2 补充 条件分布与条件期望
随机变量的条件分布与条件期望
随机变量的条件分布与条件期望随机变量是概率论中十分重要的概念之一,它描述了在概率模型中可能出现的各种结果。
随机变量可以是离散的,也可以是连续的。
在概率论中,我们经常关注的是随机变量的分布以及其与其他变量之间的关系。
本文将重点讨论条件分布与条件期望。
一、条件分布条件分布是指在给定某些条件下,随机变量满足的分布。
对于离散型随机变量,条件分布的计算可以通过条件概率来进行。
假设X和Y是两个离散型随机变量,我们想要求解在给定X的取值为x的条件下,Y的取值为y的概率。
可以表示为P(Y=y|X=x)。
这个概率可以通过联合概率分布和边缘概率分布来计算。
具体计算方法为:P(Y=y|X=x) = P(X=x,Y=y) / P(X=x)对于连续型随机变量,条件分布的计算可以通过条件密度函数来进行。
假设X和Y是两个连续型随机变量,我们想要求解在给定X的取值为x的条件下,Y的取值在a到b之间的概率。
可以表示为P(a <= Y <= b | X = x)。
这个概率可以通过联合概率密度函数和边缘概率密度函数来计算。
具体计算方法为:P(a <= Y <= b | X = x) = ∫[a, b] f(x, y) dy / f_X(x)二、条件期望条件期望是指在给定某些条件下,随机变量的期望值。
对于离散型随机变量,条件期望的计算可以通过条件概率和随机变量的取值来进行。
假设X和Y是两个离散型随机变量,我们想要求解在给定X的取值为x的条件下,Y的期望值E(Y|X=x)。
可以表示为:E(Y|X=x) = Σy y * P(Y=y|X=x)其中Σ为求和符号,y为随机变量Y的取值。
对于连续型随机变量,条件期望的计算可以通过条件密度函数和随机变量的取值来进行。
假设X和Y是两个连续型随机变量,我们想要求解在给定X的取值为x的条件下,Y的期望值E(Y|X=x)。
可以表示为:E(Y|X=x) = ∫y y * f(y|x) dy其中∫为积分符号,f(y|x)为在给定X=x的条件下,Y的概率密度函数。
§3.5---条件分布与条件期望
FX|Y(x | y) P(X x |Y y)
lim P(X x | y Y y y) y0
lim P(X x, y Y y y) y0 P( y Y y y)
lim F (x, y y) F (x, y) 分子、分母同除 y y0 FY ( y y) FY ( y)
Pij PJ
i=1,2,.....
Pj|i
Pij Pi
j=1,2,........
例3.5.5.设(X, Y)的联合密度为:
P( x,
y)
24(1
0
x)
y
0 x 1, 0 y x 其它
求条件密度函数 PX|Y (x | y)和 PY|X ( y | x)
解:PX (x)
P(x, y)dy
5 4 20
PX 0,Y 1 P(X 0)P(Y 1| X 0) 2 3 6
5 4 20
PX 1,Y 0 P(Y 1)P(Y 0 | X 1)
32 6 5 4 20
PX 1,Y 1 P(X 1)P(Y 1| X 1)
32 6 5 4 20
XY 0 1
0
2
6
20 20
1
X|Y 3 1
2
P
4/7 3/7
例3.5.3 设随机变量X,Y独立,X P(1),Y P(2)
在X Y n 条件下,求X 的条件分布?
解:由已知条件和泊松分布的可加性得:XY P(1 2)
所以 P(X k |XY n)
P(X k, XY P(XY n)
n)
P(X k ,Y n k) P(XY n)
6
6
20 20
条件期望资料
析等。
• 可以基于矩生成函数进行求解,如政策效果最大化分析等。
⌛️
方法的优缺点
• 优点:有助于中央银行更好地评估政策工具的效果和风险,从而制定更有效 Nhomakorabea货币政策。
• 缺点:计算过程可能较为复杂,且需要已知货币政策的政策效果分
布。
05
条件期望在其他领域的应用
心理和行为规律。
• 缺点:计算过程可能较为复杂,且需要已知消费者的偏好分布。
消费者行为分析的基本问题
• 消费者行为分析是研究消费者在购买、使用和处理商品及服务过程中
的心理和行为规律的方法。
• 条件期望在消费者行为分析中的应用主要是计算消费者在已知某个条
件下,对商品或服务的期望效用。
条件期望在消费者行为分析中的求解方法
知某个条件下,对投资项目的期望收益。
02
条件期望在企业投资决策中的求解方法
• 可以基于概率分布进行求解,如风险调整收益分析、概
率调整收益分析等。
• 可以基于矩生成函数进行求解,如收益最大化分析等。
03
方法的优缺点
• 优点:有助于企业更好地评估投资项目的风险和收益,
从而做出更合理的投资决策。
• 缺点:计算过程可能较为复杂,且需要已知投资项目的
02
条件期望的计算方法
• 当Y是离散随机变量时,条件期望可以通过求和计算:
E(Y|X=x) = ∑y * P(Y=y|X=x)
• 当Y是连续随机变量时,条件期望可以通过积分计算:
E(Y|X=x) = ∫y * P(Y=y|X=x) dy
03
条件期望的性质
• 非负性:E(Y|X) ≥ 0,因为Y的平均值总是非负的。
概率论与数理统计公式精粹条件期望条件方差与条件分布
概率论与数理统计公式精粹条件期望条件方差与条件分布条件期望、条件方差和条件分布是概率论与数理统计中重要的概念和技巧。
它们能帮助我们更准确地描述和计算随机现象的特征和性质。
本文将对条件期望、条件方差和条件分布进行精炼的介绍和讨论。
一、条件期望条件期望是指在给定某些信息或条件下,对随机变量的期望进行计算的概念。
对于随机变量X和事件A,条件期望E(X|A)表示在事件A发生的条件下,随机变量X的平均取值。
条件期望的计算可以通过基本的期望定义进行推导。
对于离散型随机变量,条件期望的计算公式为:E(X|A) = ∑x P(X=x|A) * x其中,P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。
对于连续型随机变量,条件期望的计算公式为:E(X|A) = ∫xf(x|A) dx其中,f(x|A)表示在事件A发生的条件下,随机变量X的概率密度函数。
二、条件方差条件方差是在给定某些信息或条件下,对随机变量的方差进行计算的概念。
对于随机变量X和事件A,条件方差Var(X|A)表示在事件A发生的条件下,随机变量X的离散程度。
条件方差的计算可以通过基本的方差定义进行推导。
对于随机变量X和事件A,条件方差的计算公式为:Var(X|A) = E[(X-E(X|A))^2|A]其中,E(X|A)表示在事件A发生的条件下,随机变量X的条件期望。
三、条件分布条件分布是指在给定某些信息或条件下,随机变量的分布情况。
对于随机变量X和事件A,条件分布P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。
条件分布的计算可以通过基本的概率计算进行推导。
对于随机变量X和事件A,条件分布的计算公式为:P(X=x|A) = P(X=x, A) / P(A)其中,P(X=x, A)表示事件A发生且随机变量X取值为x的概率,P(A)表示事件A的概率。
四、应用与扩展条件期望、条件方差和条件分布在实际问题中有广泛的应用。
条件概率-条件分布-条件期望
y}.
定义 设二维随机变量( X ,Y ) 的概率密度为
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为fY ( y).若
对于固定的 y,
fY ( y) 0, 则称
f ( x, y) 为在Y fY ( y)
y
的条件下 X 的条件概率密度,记为
f (x, y)
f (x y)
.
XY
(2)无放回抽样
YX
01
02
2
7
7
12
1
7
7
二、连续型随机变量的条件分布
条件分布函数 FX Y (x y)
条件分布是指在一个随机变量取某个确定值 的条件下,另一个随机变量的分布, 即 FX Y ( x y) P{ X x Y y} .
由于P{Y y}可能为零(连续型时一定为零).故直接 用条件概率来定义时, 会出现分母为零. 因此,在条件分布中,作为条件的注意点 • E(X| Y=y) 是 y 的函数.
所以记 g(y) = E(X| Y=y). 进一步记 g(Y) = E(X| Y).
f (x, y)d x
1 π
1 y2 d x 2
1 y2
π
1 y2 , 1 y 1,
0,
其他.
于是当 1 y 1时,有
fX
Y
(x
y)
(2
1 π)
π 1
y2
2
1 , 1 y2
1 y2 x
1 y2,
0,
其他.
条件数学期望
定义
E ( X
|Y
y)
i
xi P( X xi | Y y)
二 条件分布
一、离散型随机变量的条件
条件分布与条件期望
这表明,二元正态分布的条件分布仍为正态分布:
1 2 2 N r y , 1 r 2 1 1 2
.
31
二.条件数学期望
32
1.条件数学期望的概念
33
条件分布的数学期望称为条件数学期望.
34
对于离散型随机变量,当 Y y j 时,随机变量 X 的条 件分布律为
1 2 PX Y n
n!
n
e
1 2
.
所以,当 X Y n 时, X 的取值为 0, 1,
2, , n .
13
PX k X Y n
PX k , X Y n PX k , Y n k PX Y n PX Y n
PX k PY n k k! n k ! PX Y n 1 2 n e 1 2 n!
n! 1 k!n k ! 1 2
k
1k
e 1
2 n k
e 2
2 2 1
17
所以,
PY k PX nP Y k X n
n 0
PX nP Y k X n PX nP Y k X n
n 0 nk
k 1
n 0
k 1
n
n!
e 0
nk
n
n!
e C p 1 p
f X x 0 .
26
例
设二维随机变量 X , Y 服从平面区域
x, D
y:
x y 1
条件分布与条件期望
p j P Y y j pij 0
i
的 y j ,称
P X xi Y y j
P X xi , Y y j
2,
3,
为在给定 Y y j 条件下,随机变量 X 的条件分布列.
7
同理,对一切使得
pi PX xi pij 0
布(无此限制下体重的分布)会有很大的不同.
4
1.离散型随机变量的条件分布
5
设二维离散型随机变量 X , Y 的联合分布列为
pij P X xi , Y y j , i 1, 2, , j 1, 2, .
仿照条件概率的定义,我们很容易地如下给出离散型随机变量的 条件分布列.
6
定义 5.1 对一切使得
件下, X i 的取值为 0 或者1.而且
P
Xi 0 X1 X2
Xn r
PXi 0, PX1
X1 X2 X2
Xn
Xn r
r
PX i
0,
X1 X i1 X i1
PX1 X 2 X n r
Xn
r
22
1 p Cnr1 pr 1 p Cnr pr 1 p nr
是 p 0 p 1 , 设 X i 表 示 第 i 次 试 验 中 成 功 的 次 数 , i 1, 2, , n .试在 X1 X 2 X n r 0 r n 的条件下,给出 X i 1 i n的分布列.
21
解:
由于 X1 X 2 X n ~ Bn, p,所以在 X1 X 2 X n r 的条
17
所以,
P Y
k
PX
nPY
k
X
n
n0
k 1
PX
nPY
k
第六章条件概率与条件期望
第六章 条件概率与条件期望6.1 定义和性质设为概率空间,),,(P F ΩF ∈B 且,记0)(>B P ())()()(B P AB P B A P A P B ==),P ,,则易证明为概率空间。
考虑F ∈∀A ),,(B P F Ω,(F Ω上的随机变量ξ在此概率空间上的积分,若存在则称它为∫ΩξB dP ξ在给定事件B 之下的条件期望,记为(B E ξ),即()B ∫Ω=B dP ξE ξ。
命题1:若ξE 存在,则(B E ξ)存在且()∫=BdP B P B E ξξ)(1。
由此可见,ξ在给定事件B 之下的条件期望的意义是ξ在B 上的“平均值”。
此外给定事件在给定事件A B 的条件概率)B ()(I E B A P A =0)(>n B P 可看成条件期望的特殊情形。
设{}为的一个分割且,令F ⊂n B Ω)2,1,L =(=n n B σA ,则。
若F A ⊂ξE 存在,()∑为nE B n I n B ξ),A (Ω上的可测函数,称其为给定σ-代数A 之下关于P 的条件期望,记作()A ξE ,即()()∑=E ξA nB n I ξn B E 。
命题2:A ∈B ∀且,0)(>B P ()()∫=BdP E B P B E A ξξ)(1。
证明:A ∈B ∀,{L ,2,1⊂}∃K 使得∑∈=K i i B B ,()()()()∑∫∫∑∑∫∑∫∈∈=====K i BB Ki i i nn n BnB nBdPdP B P B E B B P B E dP IB E dP E inξξξξξξ)()(I A由此可见,若称满足下式的(),A Ω上的可测函数()A ξE 为ξ在给定σ-代数A 的条件期望:()∫∫=BBdP dP E ξξA ,A ∈∀B则由于不定积分,∫=BdP B v ξ)(A ∈∀B 为),(A Ω上的符号测度且v ,由Radon-Nikodym 定理存在唯一的(P <<P s a ..),A Ω上的可测函数满足上式,即()dPdvE =A ξ(Ω,故由命题2,两者定义一样。
概率论与数理统计3-6 条件分布与条件期望、回归与第二回归
p(u, y)du.
1 yy
lim
[ p(u, v)du]dv.
y0 y y
lim
y0
1 y
y y y
p
(u)dv
p
( y)
0.
F
(
x
y)
x
p(u, y) p ( y)
du.
由此可见:在 y的条件下,的分布列仍是
§3.6 条件分布与条件期望、回归 与第二回归
一、条件分布
在离散型R.V中,我们利用条件概率公式
P(A B)
P( AB) , P(B)
P(B)
0.
求出了离散型R.V .的条件分布列:P(
xi
yj)
Pi
.
j
类似的问题对连续型R.V .也存在.
由于连续型R.V .取单点值的概率为零,所以用分布列
lim P( x, y y y) . y0 P( y y y)
P( x, y y y)
lim
.
y0 P( , y y y)
设(,)的p d f 为p(x, y),则上式又变为
x yy
密度为P ( y
那么称 xP (
x y
), 如果
x
P
(y
x
x )dx为在(
)dx . y)发生的条件下的条件
数学期望,记为 E( y).即
E(
y)
xP
(y
应用随机过程第1章补充例题及作业
例 3 已知二维随机变量(X,Y)的联合概率密度函数为:
e x f ( x, y ) 0
(1)问变量 X 与 Y 是否相互独立? (2)求条件分布密度函数 fY | X ( y | x) ; (3)计算条件期望 E (Y | X ) 。
0 y x other
Y 0 1 2
X
0 0.25 0.05 0.05
10 0.05 0.15 0.10
20 0.05 0.05 0.25
(1)研究吸烟数量多与健康状态差有无关联?要求利用条件分布说明; (2) 研究每天吸 x 支烟 (x = 0,10,20) 的人的平均健康状态值, 并写出条件期望 E (Y | X ) 的分布律。 5. 已知 X
N (0,1) ,U 与 X 相互独立, P{U 0} P{U 1}
1 ,令 2
X Y X
证明: Y
U 0 U 1
。
N (0,1) ,但 ( X , Y ) 不服从二维正态分布。
isX itY
注:( X , Y ) 的二维特征函数为: XY ( s, t ) E (e 为: (t ) exp(i t
1 2
1
(3)计算 E ( X | X Y n) 。 ) 的二项分布。
4. 为研究吸烟与身体健康之间的关系,以 X 表示每人每天吸烟的数量,分为 3 类:0 支、10 支和 20 支;以 Y 表示人的健康状态,分为 3 等:好、中、差,分别表示为 Y=0、Y=1 和 Y=2。在某地区随机抽样调查得到 X 与 Y 的联合分布如下表所示。
1/ 2 1/ 6 1/ 3
2 / 6 1/ 3 0
则有:Y (Y1 , Y2 , Y3 ) K ( X1 , X 2 , X 3 ) KX ,其中 X ( X1 , X 2 , X 3 ) 是三维正态随 机变量。而正态随机变量的线性变换仍为正态随机变量,即 Y (Y1,Y2,Y3) 是三维正态随机 变量,其均值向量与协方差矩阵为: Y K X (0,0,0) , Y K Y K I 。 所以有 Y1 , Y2 , Y3 相互独立并且都服从标准正态分布。 例 5 假设 E ( X | Y ) EX ,证明随机变量 X 与 Y 不相关。
条件数学期望
F(x| y)
x
P(X xi |Yy)
xi x
p(t| y)dt x p(t, y)dt
p(y)
大家好
18
二、条件数学期望
定义:若随机变量X在Y=yj条件下的条件分 布列为 pi j ,又
xi pi j ,
i1
则称
xi pi j
i 1
为X在Y=yj条件下的数学期望,简称条件期望,
3、随机变量X对Y求条件期望后再求期望,等于
对这个随机变量直接求期望。
大家好
31
条件分布数学期望的性质
4.若X与Y独立,则 EXYyEX
5.条件期望有所谓平滑性:
E E X X Y y d Y y F E E X Y
6.对随机变量X,Y的函数 X,Y恒有:
E X , Y Y y E X ,y Y y
记为 E{XYyj}
大家好
19
例1设(X,Y)的联合分布律为
YX 1
2
3
-1 0.2 0.1
0
0 0.1 0
0.3
1 0.1 0.1
0.1
( 1 ) E { Y |X 求 2 } ( 2 ) E ; { X |Y 0 }.
解题思路: ( 1)写X 出 2的 在条Y 件 的下 概率分布即 ,可 再求 按得 定; 义 ( 2)写 Y 出 0的 在 条 X 的 件概 下率分即 布可 ,求 再得 按
大家好
小结
• 1、条件分布 • 2、条件数学期望及运算 • 3、条件数学期望性质及证明
大家好
33
谢谢
大家好
34
条件密度
fY
X
x
y
f x,y fX x
§3.5条件分布与条件期望
解 由题意知随机变量 ( X ,Y ) 的概率密度为
1 π , x 2 + y 2 ≤ 1, p( x , y ) = 0, 其 它.
已知条件概率密度
p( x , y ) p( x y ) = , pY ( y )
又知边际概率密度为
pY ( y ) =
∫
+∞ −∞
p( x , y ) d x
x −∞
p( u, y ) d u. pY ( y )
同理, 定义在 X = x 的 条件下 Y 的 条件概率 密度为
p( x, y ) p( y x ) = pX ( x )
⇔
p( x, y ) = pX ( x ) p( y x ).
称∫ p( y x )d y = ∫
−∞
y
x
−∞
p(u, y ) d u 在 X = x 的条件下, pY ( y)
(1) 求在Y = 1 的条件下,X 的条件分布列; (2) 求在 X = 0 的条件下, 的条件分布列. Y
解 由上述分布律的表格可得
P{ X = 0,Y = 1} 0.030 2 = = , P{ X = 0 Y = 1} = 0.045 3 P{Y = 1}
P{ X = 1,Y = 1} 0.010 2 P{ X = 1 Y = 1} = = = , P{Y = 1} 0.045 9
2 2 1 1− y dx = 1 − y 2 , − 1 ≤ y ≤ 1, ∫− 1− y 2 = π π 0, 其他 .
于是当 − 1 < y < 1 时, 有
1π 1 , − 1 − y2 ≤ x ≤ 1 − y2 , = p( x y) = (2 π ) 1 − y2 2 1 − y2 其他 . 0,
条件分布与条件期望课件
P(Y=1|X=1)=0.1/0.6=1/6 P(Y=1|X=2)=0.2/0.4=1/2
P(Y=2|X=1)=0.3/0.6=1/2 P(Y=2|X=2)=0.05/0.4=1/8 P(Y=3|X=1)=0.2/0.6=1/3 P(Y=3|X=2)=0.15/0.4=3/8
身高Y
体重X 的分布
体重X
条件分布与条件期望
身高Y 的分布
现在若限制1.7<Y<1.8(米),在这个条件下去求 X的条件分布,这就意味着要从该校的学生中把身 高在1.7米和1.8米之间的那些人都挑出来,然后在挑 出的学生中求其体重的分布.
容易想象,这个分布与不加这个条件时的分布 会很不一样.
例如,在条件分布中体重取大值的概率会显著 增加.
条件分布与条件期望
运用条件概率密度,我们可以在已知某一随机 变量值的条件下,定义与另一随机变量有关的事件 的条件概率.
即: 若(X,Y)是连续型r.v, 则对任一集合A,
P (X A |Y y )A p X |Y (x |y )d x
特别,取 A(,u),
定义在已知 Y=y下,X的条件分布函数为
1, pX(x)0,
0x1,p(y| 其它
x)11x, 0,
0xy1 其它
求(X,Y)的联合密度p(x,y)和Y的边际密度pY(y) 及P(Y>0.5).
解:
p(x,y)p(y|x)pX(x) 1 1x, 0xy1
0,
其 它
条件分布与条件期望
y
pY(y)
x<y
y =x
0
1
x
p(x,y)0的区域
2
e
21 12
概率论与数理统计2-6 条件分布与条件期望
边际分布列:pig
pij
p 2 q 2
j i1
j i1
p2qi1 pqi1, i 1, 2,...
1j1q
j 12
i 1
i 1
( j 1) p2q j2 , j 2, 3,...
条件分布列为pi/j pij pgj p2q j2 [( j 1) p2q j2 ]
证明
E{ / bj}P( bj )
j 1
而
E{ / bj}
ai pi / j
i1
i1
ai
gpij pgj
E(E{ /})
j 1
ai
i 1
pij pg j
pgj
ai
i 1
j 1
pij
ai pig E
i 1
三小结
概念 E{ / bj}
条件数学期望
E(C / bj ) C.
E{(k11+k22 ) / bj} k1E{1 / bj}+k2E{2/=bj}
E(E{ /}) E
二、离散型随机变量条件数学期望
❖ 定义 若随机变量 分布列为 pi / j 又
在条件"
bj " 下的条件
ai pi / j
i 1
称 ai pi/ j 为 在 bj 条件下的条件数学期望 i 1
记作: E{ / bj}
例2 某射手进行射击,每次设计击中目标的
2.对任意实数k1,k2,又E{1 / bj},E{2/=bj}存在, 则E{(k11+k22 ) / bj} k1E{1 / bj}+k2E{2/=bj}
茆诗松概率论与数理统计教程课件第三章 (5)
p( x , y )dy]dx pY ( y )dy
积分中值定理
x
p( u, y )du pY ( y )
x
p( u, y ) du pY ( y )
所 以与 一 维 随机 变 量概 率 密度 的 定 义 : F ( x) 不 难得 出 如 下定 义 :
x
f ( x )dx相 类比 ,
这称为 在Y y j的条件下 , X的条件分布列 .
类似地 , 在X xi的 前 提 下 , Y的 条 件 分 布 列 为 P (Y y j | X xi ) pij pi , j 1,2,
例一. 设(X,Y)的联合分布为 X Y
1 2 3
5 0.08 0.11 0.03
i 1 i 1
当( X , Y )为 连 续 型 时 , p( x , y ) E ( g( X ) | Y y ) g( x ) p( x | y )dx g( x ) dx pY ( y )
条件数学期望 E ( X | Y y )为 常 数 , 而E ( X | Y )可 以 看 成 是一个变量 ,以 离 散 情 形 为 例 ,该变量的取值和相应 的概率为
E(X|Y) E(X|Y=y1)
P P(Y=y1)
E(X|Y=y2)
…
P(Y=y2)
…
故E ( X | Y )作为随机变量 , 因而有相应的数学期望 E[ E ( X | Y )],对此, 我们有如下重要结果 :
(4)重 期 望 公 式 : E[ E ( X | Y )] E ( X )
性质(4)的证明: (仅证连续情形 )
条件概率、条件分布与条件数学期望
练习、
设“取出的是黄球”为事件B,“取出的是黑球”为事件C, 1、5个乒乓球,其中3个新的,2个旧的,每次取一个,不 10 10 15 5 放回的取两次,求: 则P(C)= ,( P C)=1- ,( P B)= 25 25 25 25 3/5 (1)第一次取到新球的概率; 5 B C, P (BC)=P(B)= 3/5 (2)第二次取到新球的概率; 25 P(BC) 1 (3)在第一次取到新球的条件下第二次取到新球的概率。 1/2 所求概率( P B|C)= P( C) 3
例1在5道题中有3道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
例1在5道题中有3道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
1 3 1 4
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(2) n( AB) A 6
P ( AB) n( AB) P B A P ( A) n( A)
例题2 在某次外交谈判中,中外双方都为了自身的利益 而互不相让,这时对方有个外交官提议以抛掷一 颗骰子决定,若已知出现点数不超过3的条件下再 出现点数为奇数则按对方的决议处理,否则按中 方的决议处理,假如你在现场,你会如何抉择? 解1:设A={出现的点数不超过3}={1,2,3} B={出现的点数是奇数} ={1,3,5}
条件期望
数,并设首次出现正面是在第 T 次试验。问题是求给定 n 次试验中仅出现了一次正面时随机
( ) 变量T 的条件概率分布,也即 p T = k S = 1 。
( ) 解: p T = k S = 1 = p(1- p)n-1
p {S
= 1} =
C
1 n
p(1 -
p) n-1
( ) p T
=kS
=1
=
p(T = k, S = p(S = 1)
1)
=
p(1 - p) n-1
C
1 n
p(1 -
p) n -1
=
1 n
条件期望有些重要的性质:
( ) 命题 1.1 a) 若 X 与 Y 独立,则 E X Y = y = EX
b)条件期望有所谓平滑性: EX = ò E(X Y = y)dFY (y) = E[E(X Y )] c)对随机变量 X ,Y 的函数f(X ,Y )恒有: E[f(X ,Y )Y = y] = E[f(X , y)Y = y]
1.2.2 矩母函数及生成函数
定义 1.6 随机变量 X 的矩母函数定义为随机变量 etX 的期望记作 g(t),即
( ) g(t) = E etX = ò etxdF(x)
例 1.9 随机和的矩母函。记 X 1, X 2 ,L 为一串独立同分布的随机变量, N 为非负整数值随机
1
合肥工业大学数学系
定义 1.9
设随机变量 X
( 和
X
n
,
n
³
1都有有限的二阶矩,如果
lim
n ®¥
E
Xn
-
X )2
=0
则称
Xn
均方收敛于
条件期望的性质与应用 (2)
条件期望的性质与应用摘要:条件数学期望(以下简称条件期望)就是随机分析理论中十分重要的概念,在理论实际上都有很重要的应用。
本文首先分析了条件期望的几种定义与性质,进而研究了条件期望的求法,最后举例分析条件期望在实际问题中的应用。
关键词:条件期望;定义;性质;应用条件期望就是现代概率体系中的一个重要概念。
近年来,随着人们对随机现象的不断观察与研究,条件期望已经被广泛的利用到日常生活中,尤其值得注意的就是条件期望在最优预测中的应用。
现代概率论总就是从讲述条件期望开始的。
鉴于此,在分析条件期望的几种定义时,通过比较它们的优缺点,使初学者在充分认识条件期望的基础上,由非条件期望的性质学习顺利过渡到条件期望性质的学习,实现知识的迁移。
通过研究条件期望的求法,从而提高计算能力与解题技巧。
条件期望不仅在数学上有重要的价值与意义,还在生物、统计、运筹与经济管理等方面有着重要的作用与贡献。
总之,研究条件期望的性质与应用不仅有助于学生对数学的学习,而且还有利于进一步探索科学的其它领域。
1 条件期望的几种定义1、1 条件分布角度出发的条件期望定义从条件分布的角度出发,条件分布的数学期望称为条件期望。
由离散随机变量与连续随机变量条件分布的定义,引出条件期望的定义。
定义1 离散随机变量的条件期望设二维离散随机变量(X,Y)的联合分布列为(),ij j i p P X x Y y ===,1,2,,1,2,.i j =⋅⋅⋅=⋅⋅⋅,对一切使()10j j ij i P Y y p p +∞⋅====>∑的j y ,称()()|,(),1,2,j ij i i j i j jj P X x Y y p p P X x Y y i p P Y y ⋅========⋅⋅⋅=为给定j Y y =条件下X 的条件分布列。
此时条件分布函数为 ()()i i j i j i j x x x xF x y P X x Y y p ≤≤====∑∑;同理,对一切使()10i i ij j P X x p p +∞⋅====>∑的i x ,称()()()j|i ,,1,2,j ij i j i i j P X x Y y p p P Y y X x j p P X x ⋅========⋅⋅⋅=为给定i X x =条件下Y 的条件分布列。
1-2 条件分布与条件数学期望
3
p2 (1-p) p2 (1-p) 0
0
4
p2 (1-p) 2 p2 (1-p) 2 p2 (1-p) 2 0
•••
•••
•••
•••
•••
••• ••• ••• •••
(X,Y )为二维离散型随机向量
条件分布函数的 计算公式
在 Y = yj 的条件下随机变量 X 的条件分布函数
FX|Y ( x | y j ) P{X x | Y y j }
f X|Y ( x | y)
f (x, y) fY ( y)
( fY ( y) 0)
在 X = x 的条件下 Y 的条件概率密度
fY|X ( y | x)
f (x, y) fX (x)
( f X (x) 0)
(X,Y )为二维连续型随机向量
注记
(1)条件概率密度计算公式成立的条件。
(2)条件概率密度由联合概率密度确定。
(3)联合概率密度由边缘概率密度 和条件概率密度共同确定。
f (x, y) f X (x) fY|X ( y | x) f (x, y) fY ( y) f X|Y (x | y)
(4)连续型随机变量X、Y 相互独立的充要条件
fY|X ( y | x) fY ( y) f X |Y (x | y) f X (x)
(X,Y )为二维离散型随机向量
条件分布律的 计算公式
在 Y = yj 的条件下随机变量 X 的条件分布律
P{X xi | Y y j} P{X xi ,Y y j} pij (i 1,2, )
P{Y y j}
p• j
在 X = xi 的条件下随机变量 Y 的条件分布律
P{Y