基于最小二乘法的系统辨识的设计与实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与实现课程(论文)题目:
基于最小二乘法的系统辨识摘要:
最小二乘法是一种经典的数据处理方法。
最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。
在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。
在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。
关键词:
最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出:
未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。
这就是最小二乘法的最早思想。
最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。
递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。
1 / 10
对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。
最小二乘法是一种经典的数据处理方法。
在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。
2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为:
1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中:
)(ku为输入信号;)(kx为理论上的输出值。
)(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为
( 2)将式( 2)代入式( 1)得
1()()() 1()(101kubkubnkyakyakyn
(3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。
设
( 4)则式( 3)可以写成
(5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当
---------------------------------------------------------------最新资料推荐------------------------------------------------------
3 / 10 考虑它们的影响。
因 此假定不仅包含了)(kx 的测量误差, 而且还包含了)(ku 的测量误差和系统内部噪声。
假定是不相关舱机序列(实际上是相关随机序列)。 分别测出 n+N 个输出
输入值
)(,),2 (u),1 (u),(),2 (y),1
则可以写出 N
个方程,
即
2()
上述 N 个方程可写
成向
量矩阵形式
2
(u) 2()
2
(y) 1() 1 (u) 1() 1 (
6) 设
1() 2 (u) 2() 2 (y) 1() 1 (u) 1() 1
则式(6)可以写成
上式中:
y 为 n 维输出向量;为 N 维噪声向量;为( 2n+1)维参数向量;为测量矩阵。
因此 N2n+1,方程数少于未知数数目,则方程组的解是不定的,不能唯一的确定参数向量。
如果 N=2n+1,方程数正好与未知数数目相等,当噪声
时,就能准确的解出
如果噪声,则
从上式可以看出噪声对参数估计有影响,为了尽量减小噪声对估值的影响,应取N(2n+1),即方程数大于未知数数目。
在这种情况下,不能用解方程的办法来求,而要采用数理统计的办法,以便减小噪声对估值的影响。
在给定输出向量 y 和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。
可用最小二乘法来就的估值。
---------------------------------------------------------------最新资料推荐------------------------------------------------------
5 / 10
3 最小二乘法的原理 3. 1 最小二乘法一次完成推导 本文中以一个 SISO 系统为例说明最小二乘法的原理。
假设一个 SISO 系统如下图所示:
其离散传递函数为:
3.1
输入输出的关系为:
3.2 进一步, 我们可以得到:
3.3 其中, 扰动量)(ke 为均值为 0,
不相关的白噪声。
将式 3.3
写成差分方程的形式:
)()() 2()
3.4
令
则式
3.4 可以写为:
3.5 将上述式子扩展到 N 个输入、 输出观测值{)(),(kyku},
k=1,2,, N+n。
将其代入到式 3.5 中,写成矩阵的形式为:
取泛函
为
ineYJTTN 最小二乘法原理既是使最小,对其求极值得:
由此可得系统的
最小二乘法估计值为:
这样,我们就得到了系统的最小二乘估计值。
4 最小二乘法系统辨识的应用举例系统辨识是通过建立动态系统模型,在模型输入输出数据的基础上,运用辨识方法对模型参数进行辨识,从而得到一个与所观测的系统在实际特性上等价的系统。
应用最小二乘法对系统模型参数进行辨识的方法有离线辨识和在线辨识两种。
离线辨识是在采集到系统模型所需全部输入输出数据后,用最小二乘法对数据进行集中处理,从而获得模型参数的估计值;而在线辨识是一种在系统运行过程中进行的递推辨识方法,所应用的数据是实时采集的系统输入输出数据,应用递推算法对参数估计值进