牛顿.24.(1)①是“差1方程”,理由见解析;②不是“差1方程”,理由见解析(2)2m =-或0;(3)3a =时,t 的最大值为9【分析】本题考查了一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“差1方程”的定义.(1)根据解一元二次方程的方法解出已知方程的解,再比较两根的差是否为1,从而确定方程是否为“差1方程”;(2)先解方程求得其根,再根据新定义列出m 的方程,注意有两种情况;(3)根据新定义得方程的大根与小根的差为1,列出a 与b 的关系式,再由210t a b =-,得t 与a 的关系,从而得出最后结果.【详解】(1)解:①2104x -=214x =∴112x =,212x =-,∵11122æö--=ç÷èø,∴2104x -=是“差1方程”;②解:∵2560x x --=∴()()610x x -+=∴60x -=或10x +=∴16x =,21x =-∵()617--=∴2560x x --=不是“差1方程”;(2)解:()210x m x m +--=∴()()10x x m -+=,x m \=-或1x =,Q 关于x 的方程()210x m x m +--=(m 是常数)是“差1方程”,∴11m --=或()11m --=,2m \=-或0;(3)解:∵210ax bx ++=由题可得:2240a D -³∴解方程得x =Q 2a ,b 是常数,0a >)是“差1方程”,\1=,224b a a \=+,210t a b =-Q ,()22639t a a a \=-=--+,∵()230a -³∴()230a --£∴()2399a --+£∴当()230a -=时,即3a =时,t 的最大值为9.25.(1)()0,8B (2)①证明见解析;②存在,n【分析】(1)先根据余弦的定义可得AB 的长,再利用勾股定理可得8OB =,即可求解;(2)①先根据相似三角形的判定证出AOC BDC ∽△△,根据相似三角形的性质可得AC OC BC DC=,再根据相似三角形的判定证出ABC ODC V V ∽,然后根据相似三角形的性质即可得证;②设OC x =,则8BC x =-,先根据AC OC BC DC =,得()28x x AC n-=,再利用勾股定理可得()218160n x x n +-+=,然后利用一元二次方程根的判别式求解即可.【详解】(1)解:∵4AO =,cos OA BAO AB Ð==∴AB 在Rt AOB V 中,由勾股定理得,222AB A OB O =-,∴8OB =,∴()0,8B .(2)①证明:∵BD AC ^,∴=90BDC а,∵ACO BCD Ð=Ð,90AOB Ð=°∴AOC BDC ∽△△,∴AC OC BC DC =,∴AC BC OC DC=,∵ACB OCD Ð=Ð,∴ABC ODC V V ∽,∴BAD BOD Ð=Ð②解:存在,n =,理由如下:设OC x =,则8BC x =-,∵DC n CA=,答案第15页,共15页∴DC nCA =,由①知,AC OC BC DC =,∴8AC x x nAC=-,∴()28x x AC n-=,在Rt AOC V 中,由勾股定理得,222AC AO OC =+,∴()2816x x x n-=+,整理,得()218160n x x n +-+=,∵要使满足条件的点C 有且只有一个,∴该方程有两个相等的实数根,∴()Δ646410n n =-+=,解得1n =2n =,∴n 【点睛】本题考查了解直角三角形、勾股定理、相似三角形的判定与性质、一元二次方程根与判别式的关系,解一元二次方程,熟练掌握相似三角形的性质与判定和一元二次方程根与判别式的关系是解题关键.。

2022-2023学年第二学期九年级数学期中试题

2022-2023学年第二学期九年级数学期中试题

二〇二三年初中学业水平模拟考试九年级数学试题(时间:120分钟分值:120分)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;试题共8页。

2.答题卡共4页.答题前,考生务必将姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡。

3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其他答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上。

第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.中国人使用负数最早可追溯到两千多年前的秦汉时期,则12023的相反数为()A.2023-B.2023C.12023D.12023-2.下列运算正确的是()A.326a a a ⋅=B.734a a a ÷=C.()2236a a -=-D.()2211a a -=-3.如图,五边形ABCDE 是正五边形,若12l l ∥,则12∠-∠=()A.72︒B.36︒C.45︒D.47︒4.在数轴上表示不等式215x -≤-的解集,正确的是()A.B.C.D.5.下列说法正确的是()A.为检测一批灯泡的质量,应采取抽样调查的方式B.一组数据“1,2,2,5,5,3”的众数和平均数都是3C.若甲、乙两组数据的方差分别是0.09,0.1,则乙组数据比甲组数据更稳定D.“明天下雨概率为0.5”,是指明天有一半的时间可能下雨6.如图,AB 为⊙O 的直径,,C D 为⊙O 上两点,若40BCD ∠︒=,则ABD ∠的大小为()A.20°B.40°C.50°D.60°7.如图,射线DM 的端点D 在直线AB 上,点C 是射线DM 上不与点D 重合的一点,根据尺规作图痕迹,下列结论中不能体现的是()A.作一条线段等于已知线段B.作MDB ∠的平分线C.过点C 作AB 的平行线D.过点C 作DM 的垂线8.若关于x 的方程21322x m x x x +-+=--的解是正数,则m 的取值范围为()A.7m >-B.7m >-且3m ≠-C.7m <-D.7m >-且2m ≠-9.如图,Rt ABC △中,9034C AC BC ∠=︒==,,,直线l AB ⊥,将直线l 沿AB 方向从A 点平移到B 点,若直线l 交AB 于P ,交AC (或BC )于Q ,设AP x CQ y ==,,则下列图象中,能表示y 关于x 的函数关系的图象大致是()A.B.C.D.10.如图,在矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF AC ⊥于点M ,交CD 于点F ,过点D 作DE BF ∥交AC 于点N .交AB 于点E ,连接FN ,EM .有下列结论:①图中共有三个平行四边形;②当2BD BC =时,四边形DEBF 是菱形;③BD ME ⊥;④2AD BD CM =⋅.其中,正确结论的序号是()A.①②③B.①②④C.①③④D.②③④第Ⅱ卷(选择题共90分)二、填空题(本大题共8小题,其中11—14题每小题3分,15—18题每小题4分,共28分,只要求填写最后结果)11.春暖花开的四月,2023中国孙子文化园汉服花朝节开始了,做古装游戏,玩现代项目,成为研学圣地。

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。

2024—2025学年度第一学期期中学业质量检测九年级数学试题

2024—2025学年度第一学期期中学业质量检测九年级数学试题

2024—2025学年度第一学期期中学业质量检测九年级数学试题(满分分值: 150分 考试时间: 120分钟)一、选择题(本大题共8小题,每小题3分,共24分. 在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上........) 1.下列方程中,是关于x 的一元二次方程的是 ( ▲ ) A. 2x=72.下列图形中,既是中心对称图形、又是轴对称图形的是 ( ▲ )3.O 是ABC ∆的内切圆,则点O 是ABC ∆的( )A .三条边的垂直平分线的交点B .三条中线的交点C .三条角平分线的交点D .三条高的交点4.已知O 的半径为3,点P 在O 外,则OP 的长可以是( )A .1B .2C .3D .45.习近平总书记强调:“青年一代有理想、有本领、有担当,国家就有前途,民族就有希望”.如图①是 一块弘扬“新时代青年励志奋斗”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3OA m =, 1.5OB m =,则阴影部分的面积为( )A .294m πB .23mC .2174m πD 225π 6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .10080100807644x x ⨯--=B .2(100)(80)7644x x x --+=C .(100)(80)7644x x --=D .10080356x x +=7.如图,在ABC ∆中,90C ∠=︒,25B ∠=︒.若以点C 为圆心,CA 长为半径的圆与AB 交于点D ,则AD 的度数为( )A .25︒B .50︒C .60︒D .65︒8.有两个一元二次方程:2:0A ax bx c ++=,2:0B cx bx a ++=,其中 a-c ≠0, 下列四个结论中,错误的是 ( )A. 如果方程A 有两个不相等的实数根,那么方程B 也有两个不相等的实数根;B. 如果方程A 两根符号相同,那么方程B 的两根符号也相同;C. 如果2是方程A 的一个根,那么12是方程B 的一个根D. 如果方程A 和方程B 有一个相同的根,那么这个根必是1.二、填空题 (本大题共10小题,每小题3分,共30分. 不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.写出一个解为2的一元二次方程: ▲ .10.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为 2cm .11.如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠= ︒,依据是 .12.如图,点A ,B ,C 在O 上,54BAC ∠=︒,则BOC ∠的度数为 .13.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为 厘米.14.某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是 .15.如图,点O 是正五边形ABCDE 的中心,连接BD 、OD ,则BDO ∠= ︒.16.若x m =是一元二次方程2310x x ++=的一个解,则22023412m m --的值为 .17.如图,点A ,B ,C 在O 上,90AOC ∠=︒,22AB =,1BC =,则O 的半径为 .18.如图,在平面直角坐标系xOy 中,O 的半径是1.过O 上一点P 作等边三角形PDE ,使点D ,E 分别落在x 轴、y 轴上,则PD 的取值范围是 .三、解答题 (本大题共9小题,共96分. 请在答题卡上指定区域内作答. 解答时写出必要的文字说明、证明过程或演算步骤...............)19. (本题满分8分) 解方程:20.关于x的方程22(2)0+++=.x m x m(1)求证:方程总有两个实数根;(2)请你选择一个合适的m的值,使得方程的两个根都是整数,并求此时方程的根.21.已知ABC∆在平面直角坐标系中位置如图.(1)利用格点画出ABC∆的外接圆P,并写出圆心P的坐标为.(2)画出ABC';∆绕点C按顺时针方向旋转90︒后的△A B C'(3)求(2)中点A旋转到点A'所经过的路线长(结果保留)π.22.如图,在ABCBAC∠=︒.∆中,90(1)请你画一个半圆使得圆心O在边BC上,并与AB、AC都相切(保留画图痕迹);(2)已知4AB=,3AC=,求(1)中所画圆的半径.23.如图,在Rt ABCBAC∠=︒,BD是角平分线,以点D为圆心,DA为半径的D与AC相交∆中,90于点E(1)求证:BC是D的切线;(2)若5BC=,求CE的长.AB=,1324.某水果商场销售一种高档水果,若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,(1) 若每千克涨价2元,则每天可售▲千克.(直接写出答案);(2) 现该商场要保证这种水果每天盈利6000元,且尽可能减轻顾客负担,那么每千克应涨价多少元?(3) 商场每天能盈利7000元吗? 为什么?(4) 请直接写出商场这种水果每天盈利的最大值为▲元.25.“转化”是一种重要的数学思想,回顾我们学过的各类方程的解法:解二元一次方程组,把它利用消元法转化为一元一次方程;解一元二次方程,利用直接开平方法或因式分解法,将它转化为解两个一元一次方程;解分式方程,利用去分母的方法,将它转化为整式方程,由于“去分母”可能产生增根,所以解分式方程必须检验,用“转化”的数学思想,我们还可以解一些新的方程,例如:解无理方程12x+=解:方程两边同时平方,得:14x+=,解这个一元一次方程,得:3x=,检验:当3=+==右边,x=时,左边312所以,3x=是原方程的解.通过“方程两边平方”,有可能产生增根,必须对解得的根进行检验.通过上面的学习,请解决以下两个问题:(1)解无理方程:23+=;x x(2)如图,在平面直角坐标系xOy中,点(5,3)B,90+=,求点C的坐标.OC BCOAB B∠=∠=︒,726.由两个全等的Rt△ABE和构成如图①所示的四边形ABCD,已知直角三角形的直角边长分别为m、n,斜边长为q.分别以m、q、n为二次项系数、一次项系数和常数项构造的一元二次方程称为勾股方程.(1) 方程(填“是”或“不是”)“勾股方程”;(2)若勾股方程220mx qx n++=有两个相等的实数根,求mq的值.27.某数学活动小组对一个数学问题作如下探究:(1)【问题发现】如图①, 正方形ABCD的四个顶点在⊙O上, 点E在AB上, 连接AE、BE、DE, 若在 DE上取一点F, 使得DF=BE, 连接AF, 发现与△ABE全等,请说明理由;(2)【变式探究】如图②, 正方形ABCD的四个顶点在⊙O 上, 若点E在AD上,过点A作AG⊥BE, 探究线段BE、DE 、AG间的数量关系, 并说明理由;(3)【结论运用】如图③,在 Rt△ABC中, ∠ACB=90°,∠ABC=60°,BC=4.点D为AB边上一动点, 连接CD, 点E为CD边上一动点, 连接BE, 以BE为边, 在BE右侧作等边△BEF,连接CF. 当点 D从AB的四等分点(靠近点B) 出发,向终点A 运动,同时,点E从点 D 出发,向终点C运动,运动过程中,始终保持∠BEC=90°,则CF的最小值为▲,点F所经过的路径长为▲ .(直接写出结果)。

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试题2022年7月一、单选题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程22x x =的解是()A .2x =B .122,0x x ==C .0x =D .122,1x x ==3.二次函数y =(x+1)2+2的图象的顶点坐标是()A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)4.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转180°得到点A′的坐标是()A .(﹣1,3)B .(1,﹣3)C .(3,1)D .(-1,﹣3)5.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为()A .2(1)3y x =-++B .2(1)3y x =-+-C .2(1)3y x =---D .2(1)3y x =--+6.如图,DE BC ,在下列比例式中,不能成立的是()A .AD AEDB EC=B .DE AEBC EC=C .AB ACAD AE=D .DB ABEC AC=7.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为()A .10mB .12mC .15mD .40m8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知二次函数y =x 2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A .有最大值8,最小值﹣8B .有最大值8,最小值﹣7C .有最大值﹣7,最小值﹣8D .有最大值1,最小值﹣710.如图,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转α角0180()α︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于()A .150︒B .90︒C .30°D .60︒二、填空题11.若两个相似三角形的相似比是1:2,则它们的面积比是______.12.已知方程x 2﹣3x ﹣k =0有一根是2,则k 的值是_____.13.如图,已知30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,则BAE ∠=_____°.14.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为_____.15.若二次函数21y ax =+,当x 取1x ,2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为_____.16.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.三、解答题17.解方程:2420x x ++=.18.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.19.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结BE .求证:AD BE =.20.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △;(3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标.21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.定义:若两条抛物线的对称轴相同,则称这两条抛物线为同轴抛物线.若抛物线211:12C y x mx m =--+与抛物线2C :2222y x nx n =-++-为同轴抛物线,将抛物线1C 上1≥x 的部分与抛物线2C 上1x <的部分合起来记作图象G .(1)①n =_____(用含m 的式子表示);②若点(),1m -在图象G 上,求m 的值;(2)若1m =,当12x -≤≤时,求图象G 所对应的函数值y 的取值范围;(3)正方形ABCD 的中心为原点O ,点A 的坐标为()1,1,当图象G 与正方形ABCD 有3个交点时,求m 的取值范围(直接写出结果).26.在△ABC 中,点D 在BC 边上,AD CD =,点E 、F 分别在线段AC 、AD 上,连结EF ,且EFD ABC ∠=∠.(1)当点E 与点C 重合时,如图1,找出图中与EF 相等的线段,并证明;(2)当点E 不与点C 重合时,如图2,若AC kEC =,求EFAB的值(用含k 的式表示);(3)若90BAC ∠=︒,35AB BC =,23EF AB =,如图3,求EC AC 的值.参考答案1.C 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、不是轴对称图形,是中心对称图形,故此选项不合题意;C 、既是轴对称图形又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C .2.B 【解析】利用因式分解法解一元二次方程,提取公因式x .【详解】解:22x x=()20x x -=,10x =,22x=.故选:B .3.B 【解析】根据顶点式的意义直接解答即可.【详解】解:二次函数y =(x+1)2+2的图象的顶点坐标是(﹣1,2).故选:B .4.D 【解析】根据中心对称的定义得到点A 与点A′关于原点对称,然后根据关于原点对称的点的坐标特征求解.【详解】∵线段OA 绕原点O 顺时针旋转180°,得到OA′,∴点A 与点A′关于原点对称,而点A 的坐标为(1,3),∴点A′的坐标为(﹣1,﹣3).故选D .5.A 【解析】根据二次函数图象的平移规律解答即可.【详解】解:由题意知,平移后抛物线的解析式是()213y x =-++,故A 正确.故选:A .【点睛】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减.6.B 【解析】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.【详解】DE BC ∥,AD AE DB ABDB EC EC AC∴==.ADE ABC ∴ ∽DE AE AEBC AC EC∴=≠B.错误故选B .【点睛】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.7.C 【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.8.D【解析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可.【详解】第一次降价后的价格为:25×(1-x);第二次降价后的价格为:25×(1-x)2;∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.9.A【解析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选A.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.D【解析】【分析】由旋转的性质可得CA=CA',∠ACA'=α,由等腰三角形的性质可得∠A=∠CA'A=60°,由三角形内角和定理可求α的值.【详解】解:90ACB ∠=︒ ,30ABC ∠=︒,60A ∴∠=︒,将ABC ∆绕点C 顺时针旋转α角0180()α︒<<︒至△A B C '',CA CA '∴=,ACA α'∠=,60A CA A '∴∠=∠=︒,60ACA ∴'∠=︒,60α∴=︒,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11.1:4【解析】【分析】根据相似三角形的面积比等于相似比即可求得.【详解】∵两相似三角形的相似比为1:2,∴它们的面积比是1:4,故答案为:1:4.【点睛】本题考查了相似三角形的面积的比等于相似比的平方的性质,熟记性质是解题的关键.12.-2【解析】【分析】直接把x =2代入方程x 2﹣3x ﹣k =0,得到关于k 的方程,然后解一次方程即可.【详解】解:把x =2代入方程x 2﹣3x ﹣k =0得4﹣6﹣k =0,解得k =﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.20【解析】【分析】利用旋转的性质得出50DAB ∠=o ,进而得出BAE ∠的度数.【详解】∵30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,∴50DAB ∠=o ,则BAE ∠=503020DAB DAE ∠-∠=-=o o o 故答案为:20°【点睛】此题主要考查了旋转的性质,得出旋转角DAB ∠的度数是解题关键.14.()22238x x -+=【解析】【分析】根据题意可直接进行列式求解.【详解】由题意易得:()22238x x -+=;故答案为()22238x x -+=.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.15.1【解析】【分析】y=ax 2+1的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,所以x 1,x 2互为相反数,即x 1+x 2=0,由此可以确定此时函数值.【详解】解:∵在y=ax 2+c 的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,∴x 1,x 2互为相反数,∴x 1+x 2=0,∴y=0+1=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.16.(164y x x=<<【解析】【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD+∠BAP =90°,∠BAP+∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB .∴=AD DEAP AB,即4=4y x∴(164y x x=<<.故答案为:(164y x x=<<【点睛】本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.17.12x =-+22x =--【解析】【分析】方程利用配方法求出解即可.∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=,∴2x =-∴12x =-22x =--18.223y x x =--+.【解析】将点()3,0-,()2,5-代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+.19.见解析.【解析】由旋转的性质可得CD =CE ,∠DCE =90°,由“SAS”可证△ACD ≌△BCE ,从而得出结论.【详解】∵将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴CD CE =,90DCE ∠=︒,∴90DCE ACB ∠=∠=︒,∴ACD DCB DCB BCE ∠+∠=∠+∠,∴ACD BCE ∠=∠,且AC BC =,CD CE =,∴()ACD BCE SAS ≌,∴AD BE =.20.(1)图见解析,()12,2A ,()10,1B -;(2)图见解析;(3)(0,2)-.(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222ab -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩,1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A --- ,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B -- ,0013(,)22P +--∴,即(0,2)P -,故旋转中心的坐标为(0,2)-.21.这个苗圃园垂直于墙的一边长为12米.【解析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.22.(1)见解析;(2)BD =【解析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AEAB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△.∴AC AEAB AD=.∵EAC BAD ∠=∠,∴BAD CAE ∽.(2)∵90ACB ∠=︒,4BC =,3AC =,∴5AB ==.∵A ABC DE ∽△△,∴AC ABAE AD=.∴52AB AE AD AC ⋅==.将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD =23.(1)y =﹣2x+200(40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析【解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx+b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩,解得:k 2b 200=-⎧⎨=⎩,∴y =﹣2x+200(40≤x≤80);(2)W =(x ﹣40)(﹣2x+200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.24.(1(2)22220326416553515t t S t t t t t ⎧⎛<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎪-+≤⎪⎝⎩.【解析】(1)根据勾股定理求得AB =,易证BED BAC ∽△△,根据相似三角形的性质求得BE =,根据平行四边形的性质可得DF BE ∥即DF =,继而易得 ∽ADF ABC ,继而根据相似三角形的性质求解;(2)分①当03t <≤时,②当03t <≤时,③当5t <≤【详解】(1)当点F 落在AC 边上时,如图1∵在Rt ABC 中,8AC =,4BC =,90ACB ∠=︒,∴AB =∵ED AB ⊥于D ,∴90EDB ACB ∠=∠=︒,B B ∠=∠,∴BED BAC ∽△△,∴BD BEBC AB=,∴4t =BE =,∵四边形BDFE 为平行四边形,∴DF ∥,∴DF , ∽ADF ABC ,∴DF AD BC AB =,即4=3t =∴当点F 落在AC 边上时,t(2)当0t <≤2,∵BDE BCA ∽,∴BD DE BC CA=,∴48t DE=,∴2DE t =.∴222BDFE S S BD DE t t t ==⋅=⋅= ;当点E 与点C 4=,5t =,t <≤3,∵DM BC ,∴ADM ABC △∽△,∴DM ADBC AB =,∴4DM =∴4DM =-.∵DF BE ==,∴44MF ⎛⎫=-=- ⎪ ⎪⎝⎭又∵MNF CAB △∽△,∴MN MF CA CB =,∴84MN MF=,∴2MN MF =.∴2221364162555MNFS MN MF MF t t t ⎛⎫=⋅==-=-+ ⎪ ⎪⎝⎭△∴22362165BDFE MNF S S S t t ⎛⎫=-=-+ ⎪ ⎪⎝⎭△∴2264851655S t t =-+-;当45455t <≤时,如图4.∵ADM ABC △∽△,∴AD DM AMAB BC AC==,∴454845t DM AM -==,∴545DM t =-,2585AM t =-.∴25258855MC t t ⎛⎫=--= ⎪ ⎪⎝⎭.∵BDMC S S =梯形.∴215251854425555S t t t t ⎛⎫=⋅-+⨯=-+ ⎪ ⎪⎝⎭.综上所述,222252032648525451655351854545555t t S t t t t t t ⎧⎛⎫<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎫⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎛⎫⎪-+<≤ ⎪ ⎪⎪⎝⎭⎩.25.(1)①m ;②m 的取值为15-+或12-+12-;(2)当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)1122m -<<或514m <≤.【解析】(1)①根据同轴抛物线的定义可得n=m ;②分两种情况:①当m 1≥时,将(),1m -代入2112y x mx m =-=+中,当1m <时,把(),1m -代入2222y x mx m =-++-中,计算可解答;(2)先将m=1代入函数y 中,画出函数图象,分别代入x=-1,x=2,x=1计算对应的函数y 的值,根据图象可得结论;(3)画出相关函数的图象,根据图象即可求得.【详解】(1)①抛物线1C 的对称轴为:1x m =,抛物线2C 的对称轴为:2x n =,∵1C 与2C 为同轴抛物线,∴12x x =∴n m =故答案为:m②当m 1≥时,将(),1m -代入2112y x mx m =-=+中得221112m m m --+=-,2240m m +-=,解得11m =-21m =-,∵m 1≥,∴1m =-当1m <时,把(),1m -代入2222y x mx m =-++-中得:222221m m m -++-=-,2210m m +-=解得11m =-+21m =-∵1m <,∴1m =-1m =-.综上所述,m的取值为1-或1-+1--(2)当1m =时,图象G 的函数解析式为()()2211221x x x y x x x ⎧-≥⎪=⎨⎪-+<⎩,图象G 如图1所示,在抛物1C 上,当12x ≤≤时,y 随x 的增大而增大,102y -≤≤,在抛物线2C 上,当11x -≤<时,y 随x 的增大而增大,31y -≤<∴当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)当112m -<<或514m <≤时,图象G 与正方形ABCD 有3个交点,抛物线()2222:22222C y x mx m x m m m =-++-=--++-.抛物线211:12C y x mx m =--+,当1x =时,322y m =-当31212m -≤-≤时,1544m ≤≤.当抛物线2C 的顶点在BC 上时,如图2,2221m m +-=-,11m =-,21m =-当抛物线2C 过点()1,1B -时,如图3,12221m m -++-=-,12m =,∴112m -<<;当抛物线2C 过点()1,1A 时,如图4,12221m m -++-=,44m =,1m =.当抛物线1C 过点()1,1B -时,如图5,1112m m --+=-,54m =,∴514m <≤.综上所述,当112m -+<或514m <≤时,图象G 与正方形ABCD 有3个交点.26.(1)EF AB =.证明见解析;(2)1EF k AB k-=;(3)13EC AC =.【解析】(1)在BD 上取点M ,使AM AD =,根据等边对等角的性质、等量代换及全等三角形的判定和性质可得AB EF =;(2)在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N ,根据等边对等角、平行线的性质、等量代换可证得:ENF AMB △∽△,继而可得EF EN AB AM =,继而易证ANE ADC △∽△,CN DC E AE A =,继而即可求解;(3)过E 作EG AD ⊥于G ,易证EGF CAB △∽△,可得EG EF AC BC =,可设3AB a =,5BC a =,则4AC a =,求得2EF a =,85EG a =,易证AGE CAB △∽△,进而可得AE GE CB AB=,继而可知83AE a =,84433EC a a a =-=,继而即可求解.【详解】(1)EF AB =.证明:在BD 上取点M ,使AM AD =,如图1,∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠,又∵AD CD =,∴AM CD =,又∵ABC EFD ∠=∠.∴()ABM CFD AAS △≌△,∴AB EF =;(2)解:在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N.∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠.∵NE DC ∥,∴FNE ADC AMB ∠=∠=∠.又∵EFD ABC ∠=∠,∴ENF AMB △∽△,∴EFENAB AM =,∵EN DC ,∴ANE ADC △∽△,∴CN DC E AEA =∵AC kEC =,∴()1AE AC EC k EC =-=-.∴()11k EC EN kDC kEC k --==,∵AM AD DC ==,∴1EN EN k DC AM k -==,∴1EF k AB k -=;(3)解:过E 作EG AD ⊥于G ,如图3∵90BAC ∠=︒,∴EGF BAC ∠=∠.又∵EFD ABC ∠=∠,∴EGF CAB △∽△,∴EG EFAC BC=∵35ABBC =,∴设3AB a =,5BC a =,则4AC a =,又∵23EFAB =,∴2EF a =,∴245EG a a a =,∴85EG a =.又∵AD DC =,∴DAC C ∠=∠,∴AGE CAB △∽△,∴AEGECB AB =,∴8553a AE a a =,∴83AE a =∵4AC a =,∴84433EC a a a =-=,∴41343a EC AC a ==.【点睛】本题主要考查相似三角形的的判定及其性质,涉及到等边对等角的性质、等量代换及全等三角形的判定及其性质,解题的关键是熟练掌握所学知识.。

九年级期中数学试卷及答案(K12教育文档)

九年级期中数学试卷及答案(K12教育文档)

九年级期中数学试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级期中数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级期中数学试卷及答案(word版可编辑修改)的全部内容。

扬州市初三年级第一学期期中数学试题(考试时间:120分钟卷面总分:150分 2010.11。

10)卷首语:亲爱的同学们,经过初三半学期的学习,你一定体会到数学的魅力了吧?这份试卷将会记录你的自信、沉着、智慧和收获,愿你在答题中有一种快乐的心绪漾动,相信你一定行!一.选择题:(本大题共有8小题,每小题3分,共24分)1、今年我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的()A、中位数B、平均数C、众数D、方差2、一元二次方程x2+x-1=0 的根的情况为 ( )A、有两个相等的实数根B、有两个不相等的实数根C、只有一个实数根D、没有实数根3、用配方法解方程 x 2 -2x-5=0时,原方程应变形为()A、(x- 1)2 =6B、(x + 1)2 =6C、(x + 1)2 =9D、(x- 2)2 =94.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.对角线相等的四边形 C.矩形。

D.对角线互相垂直的四边形5、如图△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E为BC中点,则DE= A3cm B 5cm C 2。

5cm D 1.5cm ()第6题6、如图,在菱形ABCD中,对角线AC BD,则菱形ABCD,相交于点O E,为AB的中点,且OE a7。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024~2025学年九年级上学期期中考试数学试题(冀教版)一、选择题(共16题;共42分)1.(3分)一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数B.中位数C.平均数D.方差2.(3分)方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )A.(x﹣1)2=4B.(x+1)2=4C.(x﹣1)2=16D.(x+1)2=163.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )A.16(1﹣x)2=9B.16(1﹣x2)=9C.9(1﹣x)2=16D.9(1+x2)=164.(3分)若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠05.(3分)在平行四边形ABCD中AN=13NB,则S△ADM:S四边形CMNB为( )A.5:9B.5:19C.4:19D.4:96.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,不能判定△ABC∽△ADE的是( )A.∠C=∠E B.∠B=∠ADE C.ABAD =ACAED.ABAD=BCDE7.(3分)凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB 的距离之比为5:4,则物体被缩小到原来的( )A .45B .25C .49D .598.(3分)如图,在△ABC 中,AB =AC ,E 为BC 边上的一点,BE :CE =1:2,D 为AE 的中点,连接BD 并延长交AC 于F ,则CF :AF 的值为( )A .1:2B .1:3C .3:2D .3:19.(3分)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sin α米C .30tan α米D .30cos α米10.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A .34B .43C .35D .4511.(2分)如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x和 y 2=4x 的图象交于点A 和点B .若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A.1B.2C.3D.412.(2分)如图,已知点A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是( )A.2∠C B.4∠B C.4∠A D.∠B+∠C13.(2分)如图,ΔABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为( )A.4π―8B.2πC.4πD.8π―814.(2分)如图,在平面直角坐标系中,以坐标原点O为位似中心,在y轴右侧作△ABO放大2倍后的位似图形△CDO,若点B的坐标为(―1,―2),则点B的对应点D的坐标为( )A.(2,4)B.(3,4)C.(3,5)D.(4,3)15.(2分)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为( )米.A.5B.4C.3D.216.(2分)某品牌自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是( )A.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水B.水温下降过程中,y与x的函数关系式是y=400xC.水温从20℃加热到100℃,需要7minD.水温不低于30℃的时间为77min3二、填空题(共3题;共8分)17.(2分)一元二次方程x2=2x的根是 .18.(2分)如图是一边长为6的菱形纸片ABCD,将纸片沿EF折叠,使点D落在边BC上,点A,D的对应点分别为点G,H,GH交AB于点J.若AE=1.4,CF=2,则EJ的长是 19.(4分)如图1 是一款重型订书机,其结构示意图如图2 所示.其主体部分为矩形EFGH,由支撑杆CD 垂直固定于底座AB 上,且可以绕点 D 旋转.压杆MN 与伸缩片PG 连接,点M 在HG 上,MN 可绕点M 旋转,PG⊥HG ,DF=8 cm,GF=2cm,不使用时,EF∥AB,G 是PF 中点,且点 D 在NM 的延长线上,则MG= cm,使用时如图3,按压MN 使得MN∥AB,此时点F 落在AB 上,若CD=2 cm,则压杆MN 到底座AB 的距离为 cm三、解答题(共7题;共70分)20.(9分)4月,某校初2021级800名学生进行了一次政治测试(满分:50分).测试完成后,在甲乙两班各抽取了20名学生的测试成绩,对数据进行整理分析,并给出了下列信息:甲班20名同学的测试成绩统计如下:41,47,43,45,50,49,48,50,50,49,48,47,44,50,43,50,50,50,49,47.乙班20名同学的测试成绩统计如下:组别40<x≤4242<x≤4444<x≤4646<x≤4848<x≤50频数11a69其中,乙班20名同学的测试成绩高于46,但不超过48分的成绩如下:47,48,48,47,48,48.甲乙两班抽取的学生的测试成绩的平均数、中位数、众数如表所示:班级平均数中位数众数甲班47.548.5c乙班47.5b49(1)(3分)根据以上信息可以求出:a=_____,b=_____,c=_____;(2)(3分)你认为甲乙两个班哪个班的学生政治测试成绩较好,请说明理由(理由写出一条即可);(3)(3分)若规定49分及以上为优秀,请估计该校初2021级参加此次测试的学生中优秀的学生有多少人?21.(9分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF与⊙O相切.(1)(5分)求证:EF =EC ;(2)(4分)若D 是OA 的中点,AB =4,求BF 的长.22.(9分)火灾是最常见、最多发的威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧面示意图,点D ,B ,O 在同一直线上,DO 可绕着点O 旋转,AB 为云梯的液压杆,点O ,A ,C 在同一水平线上,其中BD 可伸缩,套管OB 的长度不变,在某种工作状态下测得液压杆AB =3m ,∠BAC =53°,∠DOC =37°.(1)(5分)求BO 的长.(2)(4分)消防人员在云梯末端点D 高空作业时,将BD 伸长到最大长度6m ,云梯DO 绕着点O 顺时针旋转一定的角度,消防人员发现铅直高度升高了3m ,求云梯OD 旋转了多少度.(参考数据:sin 37°≈35,tan37°≈34,sin53°≈45,tan53°≈43,sin64°≈0.90,cos64°≈0.44)23.(9分)某水渠的横断面是以AC 为直径的半圆O ,图1表示水渠正好盛满了水,点D 是水面上只能上下移动的浮漂,AB 是垂直水面线的发光物体且从点B 发出光线,测得∠BDA 、∠BCA 分别为60°,30°,已知AD =1m .(1)(5分)求AC 的长;πm,求DN (2)(4分)如图2,把水渠中的水放掉一部分,得到水面线为MN,若AM的长为940);的长(tan27°=1224.(10分)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)(4分)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)(3分)求出图中a的值;(3)(3分)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.(11分)如图1,已知∠ABC=60°,点O在射线BC上,且OB=4.以点O为圆心,r(r>0)为半径作⊙O,交直线BC于点D,E.(1)(2分)当⊙O与∠ABC只有两个交点时,r的取值范围是________.(2)(9分)当r=22时,将射线BA绕点B按顺时针方向旋转α(0°<α<180°).①若BA与⊙O相切,求α的度数为多少;②如图2,射线BA与⊙O交于M,N两点,若MN=OB,求阴影部分的面积.26.(13分)如图1,将Rt△ABC的顶点C放在⊙O上,边BC与⊙O相切于点C,边AC与⊙O交于点D.已知∠BCA=60°,∠B=90°,BC=6,⊙O的直径为8.(1)(4分)如图1,过点O作OM⊥CD于点M,求CM的长度;(2)(9分)从图1的位置开始,将△ABC绕点C顺时针旋转,设旋转角为α(0°≤α≤360°).①如图2,当α=20°时,边BC与⊙O的另一交点为E,求CE的长度;②如图3,当AC经过圆心O时,试判断AB与⊙O之间的位置关系,并说明理由;③在旋转过程中,直接写出点O到边AB的距离h的取值范围.答案1.D2.A3.A4.C5.C6.D7.A8.D9.C10.D11.A12.A13.A14.A15.C16.D17.x1=0,x2=218.2.819.4;15+2220.(1)3,48,50(2)甲班的成绩较好,理由:甲乙两班的平均数相等、甲班的中位数、众数都比乙班的大(3)估计该校初2021级参加此次测试的学生中优秀的学生有380人21.(1)证明:连接OF,则OF=OB,∵EF与⊙O相切于点F,∴EF⊥OF,∴∠OFE =90°,∴∠EFC +∠OFB =180°―∠OFE =90°,∵CD ⊥AB ,∴∠CDB =90°,∴∠C +∠B =90°,∵∠OFB =∠B ,∴∠EFC =∠C ,∴EF =EC .(2)解:连接AF ,∵AB 是⊙O 的直径,∴∠AFB =∠CDB =90°,∴∠B =∠B ,∴△AFB ∽△CDB ,∴BF BD =AB CB,∵D 是OA 的中点,AB =4,∴OA =OB =12AB =2,OD =AD =12OA =1,∴BD =OB +OD =2+1=3,∵CD =AB =4,∴CB =BD 2+CD 2=32+42=5,∴BF =AB ⋅BD CB =4×35=125,∴BF 的长是125.22.(1)解:如图,过点B 作BE ⊥OC 于点E ,在Rt △ABE 中,∠BAC =53°,AB =3m ,∴BE =AB ⋅sin∠BAE =3×sin 53°≈3×45=125,在Rt △BOE 中,∠BOE =37°,BE =125,∵sin∠BOE =BE OB ,∴OB =BE sin ∠BOE=12535=4.答:OB =4m .(2)解:如图,过点D 作DF ⊥OC 于点F ,旋转后点D 的对应点为D ′,过点D ′作D ′G ⊥OC 于点G ,过点D 作DH ⊥D ′G 于点H ,在Rt △FOD 中,OD =OB +BD =4+6=10,∠DOF =37°,∴DF =OD ⋅sin 37°≈10×35=6m ,∴D ′G =D ′H +HG =3+6=9m ,在Rt △D ′OG 中,O D ′=10m ,D ′G =9m ,∴sin ∠D ′OG =D ′G D ′O =910,∴∠D ′OG ≈64°,∴∠D ′OD =64°―37°=27°,即云梯OD 大约旋转了27°.23.(1)解:∵∠BAD=90°,AD=1,∠BDA=60°,∴∴AB=AD•tan60°=1×3=3, ∴AC =AB tan30°=3(2)解:连接OM ,设∠AOM=n°∵AM =n ×π×32180=940π∴∠AOM=n°=27°∵AC ∥MN ,∴∠AOM=∠OMN=27°过点O 作OE ⊥MN 于E 点,∴ME=EN ,∵tan∠OMN =OE ME =12,∴ME=2OE ∵O M 2=O E 2+M E 2, ∴OE =3105,ME =355过D 作DD '⊥AC 于点D ',∴DD '∥OE ,∵AC ∥MN ,∴四边形DD 'OE 是平行四边形, ∴DE =D ′O =12, ∴DN =355+1224.(1)当0≤x≤8时,y =10x+20;当8<x≤a 时,y =800x;(2)a =40;(3)李老师要在7:38到7:50之间接水25.(1)0<r ≤23或r >4(2)①15°或105°;②2π―426.(1)解:连接OC ,∵边BC 与⊙O 相切于点C ,∴∠OCB =90°,又∵∠BCA =60°,∴∠OCM =30°,∴OM =12OC =12×4=2,∴CM =OC 2―OM 2=42―22=23,(2)解:①如图,连接OC 、OE ,α=20°时,∠OCB =70°,∵OE =OC ,∴∠OEC =∠OCB =70°,∴∠EOC =180°―∠OEC ―∠OCB =40°,∴CE 的长度为40π×4180=8π9;②AB 与⊙O 相切,理由为:过点O 作OF ⊥AB 于点F ,∵∠BCA =60°,∠B =90°,∴∠A =30°,∴AC =2BC =2×6=12,∴AO =8,∴OF =12AO =12×8=4=OC ,∴AB 与⊙O 相切;③h 的取值范围为2≤ℎ≤10。

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

2023-2024学年度上期期中测试数学题卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束,监考人员将试题卷和答题卡一并收回。

4.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题(每小题4分,共40分)1.下列方程一定是一元二次方程的是()A .212023x x -=B .30y x -=C .2350x x -=D .3210x x ++=2.将抛物线y =x 2﹣1向上平移3个单位,再向右平移1个单位后,得到的抛物线所对应的函数表达式为()A .y =(x ﹣1)2﹣1B .y =(x ﹣1)2+2C .y =(x +1)2+2D .y =(x +1)2﹣13.下列方程中,没有实数根的是()A. B.C.D.4.下列关于抛物线()2314y x =+-的结论,正确的是()A .开口方向向下B .对称轴为直线x =-1C .顶点坐标是(1,-4)D .当x =-1时,函数有最大值为-45.一元二次方程x 2-6x +5=0配方可变形为()A.(x -3)2=14B.(x -3)2=4C.(x +3)2=14D.(x +3)2=46.点()()()11223331P y P y P y -,、,、2,均在二次函数244y x x =--的图象上,则y 1,y 2,y 3的大小关系是()A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>7.已知二次函数y =ax 2+bx +c 的图象如图所示,根据图中提供的信息,可求得使y ≥1成立的x 的取值范围是()A .-1≤x ≤3B .x ≥3C .x ≤-1D .x ≤-1或x ≥38.关于x 的一元二次方程()22210x a a x a +-+-=两个实数根互为相反数,则a 的值为()A.2B.0C.1D.2或09.已知二次函数2y ax bx c =++的图象如图所示,顶点为(﹣1,0),则下列结论:①0abc <;②240b ac -=;③20a b -=;④2a >;⑤420a b c -+<.其中正确结论的个数是()A .2个B .3个C .4个D .5个10.对于实数a 、b ,定义新运算()()22*a ab a b a b b ab a b ⎧-≥⎪=⎨-<⎪⎩ ,若二次函数()2*1y x x =-,则下列结论正确的有()①方程()2*10x x -=的解为x =0或x =−1;②关于x 的方程()2*1x x m-=有三个解,则102m ≤<;③当x <−1时,y 随x 增大而增大;④当x >−1时,函数()2*1y x x =-有最大值0.A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.一元二次方程的解是.12.抛物线21252y x x =-+-的顶点坐标是.13.有一个人患了新冠病毒,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了个人.14.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是.15.已知m 、n 是一元二次方程2250x x +-=的两个实数根,则m 2+mn +2m 的值为.第7题图第9题图16.如图,已知二次函数223y x x =-的图象与正比例函数1y x =的图象在第一象限交于点,与轴正半轴交于点,若,则的取值范围是.17.使得关于x 的不等式组6101131282x a x x -≥-⎧⎪⎨-+<-+⎪⎩有且只有4个整数解,且关于x 的方程()25410a x x -++=有实数根的所有整数a 的值之和为.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”。

2022-2023学年北京市第十二中学九年级上学期期中考试数学试卷含详解

2022-2023学年北京市第十二中学九年级上学期期中考试数学试卷含详解

北京十二中2022-2023学年第一学期期中考试试卷初三数学一、选择题(共16分,每题2分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.直角三角形B.圆C.等边三角形D.四边形2.小明将图案绕某点连续旋转若干次,每次旋转相同角度α,设计出一个外轮廓为正六边形的图案(如图),则α可以为()A.30°B.60°C.90°D.120°3.抛物线2241y x x =-+的对称轴是直线()A.3x =- B.1x = C.32x =-D.=1x -4.二次函数y =3(x –2)2–5与y 轴交点坐标为()A.(0,2)B.(0,–5)C.(0,7)D.(0,3)5.一元二次方程22310x x -+=的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.无法确定6.把二次函数2y x =-的图像向左平移1个单位,然后向上平移3个单位,则平移后的图像对应的二次函数的关系式为()A.2(1)3y x =-++B.2(1)3y x =-+-C.2(1)3y x =--- D.2(1)+3y x =--7.抛物线上y =(m -4)x 2有两点A (-3,y 1)、B (2,y 2),且y 1>y 2,则m 的取值范围是()A.m >4B.m <4C.m ≥4D.m ≠48.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°二、填空题(共16分,每题2分)9.若点P (2,3)与点Q 关于原点对称,则点Q 的坐标是__________.10.若一个反比例函数图象的每一支上,y 随x 的增大而减小,则此反比例函数表达式可以是__________.(写出一个即可)11.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.12.如图,矩形ABCD 中,3AB =,4BC =.以点A 为中心,将矩形ABCD 旋转得到矩形AB 'CD ',使得点B '落在边AD 上,此时DB '的长为______.13.若关于x 的方程2240x kx k ++-=的一个根是1,则k 的值为___________.14.如图,A ,B 两点在函数2y x=-(0x <)图象上,AC 垂直y 轴于点C ,BD 垂直x 轴于点D ,AOC ,BOD 面积分别记为1S ,2S ,则1S ___2S .(填“<”,“=”,或“>”).15.抛物线2y ax bx c =++的顶点为()2A m ,,且经过点()50B ,,其部分图象如图所示.对于此抛物线有如下四个结论:①0ac <;②0a b c -+>;③90m a +=;④若此抛物线经过点()C t n ,,则4t +一定是方程2ax bx c n ++=的一个根.其中所有正确结论的序号是____________16.已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y .(1)若120x x +=,则12y y +=__________;(2)若120x x +>时,120y y +>,则k __________0,b __________0.(填“>”,“=”或“<”)三、解答题(共68分,第17题8分,第18-19题每题5分,第20题4分,第21-24题每题5分,第25-26题每题6分,第27-28题每题7分)17.用适当的方法解方程(1)4(x-1)2=9(2)2640x x --=18.如图,点D 是等边三角形ABC 的边BC 上一点,以AD 为边作等边△ADE ,连接CE .(1)求证:ABD ACE ≌△△;(2)若∠BAD =20°,求∠AEC 的度数.19.已知关于x 的一元二次方程2(1)(4)30m x m x -+--=(m 为实数且1m ≠).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数...m 的值.20.如图,在正方形网格中,将格点△ABC 绕某点顺时针旋转角α(0<α<180°)得到格点△A 1B 1C 1,点A 与点A 1,点B 与点B 1,点C 与点C 1是对应点.(1)请通过画图找到旋转中心,将其标记为点O ;(2)直接写出旋转角α的度数.21.已知二次函数223y x x =--+.(1)将二次函数化成2()y a x h k =-+的形式;(2)在平面直角坐标系中画出223y x x =--+的图象;(3)结合函数图象,直接写出0y >时x 的取值范围.22.刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?23.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题:(1)画出小石建立的平面直角坐标系;(2)判断排球能否过球网,并说明理由.24.在平面直角坐标系xOy 中,直线:l 3y x =-与函数(0ky k x=≠,0)x >的图象交于点(4,)A t .(1)求t ,k 的值;(2)点B 是函数(0ky k x=≠,0)x >的图象上任意一点(不与点A 重合),点P ,Q 在直线l 上,点P 横坐标为2.若1S S 2ABQ ABP △△≥,求点Q 横坐标的取值范围.25.数学学习小组的同学共同探究体积为330mL 圆柱形有盖容器(如图所示)的设计方案.,他们想探究容器表面积与底面半径的关系.具体研究过程如下,请补充完整:(1)建立模型:设该容器的表面积为S 2cm ,底面半径为x cm ,高为y cm ,则2330x y π=,①222S x xy ππ=+,②由①式得2330y x π=,代入②式得26602S x xπ=+.③可知,S 是x 的函数,自变量x 的取值范围是0x >.(2)探究函数:根据函数解析式③,按照下表中自变量x 的值计算(精确到个位),得到了S 与x 的几组对应值:/cmx …1 1.52 2.53 3.54 4.55 5.56…2/cm S …666454355303277266266274289310336…在下面平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)解决问题:根据图表回答,①半径为2.4cm 的圆柱形容器比半径为4.4cm 的圆柱形容器表面积______.(填“大”或“小”);②若容器的表面积为3002cm ,容器底面半径约为______cm (精确到0.1).26.已知抛物线242(0)y ax ax a =-+≠过(1,)A m -,(2,)B n ,(3,)C p 三点.(1)求n 的值(用含有a 的代数式表示);(2)若0mnp <,求a 的取值范围.27.在ABC 中,90,ACB AC CB ∠== ,将线段CA 绕点C 顺时针旋转到如图所示的位置,得到线段CD ,连接,,AD BD CF 平分BCD ∠交BD 于点G ,交AD 的延长线于点F ,连接BF .(1)依题意补全图形;(2)①求DFC ∠的度数;②用等式表示线段,,AD FB FC 之间的数量关系,并证明.28.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数y =﹣(x ﹣3)2+2是有上界函数,其上确界是2(1)函数①y =x 2+2x +1和②y =2x ﹣3(x ≤2)中是有上界函数的为(只填序号即可),其上确界为;(2)如果函数y =﹣x +2(a ≤x ≤b ,b >a )的上确界是b ,且这个函数的最小值不超过2a +1,求a 的取值范围;(3)如果函数y =x 2﹣2ax +2(1≤x ≤5)是以3为上确界的有上界函数,求实数a 的值.北京十二中2022-2023学年第一学期期中考试试卷初三数学一、选择题(共16分,每题2分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.直角三角形B.圆C.等边三角形D.四边形【答案】B【分析】根据中心对称图形和轴对称图形的定义判断即可.【详解】∵直角三角形不是中心图形,不符合题意,∴A选项错误;∵圆是中心图形,也是轴对称图形,符合题意,∴B选项正确;∵等边三角形不是中心图形,是轴对称图形,不符合题意,∴C选项错误;∵四边形无法确定其对称性,不符合题意,∴D选项错误;故选B.【点睛】本题考查了中心对称图形和轴对称图形的定义,熟记两种对称图形的定义是解题的关键.2.小明将图案绕某点连续旋转若干次,每次旋转相同角度α,设计出一个外轮廓为正六边形的图案(如图),则α可以为()A.30°B.60°C.90°D.120°【答案】B【分析】由题意依据每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度α360660︒=÷=.故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.3.抛物线2241y x x =-+的对称轴是直线()A.3x =-B.1x = C.32x =-D.=1x -【答案】B【分析】根据二次函数()20y ax bx c a =++≠的对称轴公式:直线2bx a=-进行求解即可.【详解】解:抛物线2241y x x =-+的对称轴是直线41222b x a -=-=-=⨯.故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的对称轴公式是解题的关键.4.二次函数y =3(x –2)2–5与y 轴交点坐标为()A.(0,2)B.(0,–5)C.(0,7)D.(0,3)【答案】C【分析】由题意使x =0,求出相应的y 的值即可求解.【详解】解:∵y =3(x ﹣2)2﹣5,∴当x =0时,y =7,∴二次函数y =3(x ﹣2)2﹣5与y 轴交点坐标为(0,7),故选C .【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.5.一元二次方程22310x x -+=的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.无法确定【答案】A【分析】根据一元二次方程的根的判别式得到()234210∆=--⨯⨯>,即可得出答案.【详解】解:∵()234219810∆=--⨯⨯=-=>,∴一元二次方程22310x x -+=有两个不相等的实数根.故选:A .【点睛】本题考查了一元二次方程根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.把二次函数2y x =-的图像向左平移1个单位,然后向上平移3个单位,则平移后的图像对应的二次函数的关系式为()A.2(1)3y x =-++B.2(1)3y x =-+-C.2(1)3y x =---D.2(1)+3y x =--【答案】A【分析】根据二次函数图象平移的方法即可得出结论.【详解】解:抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为:2(1)3y x =-++.故选:A .【点睛】本题考查的是二次函数的图象的平移变换,熟知“上加下减,左加右减”的规律是解答此题的关键.7.抛物线上y =(m -4)x 2有两点A (-3,y 1)、B (2,y 2),且y 1>y 2,则m 的取值范围是()A.m >4B.m <4C.m ≥4D.m ≠4【答案】A【分析】把A 、B 两点的坐标分别代入抛物线解析式可用m 分别表示出y 1和y 2,利用条件可得到m 的不等式,可求得m 的取值范围.【详解】解:∵A (−3,y 1)、B (2,y 2)在抛物线上,∴y 1=9(m −4),y 2=4(m −4),∵y 1>y 2,∴9(m −4)>4(m −4),∴m >4,故选:A .【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.8.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°【答案】C 【分析】据题意和二次函数的性质,可以确定出对称x 的取值范围,从而可以解答本题.【详解】解:由图象可知,物线开口向上,该函数的对称轴x >18542+且x <54,∴36<x <54,即对称轴位于直线x =36与直线x =54之间且靠近直线x =36,故选:C .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(共16分,每题2分)9.若点P (2,3)与点Q 关于原点对称,则点Q 的坐标是__________.【答案】(-2,-3).【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P (2,3)与点Q 关于原点对称,则点Q 的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.10.若一个反比例函数图象的每一支上,y 随x 的增大而减小,则此反比例函数表达式可以是__________.(写出一个即可)【答案】1y x=(答案不唯一)【详解】解:∵反比例函数图象的每一支上,y 随x 的增大而减小,∴该反比例函数中,常数0k >,如1y x =等(答案不唯一,只要0k >即可).故答案为:1y x=(答案不唯一)11.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.【答案】y=-x 2-2x-1.【分析】首先由①得到a <0;由②得到-2b a ≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案.【详解】解:二次函数y=ax 2+bx+c ,①开口向下,∴a <0;②当x >0时,y 随着x 的增大而减小,-2b a≤0,即b <0;∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x 2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.12.如图,矩形ABCD 中,3AB =,4BC =.以点A 为中心,将矩形ABCD 旋转得到矩形AB 'CD ',使得点B '落在边AD 上,此时DB '的长为______.【答案】1【分析】利用矩形和旋转的性质,推出4AD BC ==,AB AB 3'==,所以431'=-=DB .【详解】解:由题意可知:AB AB 3'==,4AD BC ==,∴431'=-=DB ,故答案为:1.【点睛】本题考查旋转的性质,矩形的性质,关键是利用旋转性质得到AB AB 3'==,再利用矩形的性质得4AD BC ==.13.若关于x 的方程2240x kx k ++-=的一个根是1,则k 的值为___________.【答案】1【分析】把1x =代入方程2240x kx k ++-=,得出关于k 的方程,然后求解即可.【详解】解: 关于x 的方程2240x kx k ++-=的一个根是1,∴21240k k ++-=,解得1k =.故答案为:1.【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键.14.如图,A ,B 两点在函数2y x=-(0x <)图象上,AC 垂直y 轴于点C ,BD 垂直x 轴于点D ,AOC ,BOD 面积分别记为1S ,2S ,则1S ___2S .(填“<”,“=”,或“>”).【答案】=【分析】通过用反比例函数上的点坐标表示1S 和2S 的面积比较即可.【详解】∵A 、B 两点在y =-2x(0x <)上,∴x A 0<,x B 0<,y A >0,y B >0,x A y A =-2,x B y B =-2,∴A x y A =2,B x y B =2,∴S 1=12A x A y =1,S 2=12B x B y =2,∴S 1=S 2.故答案为=.【点睛】本题考查了反比例函数的几何意义,找到相关三角形,求出面积即可.15.抛物线2y ax bx c =++的顶点为()2A m ,,且经过点()50B ,,其部分图象如图所示.对于此抛物线有如下四个结论:①0ac <;②0a b c -+>;③90m a +=;④若此抛物线经过点()C t n ,,则4t +一定是方程2ax bx c n ++=的一个根.其中所有正确结论的序号是____________【答案】①③##③①【分析】先根据函数开口向下判断a 的负号,再根据函数与y 轴的交点判断c 的符号,即可判断①;根据函数的顶点和点B 即可确定函数经过点()1,0-,即可判断②;根据函数的对称轴即可得出a 、b 之间的等量关系,根据0a b c -+=即可的出a 、c 之间的关系,最后将2x =代入函数表达式即可得出结论;④根据二次函数与一元二次方程之间的关系即可进行解答.【详解】解:①∵函数开口向下,∴a<0,∵函数图像与y 轴交于正半轴,∴0c >,∴0ac <,故①正确;②∵顶点为()2A m ,,∴函数对称轴为直线:2x =,∵函数经过点()50B ,,∴函数经过点()1,0-,当1y =-时:()()21·10y a b c a b c =-+-+=-+=,故②不正确;③∵函数对称轴为直线:2x =,∵22b a-=,即:4b a =-,由②可知:0a b c -+=,故45c b a a a a =-=--=-,当2x =时:()()22242459y a b c a a a a =⨯++=+⨯-+-=-,∵函数经过点()2A m ,,∴9m a =-,即90m a +=,故③正确;④若此抛物线经过点()C t n ,,则x t =一定是方程2ax bx c n ++=的一个根,故④不正确;综上:正确的有①③;故答案为:①③.【点睛】本题主要考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质和图像和系数之间的关系.16.已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y .(1)若120x x +=,则12y y +=__________;(2)若120x x +>时,120y y +>,则k __________0,b __________0.(填“>”,“=”或“<”)【答案】①.(1)0②.(2)<③.>【分析】(1)联立两个函数解析式,整理为:()2300,kx bx k ++=≠再由根与系数的关系求解0,b =从而得到:()11,A x y ,()22,B x y 关于原点对称,从而可得答案;(2)由(1)的结论,结合120x x +>,可得:b k->0,由1122,,y kx b y kx b =+=+可得()12122,y y k x x b b +=++=结合:120y y +>,可得b >0,从而可得答案.【详解】解:(1)由题意得:3y x y kx b⎧=-⎪⎨⎪=+⎩,且0,k ≠3,kx b x∴-=+230,kx bx ∴++= 两函数的交点为:()11,A x y ,()22,B x y .12,b x x k∴+=- 120x x +=,0,b k∴-=0,b ∴=∴()11,A x y ,()22,B x y 为3y x =-与()0y kx k =≠的交点,由两函数的交点的性质可得:()11,A x y ,()22,B x y 关于原点对称,12,y y ∴互为相反数,120,y y ∴+=故答案为:0.(2)由(1)得:230,kx bx ++=同理可得:12b x x k+=-,1122,,y kx b y kx b =+=+ ()1212222,b y y k x x b k b b b b k ⎛⎫∴+=++=-+=-+= ⎪⎝⎭当120x x +>时,120y y +>,b k∴->0且b >0,k ∴<0.故答案为:<,>.【点睛】本题考查的是一次函数与反比例函数的交点问题,一次函数与反比例函数的图像与性质,同时考查了一元二次方程的根与系数的关系,不等式的性质,掌握以上知识是解题的关键.三、解答题(共68分,第17题8分,第18-19题每题5分,第20题4分,第21-24题每题5分,第25-26题每题6分,第27-28题每题7分)17.用适当的方法解方程(1)4(x-1)2=9(2)2640x x --=【答案】(1)112x =-,252x =;(2)13x =+23x =-【分析】(1)先在方程的两边同时除以4,再直接开方即可;(2)将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】(1)解:29(1)4x -=∴112x =-,252x =,(2)解:2(3)13x -=3x -=∴13x =23x =【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.18.如图,点D 是等边三角形ABC 的边BC 上一点,以AD 为边作等边△ADE ,连接CE .(1)求证:ABD ACE ≌△△;(2)若∠BAD =20°,求∠AEC 的度数.【答案】(1)见解析;(2)100°.【分析】(1)根据△ADE 与△ABC 都是等边三角形,得到AC=AB ,AE=AD ,∠DAE=∠BAC=60°,从而得到∠DAE+∠CAD=∠BAC+∠CAD ,即∠CAE=∠BAD ,利用SAS 证得△ABD ≌△ACE ;(2)由△ABD ≌△ACE ,得到∠ACE=∠B=60°,∠BAD=∠CAE=20°,再由三角形内角和为180°即可求出∠AEC 的度数.【详解】(1)证明:∵△ADE 与△ABC 都是等边三角形,∴AC=AB ,AE=AD ,∠DAE=∠BAC=60°,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠CAE=∠BAD ,在△CAE 与△BAD 中,AC AB CAE BAD AE AD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS );(2)∵△ABD ≌△ACE ,∴∠ACE=∠B=60°,∠BAD=∠CAE=20°,∴∠AEC=180°-60°-20°=100°.【点睛】此题考查全等三角形的判定与性质及等边三角形的性质,根据等边三角形中隐含的条件可以得到证明三角形全等的一些条件是解题关键.19.已知关于x 的一元二次方程2(1)(4)30m x m x -+--=(m 为实数且1m ≠).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数...m 的值.【答案】(1)证明见解析;(2)2m =或4m =.【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯- 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-.∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.20.如图,在正方形网格中,将格点△ABC 绕某点顺时针旋转角α(0<α<180°)得到格点△A 1B 1C 1,点A 与点A 1,点B 与点B 1,点C 与点C 1是对应点.(1)请通过画图找到旋转中心,将其标记为点O ;(2)直接写出旋转角α的度数.【答案】(1)见解析;(2)90°【分析】(1)连接11,AA CC ,分别做它们的垂直平分线相交于一点,该点即为所求;(2)观察所作图形,1COC α∠=∠,从而得到答案.【详解】解:(1)如下图所示,点O 即为所求.(2)观察第一问的图形,可知190COC α∠=∠=【点睛】本题考查作图确认旋转中心、旋转角,牢记相关的知识点是解题的关键.21.已知二次函数223y x x =--+.(1)将二次函数化成2()y a x h k =-+的形式;(2)在平面直角坐标系中画出223y x x =--+的图象;(3)结合函数图象,直接写出0y >时x 的取值范围.【答案】(1)2(1)4y x =-++;(2)画图见解析;(3)-3<x <1【分析】(1)运用配方法进行变形即可;(2)根据(1)中解析式可以先得出顶点坐标以及对称轴和开口方向朝下,然后进一步分别可以求出与x 轴的两个交点,及其与y 轴的交点,最后用光滑的曲线连接即可,;(3)根据所画出的图像得出结论即可.【详解】(1)223y x x =--+2(2)+3x x =-+2(211)+3x x =-++-2(1)+4x =-+;(2)由(1)得:顶点坐标为:(-1,4),对称轴为:1x =-,开口向下,当x=0时,y=3,∴交y 轴正半轴3处,当y=0时,x=1或-3,∴与x 轴有两个交点,综上所述,图像如图所示:(3)根据(2)所画图像可得,0y >,-3<x <1.【点睛】本题主要考查了二次函数图像的性质,熟练掌握相关概念是解题关键.22.刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?【答案】(1)20%;(2)4320元【分析】(1)设该商店的月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可;(2)5月份盈利=4月份盈利×增长率.【详解】(1)设每月盈利平均增长率为x ,根据题意得:()2250013600x +=,解得:1220%220%x x ==-,(不符合题意舍去)答:每月盈利的平均增长率为20%;(2)3600120%4320+=()(元)答:按照这个平均增长率,预计5月份这家商店的盈利将达到4320元.【点睛】本题考查的是二次方程的实际应用,熟练掌握二次方程是解题的关键.23.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题:(1)画出小石建立的平面直角坐标系;(2)判断排球能否过球网,并说明理由.【答案】(1)见解析;(2)排球能过球网,理由见解析【分析】(1)根据该抛物线的表达式为215722y x =-+,可得抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭,从而得到小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,即可求解;(2)根据题意得:当3x =时,2153 2.375 2.24722y =-⨯+=>,即可求解.【详解】解:(1)如图,∵该抛物线的表达式为215722y x =-+,∴抛物线的顶点坐标为50,2⎛⎫⎪⎝⎭,∵当排球飞行到距离球网3m 时达到最大高度2.5m .根据题意得:点A 的坐标为50,2⎛⎫⎪⎝⎭,∴小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y轴,如下图:(2)排球能过球网,理由如下:根据题意得:点B 的横坐标为3,∴当3x =时,2153 2.375 2.24722y =-⨯+=>,∴排球能过球网.【点睛】本题主要考查了建立二次函数的图象和性质,建立适当的平面直角坐标系,熟练掌握二次函数的图象和性质是解题的关键.24.在平面直角坐标系xOy 中,直线:l 3y x =-与函数(0k y k x =≠,0)x >的图象交于点(4,)A t .(1)求t ,k 的值;(2)点B 是函数(0k y k x=≠,0)x >的图象上任意一点(不与点A 重合),点P ,Q 在直线l 上,点P 横坐标为2.若1S S 2ABQ ABP △△≥,求点Q 横坐标的取值范围.【答案】(1)1t =;k=4;(2)3Q x ≤或5Q x ≥【分析】(1)把点A 代入直线求出t ,反比例函数过点A ,可求k ;(2)设点B 到直线AP 的距离为h .利用面积求出12AQ AP ≥.由(4,1)A ,点P 横坐标为2,当点Q 在射线AP 上时,过A 作AD ⊥x 轴,交过P 、Q 分别与x 轴平行的直线与C 、D ,由QC ∥PD ,易证△AQC ∽△APD ,由性质AQ QC =AP PD 即4AQ 1=AP 422Q x -≥-,当点Q 在线段PA 延长线上时,过P 作PF ∥x 轴,与过A 、Q 作y 轴的平行线交于E ,F ,由AE ∥QF 得△PAE ∽△PQF 由性质PA PE =PQ PE ,推出PA PE =AQ EF 即QPA 42=2AQ 4x -≤-解不等式求出Q 点的横坐标即可.【详解】解:(1) 点(4,)A t 在直线:l 3y x =-上,∴1t =,函数(0k y k x=≠,0)x >的图象经过点(4,1)A ,∴4k =.(2)设点B 到直线AP 的距离为h .∴1S =2ABQ AQ h ⋅⋅△,1S =2ABP AP h ⋅⋅△, 1S S 2ABQ ABP △△≥,∴12AQ AP ≥. (4,1)A ,点P 横坐标为2,如图,当点Q 在射线AP 上时,;过A 作AD ⊥x 轴,交过P 、Q 分别与x 轴平行的直线与C 、D ,由QC ∥PD ,∴△AQC ∽△APD ,AQ QC =AP PD 即4AQ 1=AP 422Q x -≥-,3Q x ≤,如图,当点Q 在线段PA 延长线上时,过P 作PF ∥x 轴,与过A 、Q 作y 轴的平行线交于E ,F ,∵AE ∥QF ,∴△PAE ∽△PQF ,∴PA PE =PQ PE 即PA PE =PQ-AP PF-PE,∴PA PE =AQ EF 即Q PA 42=2AQ 4x -≤-5Q x ≥.综上所述:点Q 横坐标的取值范围3Q x ≤或5Q x ≥.【点睛】本题考查一次函数,反比例函数,三角形面积,相似三角形的判定与性质,掌握一次函数的性质,反比例函数性质,用三角形面积求出线段的不等关系,相似三角形的判定与性质解决坐标的范围是解题关键.25.数学学习小组的同学共同探究体积为330mL 圆柱形有盖容器(如图所示)的设计方案.,他们想探究容器表面积与底面半径的关系.具体研究过程如下,请补充完整:(1)建立模型:设该容器的表面积为S 2cm ,底面半径为x cm ,高为y cm ,则2330x y π=,①222S x xy ππ=+,②由①式得2330y x π=,代入②式得26602S x xπ=+.③可知,S 是x 的函数,自变量x 的取值范围是0x >.(2)探究函数:根据函数解析式③,按照下表中自变量x 的值计算(精确到个位),得到了S 与x 的几组对应值:/cm x …1 1.52 2.53 3.54 4.55 5.56…2/cm S …666454355303277266266274289310336…在下面平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)解决问题:根据图表回答,①半径为2.4cm 的圆柱形容器比半径为4.4cm 的圆柱形容器表面积______.(填“大”或“小”);②若容器的表面积为3002cm ,容器底面半径约为______cm (精确到0.1).【答案】①大;②2.5或5.4【分析】①根据(2)中的表格中数据与函数图象分析可得当 2.5x =时,303S =,当 4.5x =时,274S =,进而可比较当 2.4x =与 4.4x =时,S 的值的大小,②根据函数图象求解即可【详解】解:①(2)中的表格中数据可知,当 2.5x =时,303S =,当 4.5x =时,274S =,根据函数图象可知,当>4x 时,S 随x 的增大增大,当3x <时,S 随x 的增大而减小,∴ 2.4x =时,277303S <<, 4.4x =时,266274S <<∴半径为2.4cm 的圆柱形容器比半径为4.4cm 的圆柱形容器表面积大故答案为:大②根据函数图象可知,当300S =时, 2.5x ≈或5.4故答案为:2.5或5.4【点睛】本题考查了函数图象,根据函数图象获取信息是解题的关键.26.已知抛物线242(0)y ax ax a =-+≠过(1,)A m -,(2,)B n ,(3,)C p 三点.(1)求n 的值(用含有a 的代数式表示);(2)若0mnp <,求a 的取值范围.【答案】(1)42n a =-+(2)1223a <<或25a <-【小问1详解】解:B 点在抛物线上,∴把()2n ,代入得:2224242n a a a =⋅-⨯+=-+,即42n a =-+.【小问2详解】A 、C 都在抛物线上,∴把()1m -,,()3p ,分别代入得:()()2141252m a a a =--⨯-+=+,2343232p a a a =⋅-⨯+=-+,抛物线的对称轴为:直线422a x a-=-=,与y 轴的交点坐标为()0,2,①当0a >时,函数的最小值为42n a =-+,102- <<,2m ∴>,∴要使0mnp <,则0n <,0p >,即420320a a -+⎧⎨-+⎩<>,解不等式组得:1223a <<;②当0a <时,函数有最大值为42n a =-+,∵函数图象与y 轴的交点坐标为()0,2,∴最大值一定是一个正的,即此时0n >,∴要使0mnp <,必须时使m 、p 一个为正一个为负,点A 离对称轴比C 较远,m p ∴<,0m \<,0p >,即520320a a +⎧⎨-+⎩<>,解不等式组得:25a -<,综上分析可知,a 的取值范围是1223a <<或25a -<.【点睛】本题主要考查了二次函数的性质、解一元一次不等式组,根据a 正负情况进行分类讨论是解题的关键.27.在ABC 中,90,ACB AC CB ∠== ,将线段CA 绕点C 顺时针旋转到如图所示的位置,得到线段CD ,连接,,AD BD CF 平分BCD ∠交BD 于点G ,交AD 的延长线于点F ,连接BF.(1)依题意补全图形;(2)①求DFC ∠的度数;②用等式表示线段,,AD FB FC 之间的数量关系,并证明.【答案】(1)见解析(2)①45︒2AD FB =+,证明见解析【分析】(1)依题意,补全图形即可;(2)①过点C 作CE AD ⊥,交AD 于点E ,利用等腰三角形的“三线合一”可得12DCE DCA ∠=∠,进而证明CEF △是等腰直角三角形,可得45DFC ∠=︒;②利用等腰三角形的“三线合一”及线段垂直平分线的性质可得。

人教版九年级上册数学期中考试试卷含答案详解

人教版九年级上册数学期中考试试卷含答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.方程5x 2-3x -2=0的二次项系数和一次项系数分别为()A .5和3B .5和-3C .5和-2D .5和22.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A .B .C .D .3.一元二次方程(a +1)x 2-(a 2-1)x +a 2+a =0的一个根为0,则a 的值为()A .0B .-1C .0或-1D .0或14.对于抛物线2(2)3y x =--+,下列判断正确的是()A .抛物线开口向上B .抛物线的顶点是(-2,3)C .对称轴为直线x=2D .它可由抛物线2y x =-向左平移2个单位再向上平移3个单位得到5.用配方法解方程2680x x -+=时,方程可变形为()A .2(3)1x -=B .2(3)1x -=-C .2(3)1x +=D .2(3)1x +=-6.若A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线22(1)3y x =-++上的三个点,则y 1,y 2,y 3的大小关系是()A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 1>y 2>y 37.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为()A B .8cm C .6cm D .4cm8.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快,已知有1个人患了新冠,经过两轮传染后共有625个人患了新冠,每轮传染中平均一个人传染m 人,则m 的值为()A .20B .22C .24D .259.函数y =kx 2﹣4x +2的图象与x 轴有公共点,则k 的取值范围是()A .k <2B .k <2且k ≠0C .k ≤2D .k ≤2且k ≠010.已知二次函数21y ax bx =++(a <0)的图象过点(1,0)和(x 1,0),且﹣2<x 1<﹣1,下列4个判断中:①a +b =-1;②a >b ﹣1;③b ﹣a <0;④﹣1<a <﹣12,正确的是()A .①②③B .①②④C .①③④D .②③④二、填空题11.一元二次方程20x x -=的解是___________.12.抛物线2y ax bx c =++经过点A (-3,0),B (1,0)两点,则关于x 的一元二次方程20ax bx c ++=的解是___________.13.抛物线221y ax ax =-+交y 轴于点M ,点M 关于其对称轴的对称点N 的坐标为___________.14.如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果C 是⊙O 中弦AB 的中点,CD 经过圆心O 交⊙O 于点D ,并且AB =8m ,CD =8m ,则⊙O 的半径长为____cm .15.如图,等腰直角△ABC 中,AC =BC =6,∠ACB =90°,点O 是斜边AB 上一点,将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,连接OQ ,OQ 的最小值为____.16.如图,一个拱形桥架可以近似看作是由等腰梯形ABD 3D 1和其上方的抛物线D 1OD 3组成.若建立如图所示的直角坐标系,跨度AB =44米,∠A =45°,AC 1=4米,点D 2的坐标为(-14,-1.96),则桥架的拱高OH =________米.三、解答题17.解方程:2320x x +-=.18.已知二次函数图象的顶点坐标是(1,-4),且与y 轴交于点(0,-3),求此二次函数的解析式19.如图,四边形ABCD 是边长为4的正方形,且DE =1,△ABF 是△ADE 的旋转图形.(1)求AF 的长;(2)求△AEF 的面积.20.如图,A ,B 是⊙O 上两点,∠AOB =120°,C 为弧AB 上一点.(1)求∠ACB 的度数;(2)若C 是弧AB 的中点,求证:四边形OACB 是菱形.21.已知关于x 的一元二次方程222(1)10x k x k +-+-=有两个不相等的实数根.(1)求实数k的取值范围;(2)若方程的两根x1、x2满足221216x x+=,求k的值.22.如图,要为一幅长30cm、宽20cm的照片配一个镜框,要求镜框四边的宽度x相等,且镜框所占面积为照片面积的925,镜框的宽度应该多少厘米?23.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在 AB上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:AE.请说明理由;(3)如图②,若点E 在 AB 上.连接DE ,CE ,已知BC=5,BE=1,求DE 及CE 的长.25.如图①,在平面直角坐标系中,已知抛物线2()30y ax bx a =++≠与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)如图②,若点D 是抛物线上一动点,设点D 的横坐标为m (0<m <3),连接CD ,BD ,当△BCD 的面积等于△AOC 面积的2倍时,求m 的值;(3)抛物线上是否存在点P ,使∠CBP +∠ACO =∠ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案1.B【分析】根据一元二次方程的一般形式的各项系数的概念,即可得到答案.【详解】5x2-3x-2=0的二次项系数和一次项系数分别为:5和-3.故选B.【点睛】本题主要考查一元二次方程的一般形式的各项系数的概念,掌握一元二次方程的一般形式的各项系数的概念是解题的关键.2.A【详解】试题分析:A、最小旋转角度=3603=120°;B、最小旋转角度=3604=90°;C、最小旋转角度=3602=180°;D、最小旋转角度=3605=72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.考点:旋转对称图形.3.A【分析】把x=0代入(a+1)x2-(a2-1)x+a2+a=0得a2+a=0,然后解关于a的方程后利用一元二次方程的定义确定a的值.【详解】解:把x=0代入(a+1)x2-(a2-1)x+a2+a=0得a2+a=0,解得a1=0,a2=-1.而a+1≠0,所以a 的值为0.故选:A .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.C 【分析】根据2()y a x h k =-+的图象性质及图象平移的性质解题.【详解】抛物线2(2)3y x =--+中,1a h =-,=2,k=3,∴抛物线开口向下,抛物线的顶点是(2,3),对称轴为直线x=2故选项A 、B 错误,选项C 正确,抛物线2y x =-向左平移2个单位再向上平移3个单位得到2(2)3y x =-++∴选项D 错误,故选:C .【点睛】本题考查二次函数图象性质、二次函数图象的平移,是重要考点,难度较易,掌握相关知识是解题关键.5.A 【分析】根据配方法可直接进行排除选项.【详解】由配方法解方程2680x x -+=时,方程可变形为()231x -=;故选A .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法是解题的关键.6.D 【分析】根据抛物线的解析式可以求出抛物线的对称轴和开口方向,然后再根据二次函数的性质比较即可;【详解】∵抛物线解析式为()2213y x =-++,∴抛物线开口向下,对称轴为1x =-,∴当1x >-时,y 随x 的增大而减小,∵A(-2,1y ),B(1,2y ),C(2,3y )是抛物线()2213y x =-++上的三个点,∴点A 关于对称轴x=-1的对称点是()10y ,,∴123y y y >>,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.7.B 【分析】由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.8.C 【分析】先求出每轮传染的人数,再根据“经过两轮传染后共有625个人患了新冠”建立方程,解方程即可得.【详解】由题意,第一轮会有m 人被传染,第二轮会有(1)m m +人被传染,则1(1)625m m m +++=,解得24m =或26m =-(不符题意,舍去),故选:C .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.9.D 【分析】先根据二次函数的定义得到k≠0,再根据抛物线与x 轴的交点问题得到△=(-4)2-4k×2≥0,然后解不等式即可得到k 的值.【详解】解:∵y=kx 2-4x+2为二次函数,∴k≠0,∵二次函数y=kx 2-4x+2的图象与x 轴有公共点,∴△=(-4)2-4k×2≥0,解得k≤2,综上所述,k 的取值范围是k≤2且k≠0.故答案是:D .【点睛】本题考查的知识点是抛物线与x 轴的交点问题,解题关键是熟记对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:当△=b 2-4ac >0时,抛物线与x 轴有2个交点;当△=b 2-4ac=0时,抛物线与x 轴有1个交点;当△=b 2-4ac <0时,抛物线与x 轴没有交点.10.B 【分析】①将(1,0)代入解析式中即可判断;②根据﹣2<x 1<﹣1,结合a <0即可判断当x=-1时y 的值,即a-b+1的取值范围;③由②得知对称轴的位置,求出b 的取值范围,然后即可判断③;④由根与系数的关系得到12cx x a= ,代入得到x 1和a 的关系,,然后结合﹣2<x 1<﹣1求解不等式即可判断.【详解】①将(1,0)代入解析式,得01a b =++,即a +b =-1,故①正确;②∵a <0∴抛物线在对称轴左侧时,y 随x 的增大而增大∵﹣2<x 1<﹣1,另一交点为(1,0)∴1022b a-<-<∴当x=-1时,y>0,即10a b -+>∴1a b >-故②正确;③,由②得知1022ba-<-<,且a <0∴b a >,即0b a ->故③错误;④由根与系数的关系得到121x x a=∴11x a =∴121a-<<-,解得﹣1<a <﹣12故④正确.故选B .【点睛】本题考查了二次函数的图像和系数的关系,根据系数判断式子正负是本部分的重难点题型,关键是熟记二次函数的性质.11.121,0x x ==【分析】根据提公因式法进行求解一元二次方程即可.【详解】解:20x x -=()10x x -=,解得:121,0x x ==;故答案为121,0x x ==.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.12.123,1x x =-=【分析】根据二次函数的图像与一元二次方程的关系可直接进行求解.【详解】解:由抛物线2y ax bx c =++经过点A (-3,0),B (1,0)两点,∴当y=0时,则有20ax bx c ++=,∴关于x 的一元二次方程20ax bx c ++=的解为:123,1x x =-=;故答案为123,1x x =-=.【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数的图像与一元二次方程的关系是解题的关键.13.(2,1)【分析】由抛物线解析式221y ax ax =-+可得对称轴为直线2122b a x a a -=-=-=,然后根据抛物线的对称性可求解.【详解】解:由抛物线解析式221y ax ax =-+可得对称轴为直线2122b a x a a-=-=-=,点M 的坐标为()0,1,∴点M 关于其对称轴的对称点N 的坐标为()2,1;故答案为()2,1.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.14.5【分析】连接OA ,设此圆的半径为r m ,则OA=OD=r m ,根据垂径定理可知AC=4m ,再在Rt △AOC 中,利用勾股定理即可求出r 的值即可.【详解】解:连接OA ,如图所示:设此圆的半径为r m ,则OA=OD=r m ,∵C 是⊙O 中弦AB 的中点,∴CD ⊥AB ,∵AB=8m,CD=8m,∴1184()22AC==⨯=AB m,OC=CD-OD=(8-r)m,在Rt△AOC中,OA2=OC2+AC2,即r2=(8-r)2+42,解得:r=5,即⊙O的半径长为5cm.故答案为:5.【点睛】本题考查的是垂径定理在实际生活中的运用,解答此类问题的关键是构造出直角三角形,利用勾股定理进行解答.15.6【分析】连接OQ,根据旋转的性质得出△BOC≅△AQC,从而证得∠OCQ=90°,OC=OQ,得出CO,当CO⊥AB时,OQ有最小值,再根据等腰三角形的性质即可得出OQ的最小值【详解】解:连接OQ,∵△BOC绕C点顺时针方向旋转到△AQC的位置,∴△BOC≅△AQC,∴OC=OQ,∠OCB=∠QCA∵∠ACB=90°,∴∠OCQ=90°,∴OQ=CO,∴当CO最小时,OQ最小此时,CO⊥AB∵AC=BC=6,∠ACB=90°,∴AC=,∴CO=∴OQ 的最小值=6=故答案为:6【点睛】本题考查等腰直角三角形的性质、旋转的性质、勾股定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中等题.16.7.24【分析】根据题意假设适当的解析式,借助于题中数据分别求出D 1点横坐标以及D 1C 1的长即可解答.【详解】设抛物线的解析式为y=ax 2,将D 2的坐标代入,解得a=-1100∵横梁D 1D3=C 1C3=AB-2AC 1=36m∴点D 1的横坐标是-18,代入y=-1100x 2里可得y=-3.24又∵∠A=45°,∴D 1C 1=AC 1=4m∴OH=3.24+4=7.24m .【点睛】考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.17.12317317,22x x --==【分析】先计算判别式的值,然后利用求根公式法解方程.【详解】解:()2341217,=-⨯⨯-= 31721x -±=⨯所以1233,22x x --==【点睛】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,属于基础题.18.y=(x-1)2-4【分析】已知顶点坐标可设二次函数为y=a(x-h)2+k(a≠0),再把顶点坐标与(0,-3)代入即可求解.【详解】设二次函数为y=a(x-1)2-4(a≠0),代入(0,-3)得-3=a(0-1)2-4解得a=1∴二次函数为y=(x-1)2-4.19.(1;(2)172【分析】(1)根据旋转的性质得到AE=AF ,然后在Rt △ADE 中应用勾股定理即可求得AE ,即求得AF 的长;(2)根据∠DAE=∠FAB 得到∠EAF=∠DAB=90°,然后根据三角形面积公式即可求解.【详解】(1)∵△ABF 是△ADE 的旋转图形∴AE=AF∵四边形ABCD 是正方形∴∠D=∠DAB=90°在Rt △ADE 中,由勾股定理得:==∴;(2)∵∠DAE=∠FAB∴∠EAF=∠DAB=90°∴△AEF 的面积=12AF×AE=12=172.【点睛】本题考查了正方形的性质,旋转的性质,重点是熟记正方形的性质,并利用性质解题.20.(1)120°;(2)证明见解析.【分析】(1)优弧AB 上取点D ,根据圆周角定理求出∠D 的度数,再根据圆的内接四边形的性质求出∠ACB 的度数;(2)连接OC ,根据圆周角定理证明△OAC 和△OBC 都是等边三角形,就可以证明四边形OACB 是菱形.【详解】解:(1)如图,优弧AB 上取点D ,则∠D =12∠AOB =60°,∵四边形ACBD 内接于圆,∴∠C =180°-∠D =180°-60°=120°;(2)如图,连接OC ,∵C 是弧AB 的中点,∠AOB =120°,∴∠AOC =∠BOC =60°,∵OA =OC =OB ,∴△OAC 和△OBC 都是等边三角形,∴AC =OA =OB =BC ,∴四边形OACB 是菱形.【点睛】本题考查圆周角定理和菱形的判定,解题的关键是掌握圆周角定理,圆的内接四边形的性质和菱形的判定定理.21.(1)k <1;(2)k =1-【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)根据根与系数的关系及x 12+x 22=16,即可得出关于k 的一元二次方程,解之即可得出k 值,再结合(1)的结论即可确定k 的值.【详解】解:(1)∵方程有两个不相等的实数根,∴△=()()22214188k k k ⎡⎤---=-+⎣⎦>0,解得:k <1,(2)由韦达定理知()1221x x k +=--,2121x x k ⋅=-则()()()222221212122412116x x x x x x k k +=+-=---=,∴224842216k k k -+-+=,∴228100k k --=解得:k =1-或5(>1,舍去),∴k =1-【点睛】本题考查根与系数的关系,根的判别式,掌握这些知识为解题关键.22.镜框边的宽度应是2cm .【分析】设镜框的宽度为xcm ,表示出大长方形的长为30+2x ,宽为20+2x ,根据镜框面积=大长方形面积﹣照片面积列出方程,解方程可得.【详解】设镜框的宽度为xcm ,根据题意,得:(30+2x )(20+2x )﹣30×20=30×20×925,整理,得:x 2+25x ﹣54=0,即:(x+27)(x ﹣2)=0,解得:x =﹣27(舍)或x =2,答:镜框边的宽度应是2cm .【点睛】本题主要考查一元二次方程的实际应用能力,抓住相等关系列方程是解决本题的关键.23.(1)()401016y x x =-+≤≤(2)()225225x --+,16x =,144元【分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩,解得:140k b =-⎧⎨=⎩,所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+-()2x 25225=--+,a 10=-< ,∴当x 25<时,W 随x 的增大而增大,10x 16 ,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.24.(1)证明见解析;(2)理由见解析;(3)DE=7,CE=42【分析】(1)根据正方形的性质,得AB=AD ;根据圆周角的性质,得ABE ADE ∠=∠,结合DF=BE ,即可完成证明;(2)由(1)结论得AF=AE ,∠=∠DAF BAE ;结合∠BAD=90°,得∠EAF=90°,从而得到△EAF 是等腰直角三角形,即EF=2AE ;最后结合DE-DF=EF ,从而得到答案;(3)连接BD ,将△CBE 绕点C 顺时针旋转90°至△CDH ;结合题意,得∠CBE+∠CDE=180°,从而得到E ,D ,H 三点共线;根据BC=CD ,得 BC CD =,从而推导得∠BEC=∠DEC=45°,即△CEH 是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案.【详解】(1)如图,1ADE ∠=∠,2ABE ∠=∠,3DAF ∠=∠,4BAE∠=∠在正方形ABCD 中,AB=AD在△ADF 和△ABE 中12AB AD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS );(2)由(1)结论得:△ADF ≌△ABE∴AF=AE ,∠3=∠4正方形ABCD 中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF 是等腰直角三角形∴EF 2=AE 2+AF 2∴EF 2=2AE 2∴AE即AE∴AE ;(3)连接BD ,将△CBE 绕点C 顺时针旋转90°至△CDH∵四边形BCDE 内接于圆∴∠CBE+∠CDE=180°∴E ,D ,H 三点共线在正方形ABCD 中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴BC CD =∴∠BEC=∠DEC=45°∴△CEH 是等腰直角三角形在Rt △BCD 中,由勾股定理得BD=BC=5在Rt △BDE 中,由勾股定理得:DE=7=在Rt △CEH 中,由勾股定理得:EH 2=CE 2+CH 2∴(ED+DH )2=2CE 2,即(ED+BE )2=2CE 2∴64=2CE 2∴.【点睛】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解.25.(1)2y x 2x 3=-++;(2)m 的值为1或2;(3)存在满足条件的点P 有两个,分别是P 1(23-,119),P 2(2,3).【分析】(1)用待定系数法即可求解;(2)由△BCD 的面积=S △DEC +S △DEB =12DE×BO=()2133233222m m m ⨯⨯-+++-=⨯,即可求解;(3)当点P 在BC 上方时,证明∠OCA=∠OCH ,求出直线PB 的表达式为()33y x =--,即可求解;当点P 在BC 下方时,同理可得PB 的表达式为113y x =-+,进而求解.【详解】解:(1)把A (-1,0),B (3,0)代入23y ax bx =++中,得:309330a b a b -+=⎧⎨++=⎩,解得:12a b =-⎧⎨=⎩,∴抛物线解析式为2y x 2x 3=-++(2)过点D 作y 轴平行线交x 轴于E ,交BC 于点F ,作CG ⊥DE 于点G ,把0x =代入2y x 2x 3=-++中,得:3y =,∴C 点坐标是(0,3),又B (3,0),∴直线BC 的解析式为3y x =-+∵()2,23D m m m -++,∴(),3F m m -+,∴2(23)(3)DF m m m =-++--+23m m=-+由2BCD AOC S S = 得:11222DF OB OA OC ⨯=⨯⨯,∴2113321322m m -+⨯=⨯⨯⨯()整理得:2320m m -+=解得:121,2m m ==∵0<m <3,∴m 的值为1或2;(3)存在.由C (0,3),B (3,0)得OB =OC ,∴∠OBC =45°①当点P 在BC 左侧时.在y 轴上取点M (0,1),延长BM 交抛物线于点P .在△AOC 和△BOM 中OA OM AOC BOM OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOM ,∴∠ACO =∠ABM ,∴∠CBP +∠ACO =∠CBM +∠OBM =∠ABC ,设直线BM 的解析式为y =kx +b ,将B (3,0),M (0,1)代入,得301k b b +=⎧⎨=⎩,131k b ⎧=-⎪⎨⎪=⎩,∴设直线BM 的解析式为y =13-x +1,由223113y x x y x ⎧=-++⎪⎨=-+⎪⎩得:23119x y ⎧=-⎪⎪⎨⎪=⎪⎩或30x y =⎧⎨=⎩,∴P 1(23-,119);②当点P 在BC 右侧时,作△BOM 关于BC 的对称△BNP 2,则∠CBP 2=∠CBO ,易得P 2(2,3).∵当x =2时,y =-22+2×2+3=3,∴在点P 2抛物线上,即点P 2满足条件∠CBP +∠ACO =∠ABC .故存在满足条件的点P 有两个,分别是P 1(23-,119),P 2(2,3).(方法二:取在抛物线上点P 2(2,3),证△BCP 2≌△BCM .【点睛】本题属于二次函数的综合应用,考查待定系数法求解析式,三角形的面积,全等三角形的判定和性质等,掌握这些知识为解题关键.。

2023年九年级期中全册考试数学试题含答案

2023年九年级期中全册考试数学试题含答案

2023年九年级期中全册考试数学试题含答案1. 选择题1. 已知 a+b=12,a-b=4,求 a 和 b 的值。

A) a=8,b=4B) a=4,b=8C) a=6,b=6D) a=10,b=2答案:A) a=8,b=42. 某边长为 x 的正方形的面积是多少?A) 4xB) x^2C) 2xD) 2x^2答案:B) x^23. 一件商品原价是150元,商家打8折出售,折后价格是多少?A) 120元B) 130元C) 140元答案:C) 140元4. 已知直角三角形的两个直角边分别是3和4,求斜边的长度。

A) 5B) 6C) 7D) 8答案:A) 55. 等差数列的首项是3,公差是2,第n项是13,求 n 的值。

A) 5B) 6C) 7D) 8答案:C) 72. 填空题1. 2/3 × 3/4 = _______答案:1/22. 5.6 ÷ 0.4 = _______3. (9-4) ÷ 3+2 = _______答案:34. 8! = _______答案:403205. 若 f(x) = 2x+1,求 f(3) 的值。

答案:73. 解答题1. 请解方程:3x+5=14解:首先将等式两边减去5,得到 3x=9,再将等式两边除以3,得到 x=3。

所以方程的解是 x=3。

2. 试用配方法解方程:x^2-5x+6=0解:将方程进行配方,得到 (x-2)(x-3)=0。

根据零乘法,可以得到两个解 x=2 和 x=3。

所以方程的解是 x=2 和 x=3。

3. 将 12 分钟转换成小时和分钟表示。

解:12 分钟等于 12/60 小时,即 1/5 小时。

又因为 1/5 小时等于 12 分钟,所以 12 分钟可以表示为 1/5 小时和 12 分钟。

4. 某班级共有男生 35 人,女生是男生人数的 3/5,求女生人数。

解:男生人数是 35,女生人数是男生人数的 3/5。

所以女生人数是35 × 3/5 = 21。

2024-2025学年阶段性学业水平测评卷(吉林省九年级上学期期中考试A卷)数学试题

2024-2025学年阶段性学业水平测评卷(吉林省九年级上学期期中考试A卷)数学试题

2024-2025学年阶段性学业水平测评卷(吉林省九年级上学期期中考试A 卷)数学试题一、单选题1.抛物线224y x =-的顶点坐标是()A .()2,4B .()0,4-C .()0,4D .()2,4-2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .3.平面内,已知O 的半径是5cm ,线段6cm OP =,则点P 在()A .O 外B .O 上C .O 内D .无法确定4.如图,在O 中,OC ⊥弦A 于点C ,4AB =,1OC =,则OB 的长为()A .17B .15CD .35.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是()214312y x =--+,则他将铅球推出的距离为()A .3mB .4mC .7mD .10m6.《九章算术》是我国传统数学的重要著作之一,奠定了我国传统数学的基本框架.《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,问它的高与宽各是多少?利用方程思想,设矩形门高为x 尺,则依题意所列方程为(1丈10=尺,1尺10=寸)()A .()2226.810x x ++=B .()2226.810x x +-=C .()226.810x x +=D .()226.810x x -=二、填空题7.点()3,2M -关于原点对称的点的坐标是.8.如图,以点O 为旋转中心,将AOB ∠按顺时针方向旋转110︒得到COD ∠,若40AOB ∠=︒,则AOD ∠=°.9.已知函数2=32y x x a ++-的图象过原点,则a 的值为10.将一元二次方程()()252x x x +=-化为一般形式2100x ax ++=则a 的值为.11.如图,BC 为O 的直径,弦CD OA ∥.若50C ∠=︒,则A ∠=°.12.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的度数是°.13.当=时,代数式2421x x +-的值与代数式232x -的值相等.14.若一个两位数的十位,个位上的数字分别为a ,b ,则通常记作这个两位数为ab ,于是10ab a b =+.如:()()101010910a a a a a -=+-=+,当()9910x x ⨯-的值最大时,x 的值为.三、解答题15.用适当的方法解方程:2230x x --=.16.若二次函数2y ax =的图象经过点()2,4P -,求该函数的解析式并写出对称轴.17.如图,在Rt ABC △中,90ACB ∠=︒,2AC CB ==,将ABC V 绕点A 按逆时针方向旋转90°得到ADE V .(1)线段DE 的长是______,EAC ∠的度数是______°;(2)连接CD ,求证:四边形ACDE 是平行四边形.18.在平面直角坐标系中,抛物线21y ax bx =++经过点()1,0和()1,4-.(1)求此抛物线的解析式;(2)若点()12,A y ,()23,B y 都在该抛物线上,则1y _______2y .(填“>”“<”或“=”)19.如图,在5×5的正方形网格纸中,已知格点M 和格点线段AC ,请按要求画出AC 为对角线的格点四边形(顶点均在格点上).(1)在图①中画出四边形ABCD ,使得四边形ABCD 是中心对称图形,且点M 在四边形ABCD 的内部(不包括边界上).(2)在图②中画出四边形AECF ,使得四边形AECF 既是轴对称图形,又是中心对称图形,且点M 在四边形ABCD 的边界上(不包括顶点上).20.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .21.如图,在平面直角坐标系中,OAB △的三个顶点的坐标分别为()6,3A ,()0,5B ,0,0.(1)将OAB △向左平移5个单位长度得到111O A B △,请画出111O A B △;(2)画出OAB △绕原点O 顺时针方向旋转90︒后得到的22OA B △;(3)OAB ∠的度数为_______︒.22.如图,二次函数2y x bx c =-++的图象经过点()1,0A -,其对称轴为直线1x =,与x 轴的另一个交点为C ,与y 轴交于点B .(1)点C 的坐标为______;(2)将二次函数的图象向下平移3个单位长度,求平移后的二次函数的解析式.23.如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C 距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取5=)24.已知△ABC 是等腰三角形,AB=AC .(1)特殊情形:如图1,当DE ∥BC 时,有DB EC .(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P 是等腰直角三角形ABC 内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.25.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2cm BC =.点P 从点A 出发,以2/s cm 的速度沿A B C →→向终点C 运动,过点P 作直线AC 的垂线交AC 于点D ,当点P 与A 、C 不重合时,作点A 关于点D 的对称点Q ,设点P 的运动时间为()s 03x x <<,APQ △与ABC V 重叠部分图形的面积是2cm y .(1)AB 的长为______;(2)当点Q 与点C 重合,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.26.如图,在平面直角坐标系中,点A ,B 分别在x 轴,y 轴的正半轴上,3OA OB ==.经过点O ,A 的抛物线L :2y ax bx =+交AB 于点C ,点C 的横坐标为1.点P 在线段AB 上,当点P 与点C 不重合时,过点P 作PQ y ∥轴,与抛物线交于点Q .以PQ 为边向右侧作矩形PQMN ,且1PN =.设点P 的横坐标为m 时,解答下列问题.(1)求此抛物线L 的解析式;(2)当抛物线的顶点落在边PN 上时,求m 的值;(3)矩形PQMN 为正方形时,直接写出m 的值.。

重庆市第八中学2024-2025学年九年级上学期期中考试数学试题

重庆市第八中学2024-2025学年九年级上学期期中考试数学试题

重庆市第八中学2024-2025学年九年级上学期期中考试数学试题一、单选题1.下列各数是有理数的是()A .-32B C .πD 2.“二十四节气”是中华农耕文明的智慧结晶,如图四幅作品分别代表“立春”“惊蛰”“清明”“小满”,其中是轴对称图形的是()A .B .C .D .3.计算332x x ⋅的结果是()A .32x B .33x C .62x D .92x 4.若反比例函数5ky x-=的图象经过第一、三象限,则k 的取值范围是()A .5k ≥B .5k >C .5k ≤D .5k <5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图所示,在洞孔成像问题中,已知玻璃棒AB 与它的物像A B ''平行,已知玻璃棒12AB =厘米,根据图中给定的尺寸,那么它的物像A B ''的长是()A .3B .4C .5D .67.估计()A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.如图,在Rt ABC △中,90,4,3A AB AC ∠=︒==,分别以B C 、为圆心,12BC 长为半径画弧,交BC 于点P ,交AB 于点M ,交AC 于点N ,则图中阴影部分面积为()A .256π16-B .256π8-C .2512π16-D .2512π8-9.如图,在正方形ABCD 中,点E ,F 分别是边AB BC ,上一点,且AE BF =,点P 为CD 中点且AP 平分DAF ∠,若ADE α∠=,则∠FPC 可以表示为()A .3αB .2αC .153α︒+D .1452α︒-10.已知整式M :5432543210a x a x a x a x a x a +++++,其中5a ,4a ,3a ,2a ,1a ,0a 均为自然数,若54a a p +=,3210a a a a q +++=.则下列说法:①若0p =,3q =,则0a 所有可能的取值有4个;②若p ,q 满足方程()7pq p q -+=,且3210a a a a >>>,则满足条件的不同整式有12个;③若01a =,当0M =时,该方程存在5个实数解记为1x ,2x ,3x ,4x ,5x ,若123451x x x x x n=-,且2425a n =-+,则p 存在最大值为25其中,正确的个数是()A .3个B .2个C .1个D .0个二、填空题11.计算:2tan 60-︒=.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.已知a 为方程22740x x -+=的一个根,则2278a a -+-=.14.有5个外观完全相同且密封不透明的试剂瓶,分别装有稀硫酸、稀盐酸、氯化钠、碳酸钠和氢氧化钠五种溶液,小星从这5个试剂瓶中任意抽取2个,则抽到的2个都是酸性溶液(稀硫酸溶液、稀盐酸溶液)的概率是.15.如图,AC 是O 的弦,B 为O 上一点,连接AB BC ,,若135ABC ∠=︒,4AC =,则O 的半径长为.16.若关于x 的一元一次不等式组1343243x x x a-⎧+<⎪⎨⎪+≥⎩有且仅有3个偶数解,且关于y 的分式方程220233ay y y -=+--的解为非负整数,则所有满足条件的整数a 的值之和是.17.如图,在平行四边形ABCD 中,M N 、分别是边AD BC 、上动点.将四边形MNCD 沿直线MN 折叠,点D 的对应点D ¢恰好落在边A 上,C 的对应点为C ',连接DN 、DD ',其中DD '交MN 于点P .若6AB =,10AD =,260ADC NDD '∠=∠=︒,则MP 的长度为.18.若一个四位数M abcd =满足M 的千位数字与百位数字的和与它们的差的积恰好是M 的后两位数字组成的两位数,则称这个四位数M 为“均衡数”,则最大的“均衡数”为;将均衡数M 的千位数字与十位数字对调,百位数字与个位数字对调得到的新数记为M ',记()M P M a b'=-,()a G M b =,当()P M 、()G M 均为整数时,则满足条件的所有M 的中位数为.三、解答题19.计算:(1)()()212x x x ++-(2)222111x x x x x x --⎛⎫÷+- ⎪++⎝⎭20.小文非常喜效钻研数学,学了多边形的相关知识后,她知道了n 边形的内角和等于()2180n -⋅︒,那么四边形的内角和是360︒,于是她想探究:如果一个四边形(轴对称图形除外)的一组对角都为90︒,那么另一组对角的角平分线有怎样的位置关系?请完成以下作图和填空:如图,在四边形ABCD 中,90A C ∠=∠=︒,DE 平分ADC ∠.(1)尺规作图:作ABC ∠的角平分线,交AD 于点F (只保留作图痕迹).(2)探究:DE 与BF 的位置关系.将下面的过程补充完整.解:∵360A ABC C ADC ∠+∠+∠+∠=︒且90A C ∠=∠=︒,∴①∵DE 平分ADC ∠、BF 平分ABC ∠,∴12EDC ADC ∠=∠,12FBC ABC ∠=∠,∴()1902FBC EDC ABC ADC ∠+∠=∠+∠=︒.∵在EDC △中,90C ∠=︒,90DEC EDC ∠+∠=︒∴②∴③通过推理论证,小红得到如下结论:如果一个四边形(轴对称图形除外)的一组对角都为90︒,那么④21.随着智能家居设备的流行,一家科技公司推出了两款最新的智能家居设备.用户体验团队对A ,B 两款智能家居设备的用户满意度进行了评分测验,并从中各随机抽取20份测验数据,对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息:抽取的对A 款智能家居设备的评分中“满意”的数据:84,86,86,87,88,89;抽取的对B 款智能家居设备的评分数据:66,68,69,81,84,85,86,87,87,87,88,89,95,97,98,98,98,98,99,100.抽取的对A ,B 两款智能家居设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A 88b 9645%B8887.5c40%根据以上信息,解答下列问题:(1)上述图表中a =________,b =________,c =________;(2)根据以上数据,你认为哪款智能家居设备更受用户喜爱?请说明理由(写出一条理由即可);(3)在此次测验中,有320人对A 款智能家居设备进行评分、260人对B 款智能家居设备进行评分,估计此次测验中对智能家居设备不满意的共有多少人?22.市中心的一家时尚咖啡店推出了两款新颖的特色饮品,一款是“陨石拿铁”另一款是“摘星摩卡”.已知2杯“陨石拿铁”和5杯“摘星摩卡”总售价为240元;3杯“陨石拿铁”和4杯“摘星摩卡”总售价为234元.(1)求“陨石拿铁”和“摘星摩卡”各自的单价;(2)咖啡豆是制作咖啡饮品的主要原料之一,咖啡店老板发现今年第三季度平均每千克咖啡豆的价格比第二季度上涨了25%,第三季度花6000元买到的咖啡豆数量比第二季度花同样的钱买到的咖啡豆数量少了12千克,求第三季度咖啡豆的单价.23.如图,四边形ABCD 为矩形,8AB =,4BC =,点E 为线段AB (不包含点A 与点B )上一动点,点F 为射线BC 上一动点,且AF D E ⊥,设()08AE x x =<<,1CF y =.(1)请直接写出1y 与x 之间的函数关系式及对应的x 的取值范围;(2)请在给定的平面直角坐标系中画出1y 的函数图象,并写出该函数的一条性质;(3)若函数212y x b =+的图象与1y 的图象有两个交点,请直接写出b 的取值范围.24.舞龙俗称舞龙灯,源自古人对龙的崇拜,每逢佳节人们都会舞龙,以此方式来祈求平安和丰收,春节前夕在某广场举行了一次舞龙表演.如图,表演场地在点C 处,已知小明家A 在表演场地C 南偏西53︒方向上.小明有两条路线去看表演,路线①:从小明家A 穿过一公园D ,再沿DC 到达表演场地C ,其中点D 在点A 的东北方向上,点C 在点D 的北偏东60︒方向上且距离点D 1600米处;路线②:从小明家A 出发沿正东方向到达十字路口B ,再沿正北方向到达表演场地C .(A 、B 、C 、D 1.41≈ 1.73≈ 2.45≈,3sin 375︒≈,4cos375≈︒,3tan 374︒≈)(1)求小明家A 到公园D 的距离;(结果保留根号)(2)小明和爸爸一起去看表演,他们计划19:30出门,爸爸选择路线①步行前往,步行的平均速度80m /min ,小明选择路线②骑自行车前往,骑车的平均速度是140m /min ,若表演正式开始的时间是20:00,小明和爸爸能否在表演正式开始前到达表演场地C ,请通过计算说明理由.(结果保留1位小数)25.如图,在平面直角坐标系中,已知抛物线()20y ax bx c a =++≠与x 轴交于A ,B 两点,与y 轴交于点C ,其中()1,0B -,7OA OB =,连接AC ,1tan 2CAB ∠=.(1)求该抛物线的解析式;(2)点P 为直线AC 下方抛物线上一点,过点P 作PD AC 交y 轴于点D ,求5PD CD +的最大值及此时点P 的坐标;(3)将该抛物线沿射线AC 方向平移,经过点B 时得到新抛物线,在新抛物线上有一点M ,过点M 作MN x ⊥轴于点N .若以B ,M ,N 三点为顶点的三角形与AOC △相似,写出所有符合条件的点M 的坐标,并写出求解点M 的坐标的其中一种情况的过程.26.ABC V 为等边三角形,点D 为平面内一点且60ADC ∠=︒,连接BD .(1)如图1,已知=90ACD ∠︒,2CD =,点E 为AC 中点,连接BE ,求BED S V ;(2)如图2,点E 为AC 中点,连接DE ,请用等式表示线段BD 和DE 的数量关系,并证明;(3)如图3,在(1)问的条件下,点M N 、分别是CD AD 、上的动点,连接CN ,MN ,且2ND CM =,当CN CM -取最小值时,请直接写出四边形BNDM 的面积.。

2024-2025学年广东省深圳市九年级上学期期中数学试题及答案

2024-2025学年广东省深圳市九年级上学期期中数学试题及答案

2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.x的取值范围是(

A.x>1 B.x≥l C.x<1 D.x≤1
2.下列交通标志中既是中心对称图形,又是轴对称图形的是()
3.已知0
1
b
2
a=
-
+
+,那么2007
)b
a(+的值为()
A.-1 B.1 C.2007
3D.2007
3
-
4.若关于x的一元二次方程0
2
3
5
)1
(2
2=
+
-
+
+
-m
m
x
x
m的常数项为0,则m的值( ) A.1 B.2 C.1或2 D.0
5.若关于x的一元二次方程22(21)10
k x k x
-++=的有两个实数根,.则k的取值范围为()A.
1
4
k-
>B.
1
4
k-
≥-1 C.
1
4
k k
-
>且≠
3
4
D.
1
4
k k
-
≥且≠
6.一个直角三角形斜边长为10cm,内切圆半径为1cm,则这个三角形周长是()
A、15cm
B、22cm
C、24cm
D、26cm
7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( )
A、200(1+x)2=1000
B、200+200×2x=1000
C、200+200×3x=1000
D、200[1+(1+x)+(1+x)2]=1000
8题图10题图
8. 如图,已知⊙O中,半径OC3
OD=,5
OA=,则AB的长为()(A)2(B)4(C)6(D)8
9.如图,两个等圆⊙O和⊙O′外切,过O作⊙O′的两条切线OA、OB, A、B是切点,则∠AOB等于()
A. 30°
B. 45°
C. 60°
D. 90°
10.如图10,在平面直角坐标系中,P是经过O(0,0)、A(0,2)、B(2,0)的圆上的一个动点(P 与A、B不重合),则∠OPB=( )
A.B.C.D.
A 45 º
B 135 º
C 45 º或135 º
D 无法判断 二、填空题(本大题共8个小题,每小题3分,共24分)
1.在半径为2的圆中,弦长等于32的弦的弦心距为
2. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为_________;•最长弦长为_______ 3.在△ABC 中,∠ACB=90°.AC=2cm,BC=4cm,CM 是斜边中线,以C 为圆心以5cm 长为半径画圆则 A 、B 、M 三点在圆的外是 .在圆上的是 。

4.如图,已知Rt △ABC 中,∠C=90°,AC=2,BC=1,若以C 为圆心,CB 为半径的圆交AB 于点P ,则AP = 5、在Rt △ABC 中,∠C =900
,AC =3,BC =4,若以C 点为圆心,r 为半径 所作的圆与斜边 AB 只有一个公共点,则r 的范围是
6.已知y x ,是实数,且3
2
9922+--+-=
x x x y ,则y x 65+ = 5题图
7.
-1
-⎝⎭
+)13(3--02008-23- = 方程0562=-+x x 配成完全平方后所得方程
8. 矩形ABCD 中,AB=5,CD=12.如果分别以A 、C 为圆心的两圆相切,点D 在⊙C 内,点B 在⊙C 外。

则⊙A 的半径r 的取值范围是________。

三、解答题(本大题7个小题,满分66分) 1. ( X ﹣1 )(X ﹢3)=12(6分)
2
.已知2a =
2121
1a a a a
-+-(8分)
第23题图
3.(10分)如图,⊙O 的直径34,30,4=︒=∠=BC ABC AB ,D 是线段BC 的中点,(1)试判断点D 与⊙O 的位置关系,并说明理由;
(2)过点D 作AC DE ⊥,垂足为点E ,求证直线DE 是⊙O 的切线。

4.(8分)如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数;(2)当OA =3时,求AP 的长.
5.(本题6分)如图,点O 、B 坐标分别为(0,0)(3,0),
(1)画出△A 1B 1O ;
(2)写出A 1点的坐标; (3)求出BB 1的长.
6.(8分)某商店进了一批服装,进货单价为50元,如果按每件60元出售可销售800件.如果每件升价1元出售,其销售量就减少20件.现在要获利12000元.问这批服装销售单价确定多少为宜?这时应进多少服装?
7.(8分).某杂技团用66米的幕布围成一个矩形临时场地,并留出2米作为出口,设矩形的一边长为x 米(如图),面积为y米2.
(1)求y与x的函数关系式;
8.。

相关文档
最新文档