线性空间讲义的定义及性质
厦大《高代》讲义第9章+内积空间
第九章内积空间Inner Product Space§9.1 目的与要求•掌握内积、内积空间的概念•熟练掌握欧氏空间的度量概念,如长度、距离、夹角、正交等•熟练掌握Cauchy-Schwarz不等式、三角不等式的含义及应用厦门大学数学科学学院网址: •定义:设V 是R 上线性空间,存在映射( ,):, 使得对任意x , y , z ∈V, c ∈R,有(1). ( x , y ) = ( y , x )(2). ( x + y , z ) = (x ,z ) + (y , z )(3). ( cx , y ) = c ( x , y )(4). ( x , x ) ≥ 0.且等号成立当且仅当x = 0.则称在V 上定义内积( , ). V 称为内积空间.有限维实内积空间称为Euclid 空间(欧氏空间).R V V →⨯对称线性非负(实)内积空间•定义:设V 是C 上线性空间,存在映射( , ):使得对任意x , y , z ∈V, c ∈C,有(1).(2). (x + y , z ) = (x , z ) + ( y , z )(3). (cx , y ) = c ( x , y )(4). (x , x ) ≥ 0.且等号成立当且仅当x = 0.则称在V 上定义内积( , ). V 称为复内积空间.有限维复内积空间称为酉空间.•注1:对任意实数a , , 所以复内积空间与实内积空间的定义是一致的, 统称为内积空间.•注2:在复内积空间中, (,)(,)x y y x =a a =(,)(,)x cy c x y =R V V →⨯(复)内积空间•例1:R n ×1是n 维欧氏空间, 若, 定义内积如下:该内积称为R n ×1上的标准内积.C n ×1是n 维酉空间, 若, 定义内积如下:该内积称为C n ×1上的标准内积.1122(,)...n nx y y x x y x y x y '==+++例子1,C n x y ⨯∀∈1,R n x y ⨯∀∈1122(,)...n nx y y x x y x y x y '==+++•例2:R 2×1上对1) 是内积2) 非线性, 非内积3) 未必非负, 非内积11211222(,)4x y x y x y x y x y =--+例子1122,x y x y x y ⎛⎫⎛⎫∀== ⎪ ⎪⎝⎭⎝⎭1,2(,)max(||,||)i i i x y x y ==1212(,)x y x x y y =+++•例3:设, 定义则c [a , b ]是无限维内积空间. •例4:设G 为n 阶正定阵, 对, 定义则R n ×1是R 上n 维欧氏空间. G =I 即例1.•例5:R n ×n 上定义(A , B ) = tr(A’B ), 是欧氏空间么? 若是, 它是几维的?例子(,)'x y x Gy=(,)()()b a f g f x g x dx =⎰(),()[,]f x g x c a b ∈1,R n x y ⨯∀∈•定义:设V 实内积空间, 设x , y ∈V, 定义x 的长度为:定义x 与y 的距离为:当V是实空间时, 定义x , y 的夹角θ的余弦为:当V 是复空间时, 定义x , y 的夹角θ的余弦为:当( x , y ) = 0时, 称x 与y 正交, 记x ⊥y .(,)x x x =(,)d x y x y=-(,)cos x y x yθ=(,)cos x y x y θ=(实)内积空间_2•定理:设V 是实的或复的内积空间,设x , y ∈V, c 为常数(实数或复数), 则(1) (2) (Cauchy-Schwarz 不等式)当且仅当x , y 线性相关时, 等号成立.(3) (三角不等式)cx c x=(,)x y x y≤x y x y+≤+在R n×1中•注1:x=0时, 对任意y, (x, y)=0; 反之, 若对任意y, 都成立(x, y)=0, 则x=0. 即只有零向量和自己正交; 只有零向量的长度为0;•注2:||x+y||= ||x||+||y|| x和y同向或有一为0;•注3:(x, y)=||x||||y||cosθ, 其中θ为x与y的夹角(内积几何意义);•注4:x⊥y时, (x,y)=(y,x)=0, ||x+y||2=||x||2+||y||2 (勾股定理);•注5:若两两正交, 即则1)2)•注6:x 称为单位向量, 若. 一般地, 若x ≠0, 则x /|| x ||是单位向量(称把x 单位化).•注7:Cauchy-Schwarz 不等式具体形式:内积空间_512,,...,m ααα(,)0,i j i j αα=∀≠122...m mk k ααα⊥++22221212......m mαααααα+++=+++1x =()222221111...(...)(...)n n n nx y x y x x y y ++≤++++222(()())()()b bbaaaf xg x dx f x dx g x dx≤⎰⎰⎰例子•例6:证明下列不等式成立1)2) 若A =(a ij )n ×n 是(对称)正定阵, 则))(()(1111211j i n i nj ij j i n i n j ij n i n j j i ij y y a x x a y x a ∑∑∑∑∑∑======≤222111111()()()nnnnnnji ji jijii j i j i j a b a b ======≤∑∑∑∑∑∑厦门大学数学科学学院网址: 作业•作业p294 1, 2, 3, 6, 7补充: R n ×n 上定义(A , B ) = tr(A’B ), 是欧氏空间么? 为什么? 若是, 它是几维的?并证明下列不等式:•选做p295 5222111111()()()nnnnnnji ji jijii j i j i j a b a b ======≤∑∑∑∑∑∑§9.2 目的与要求•掌握标准正交基、正交补空间的概念•掌握度量矩阵与内积的关系•掌握两标准正交基的过渡矩阵与正交阵的关系•熟练掌握矩阵为正交阵的充要条件•掌握向量组的Gram-Schmidt正交化的计算标准正交基_1•定义:设是n 维内积空间V 的一组基, 若, 则称这组基是V 的一组正交基, 若,则称这组基是V 的一组标准正交基.•引理:内积空间V 中任意一组两两正交的非零向量必线性无关.12,,...,n εεε(,)0,i j i j εε=∀≠(,)i j ij εεδ=标准正交基_2•定理: 设V 是内积空间, 是V 中m 个线性无关的向量, 则在V 中存在两两正交的向量, 使得•Gram-Schmidt 正交化:12,,...,m ξξξ12,,...,m ηηη1212(,,...,)(,,...,).m m L L ξξξηηη=11ηξ=,11,11,(,)...,,11(,)i j i i i i i i i j j j k k k j i ξηηξηηηη--=+++=-≤≤-Schmit 正交化uu 2211k v -v 2322k v -1212111112212(,)(,)u u u k v v u v v v v v ==--=v 12v 311k v -3v 3u 331132233313221u u k v k v k k v v v --=--=211k v v 1311k v 322k v 3322u k v -标准正交基_3•注: 任意线性无关向量组必可正交化, 且正交化后的向量组与原向量组等价.•推论: 任意n 维内积空间有一组标准正交基.•注: 标准正交基可以简化内积的运算.设是内积空间V 的标准正交基, 若, 则, 即又若, 则12,,...,n εεε(,)i i x x ε=1122(,)....n n x y x y x y x y =+++1122...n n x x x x εεε=+++111222(,)(,)...(,)n n n x x x x εεεεεε=+++1122...n n y y y y εεε=+++例子•例1:R 1×2, 在标准内积下e 1, e 2是标准正交基, 任意向量x =(x 1, x 2), 则x 1=(x , e 1), x 2=(x , e 2).•例2:设V 是四维行向量空间, 内积为标准内积, 又. 试用Gram-Schmidt 方法将化为V 的一组标准正交基.•例3:设, 问是否为的一组基? 一组标准正交基?1234(1,1,0,0),(1,0,0,1),(1,0,1,0),(1,u u u u ==-==1,1,1)--1234,,,u u u u 12(1,0),(0,1)u u ==12,u u 12R ⨯正交补•定义:设U是内积空间V的子空间,令U⊥={v∈V| (v, u)=0,对任意u∈U},则U⊥是V的子空间, 称为U的正交补空间.•定理:设V是n维内积空间, U是V的子空间,则(1) V = U U⊥;(2) U上任意一组标准正交基必可扩为V 的标准正交基;(2’) V上任意一组标准正交向量组必可扩为V 的标准正交基.例子•例5:若, 且对都有, 则•例6:(Bessel 不等式) 设是n 维内积空间V 的正交向量组, y 是V 的任一向量, 则且等号成立的充要条件是•例7:设线性子空间U 是齐次线性方程组Ax =0的解空间, 求U ⊥适合的线性方程组.12,,...,m v v v 2221|(,)|||||||||m k k k y v y v =≤∑12(,,...,).m y L v v v ∈12V U W U W =⊕=⊕11U, W u w ∀∈∈22W w ∈12(,)(,)0u w u w ==12W W U .⊥==度量矩阵_1设V 是n 维欧氏空间,是V 的一组基,令由内积定义知G 是一个实对称矩阵, 称为度量矩阵. 设则( x , y ) = (x 1, …, x n ) G (y 1, …, y n ) = X ’GY 这里X ’= (x 1, …, x n ), Y = (y 1, …, y n )’.因为当x ≠0时, 必有(x , x ) >0, 所以G是正定阵.111212122212(,)(,)(,)(,)(,)(,)(,)(,)(,)n n n n n n G ξξξξξξξξξξξξξξξξξξ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11,n n i i i ii i x x y y ξξ====∑∑,,...,12n ξξξ度量矩阵_2•注1:在n 维实线性空间V 的基固定情况下{V 上的内积} {实正定矩阵}.•注2:设是欧氏空间V 的一组基, 则为正交基⇔G 为(正定)对角阵;为标准正交基⇔G 为单位阵.←−−→1:1,,...,12n ξξξ,,...,12n ξξξ,,...,12n ξξξ正交矩阵_1设u 1, u 2, …, u n 和v 1, v 2, …, v n 是n 维欧氏空间V 的两个标准正交基, T 是从基u 1, u 2, …, u n 到v 1, v 2, …, v n 的过渡矩阵,即(v 1, v 2, …, v n )=(u 1, u 2, …, u n )T.则由于,故有T ’T =I .•定义:实n 阶方阵T 称为正交阵, 如果T -1=T ’.1(,)i jn ij si sj s v v t t δ===∑正交矩阵_2•注1:设u1,u2,…,u n是维欧氏空间的一个标准正交基, T是正交阵, 且有(v1,v2,…,v n)=(u1, u2, …, u n)T.则v1,v2,…,v n是V的标准正交基.•注2:T是正交阵 T 的列向量是标准内积空间R n×1的标准正交基.正交矩阵_3•例4:(1) 单位阵是正交阵.(2) 实对角阵是正交阵的充分必要条件是对角元素为±1.(3) 上(下)三角阵是正交阵的充分必要条件是它是对角阵且对角元素为±1.(4)是正交阵且二阶矩阵能作为正交阵的只能是如上两种形式.(5) 置换阵是正交阵.cos sin cos sin ,sin cos sin cos θθθθθθθθ-⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭正交矩阵_4•命题:设T, S为正交阵, 则(1) |T | = ±1.(2) T 可逆且T -1为正交阵.(3) T *为正交阵.(4) –T 为正交阵.(5) TS 为正交阵.(6) T 的特征值的模长为1.§9.3 目的与要求•了解伴随变换的概念•掌握伴随变换的矩阵表示与性质伴随_1•定义:设V 是数域K 上线性空间, 从V 到K 的线性映射称为线性函数. V 上线性函数的全体称为V 的共轭空间, 记做V *.•注:设V 是n 维欧氏空间,内积为(-,-). 固定0≠v ∈V, 则是V 上线性函数. 反之, 任一线性函数均可由上面方式实现.:.f V K (,)x x v伴随_2•引理:设f 是n 维欧氏空间V 的线性函数,则必存在V 上唯一向量v ,使对任意x ∈V, 均有f (x )=(x ,v ).•定理:设是n 维欧氏空间V 的线性变换算子,则存在唯一线性变换算子,使得对任意u ,v ∈V, 有•注1: 称为的伴随变换.•注2: 欧氏空间上线性变换称为线性算子.ϕ*ϕ((),)(,*()).u v u v ϕϕ=*ϕϕ伴随_3•定理:设u 1,u 2,…,u n 是n 维欧氏空间V 的一组标准正交基,若V 的线性变换在这组基下的表示矩阵为A ,则的伴随算子在这组基下的表示矩阵为A ’.•定理:设是n 维内欧氏空间V 的两个线性变换,c 为常数,则ϕ*ϕϕ2)()**c c ϕϕ=1)()***ϕψϕψ+=+3)()***ϕψψϕ=4)(*)*ϕϕ=,ϕψ§9.4 目的与要求•掌握内积空间的(保积)同构的概念•熟练掌握内积空间的同构的等价命题•掌握正交算子的概念•熟练掌握正交算子的等价命题•掌握正交阵在正交相似下的标准型及相应的正交算子命题正交算子_1•引理:设是维欧氏空间V 到W 的线性映射,则下列条件等价:(1) 保持内积,(2) 保持范数,(3) 保持距离, •定义:设V,W 是n 维欧氏空间是线性映射.如果是线性空间同构且保持内积,即则称是欧氏空间的同构,记:V W ϕ→ϕϕϕϕ((),())(,).x y x y ϕϕ=().x x ϕ=((),())(,).d x y d x y ϕϕ=ϕ((),())(,),x y x y ϕϕ=ϕV W.≅正交算子_2•定理: 设V, W 是n 维欧氏空间, 是线性映射,则下列条件等价:(1) 保持内积.(2) 保持范数.(3) 保持距离.(4) 是欧氏空间同构.(5) 将V 的任一标准正交基变成W 的标准正交基.(6) 将V 的某一标准正交基变成W 的标准正交基.:V W ϕ→ϕϕϕϕϕϕ正交算子_3•推论:设V, W 是欧氏空间,则 dimV = dimW.•注1:两个欧氏空间是否同构与其上定义的内积无关, 只与维数有关.•注2:欧氏空间的同构是等价关系.•注3:任意n 维欧氏空间都同构于标准内积空间R n .•意义:对一般n 维欧氏空间的研究可转化为对标准内积空间R n 的研究.V W正交算子_3•定义: n 维欧氏空间V 上保持内积的线性算子称为正交算子或正交变换.•定理:设是n 维欧氏空间V 的线性变换,则下列条件等价:(1) 是正交算子. (2) 保持距离.(3) 保持范数. (4) 是V 的自同构.(5) 可逆且(6) 将V 的任意标准正交基变为另一标准正交基.(7) 将V 的一组标准正交基变为另一标准正交基.(8) 在V 的任意标准正交基下的矩阵是正交阵.(9) 在V 的某组标准正交基下的矩阵是正交阵.ϕϕϕϕϕ1*.ϕϕ-=ϕϕϕϕϕ正交算子_4•注1:n 阶正交阵可视为某n 维欧氏空间V 上正交变换在V 的某标准正交基下的表示矩阵;•注2:n 阶正交阵还可视为某n 维欧氏空间V 中某两标准正交基的过渡矩阵.•注3:若是正交算子, 则1) 可逆, 且也是正交算子;2)为正交算子;3) 若|c |=1, 则为正交算子.,ϕψϕ1ϕ-ϕψc ϕϕ正交相似_1设是n 维欧氏空间V 上线性变换, u 1, …, u n 和v 1, …, v n 分别是V 的两组标准正交基,则•定义:设A , B ∈R n ×n , 若存在正交阵T , 使则称A , B 是正交相似的.ϕ1212(,,...,)(,,...,)n n v v v u u u T =1212(,,...,)(,,...,)n n u u u u u u A ϕ=1212(,,...,)(,,...,)n n v v v v v v Bϕ=1.B T AT T AT -'==1,B T AT T AT -'==正交相似_2•注1:设A, B∈R n×n, 则A与B是正交相似的充分必要条件是A, B是n维欧氏空间V上同一个线性算子在不同标准正交基下的矩阵.•注2:正交相似是等价关系.•注3:设A与B正交相似, A是正交阵, 则B也是正交阵.•注4:若B由矩阵A互换i,j两行, 再互换i,j两列得到, 则A, B正交相似.•注5:两对角阵仅对角元顺序不同, 则他们正交相似.正交算子_5•引理:设A 为正交阵,为A 的一个复特征值, (b ≠0), 为对应的特征向量, 则且•注:因, 故可设cos sin (,),(,)sin cos Ax x y Ay x y θθθθ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭a ib λ=+u x iy =+.x y =x y ⊥221,a b +=1λ=cos ,sin .a b θθ==-cos sin (,).sin cos A x y θθθθ-⎛⎫ ⎪⎝⎭正交算子_6•定理:设A 为正交阵, 则存在正交阵T , 使T -1AT •定理:设是n 维欧氏空间V 的正交算子, 则存在一组标准正交基, 使得在此基下的矩阵是1111cos sin cos sin {,,,...,}.sin cos sin cos l l s t l l diag I I θθθθθθθθ--⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭1111cos sin cos sin {,,,...,}.sin cos sin cos l l s t l l diag I I θθθθθθθθ--⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ϕϕ例子•例1:设是欧氏空间V 的线性变换, 则下列命题中___不能作为是正交变换的等价命题.A. 在某一组基下表示矩阵是正交阵;B. ;C. 保积同构;D. 保持距离不变.A1*ϕϕ-=例子•例2:和矩阵正交相似的矩阵是___.A.B. C.D.A 1001M ⎛⎫= ⎪-⎝⎭0110⎛⎫ ⎪⎝⎭1100-⎛⎫ ⎪⎝⎭1111⎛⎫ ⎪-⎝⎭0110⎛⎫ ⎪-⎝⎭例子•例3:设是n 维欧氏空间的线性变换, 分别是的伴随变换, 则下列命题中错误的有___个.①是单的线性变换, 则是满的线性变换②③, 对任意的④是同构变换, 则也是同构变换A. 0B. 1C. 2D. 3A,ϕψ*,*ϕψ,ϕψϕ*ϕ*dimIm dimIm ϕϕ=ϕ*ϕ*((),)((),)ϕαβϕβα=,Vαβ∈例子•例4:三阶正交矩阵在正交相似下的所有可能的标准形是___.111⎛⎫ ⎪ ⎪ ⎪⎝⎭111-⎛⎫ ⎪ ⎪ ⎪⎝⎭111-⎛⎫ ⎪- ⎪ ⎪⎝⎭111-⎛⎫ ⎪- ⎪ ⎪-⎝⎭cos sin sin cos 1θθθθ⎛⎫ ⎪- ⎪ ⎪⎝⎭cos sin sin cos 1θθθθ⎛⎫ ⎪- ⎪ ⎪-⎝⎭例子•例5:设为n 阶正交矩阵, 且则矩阵方程的解x = ___.要点:1. 因为A 是正交阵, 故A 可逆, 问题的解唯一; 2.又因A 是正交阵, 且故A 的第一列为-e 1, 从而.()ij n n A a ⨯=111,a =-1Ax e =1e -111,a =-11()A e e -=§9.5 目的与要求•掌握自伴随算子的概念及与对称矩阵的关系•熟练掌握对称矩阵的正交相似标准型•掌握对称矩阵相似/合同/正交相似的全系不变量•一些相关的计算和证明对称算子_1•定义:设V 是n 维欧氏空间,是V 的线性算子, 如果, 则称是自伴随算子(对称算子).•定理:设是n 维欧氏空间V 的线性算子, 则下列条件等价:(1)是对称算子;(2)(3) 在V 的任一组标准正交基下的矩阵是对称阵;(4) 在V 的某一组标准正交基下的矩阵是对称阵.*ϕϕ=ϕϕϕϕ((),)(,());ϕαβαϕβ=ϕϕ•定理:设是n 维欧氏空间V 上对称算子,则的特征值全为实数且属于不同特征值的特征向量互相正交.•定理’:设A ’=A ∈R n ×n ,则A 的特征值全为实数且属于不同特征值的特征向量互相正交(标准内积空间R n ×1).•引理:设是n 维欧氏空间V 上对称算子. U 是子空间. 则U ⊥也是子空间.•定理:设是n 维欧氏空间V 上对称算子, 则存在V 的一组标准正交基, 使在这组基下的矩阵是对角阵.•定理’:设A ’= A ∈R n ×n , 则存在正交阵T , 使T -1AT =T ’AT 为对角阵, 且对角线元素为A 的特征值.ϕϕϕϕ-ϕ-ϕϕ•定理:A , B 实对称矩阵, 则A , B 正交相似 A , B 的特征值相同.•注:特征值是实对称矩阵相似的全系不变量.•定理:设是n 元实二次型,是A 的所有特征值, 则必存在正交线性替换为正交阵, 使f 的正惯性指数等于A 的正特征值个数, f 的负惯性指数等于A 的负特征值个数, f 的秩等于A 的非零特征值的个数.22211122(,,)n n n f x x y y y λλλ=+++ 1(,,)n f x x X AX '= 1,,n λλ ,X TY T =。
第六章 线性空间与线性变换
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
2010数理经济学讲义(林致远)参考答案
2.17 证明:如果序列有极限,则极限是惟一的。 证明:设 x n x ,x y ,我们只需证 x y 即可。假如 x y ,则 ( x, y ) R 0 。
n
令 r R / 3 0 ,因为 x n x ,所以存在 N x 使得对任意的 n N x 都有 x n Br ( x ) 。 又因为 x y , 所以存在 N y ,使得对于任意的 n N y 都有 x n Br ( y ) 。而这与
其次,假设 S 包含于开球 Br ( x) ,则对任意的 y, z S ,根据三角不等式
(y, z ) (y, x) (x, z ) 2r
因此 d ( S ) 2r ,从而集合是有界的。
2.14 证明:集合是闭的,当且仅它包含其边界。 证明:首先,假设 S 是闭的,即
xy yz x (x y ) x (x z ) ( x x) y ( x x) z 0y 0z yz
(2)证明
1
x = y
( x) 1
( y )
1 1 ( )x ( )y
2.8 集合 S 1/ n n 1, 2,... 的边界是什么?
3
数
理
经
济
学
2 0 0 9
秋
季
学
期
解:对任意 n , 1/ n 的任意邻域既包含 S 中的点(如 1/ n ) ,也包含 S 外面的点(如
1/ n ) ,因此, S 中的每个点都是边界点。并且, 0 也是一个边界点。因此,
SFF
因为 F 是闭集,所以 S 是任意包含 S 的闭集的子集。 2.12 证明:集合 S 的内部等于集合 S 减去它的边界,即 int S S \ S 。 证明:任意的 x S 或者是内点或者是边界点。因此,S 的内部是集合 S 中所有的不是 边界点的点 x S
南京工业大学矩阵论ch1 线性空间讲义
第一章 线性空间线性空间是我们以前学习过的n 维向量空间的推广和抽象,它不仅在线性代数和矩阵的有关理论中占有重要的地位,而且它的理论和方法已经渗透到自然科学和工程技术的许多领域。
§1.1 线性空间的定义和性质为下面讨论需要,先引入数域的概念。
定义1 设P 是由一些复数组成的集合,如果它包含0与1,且P 中任意两个数的和、差、积、商(除数不为零)仍然属于P ,则称P 为一个数域。
显然,有理数集Q 、实数集R 和复数集C 都是数域,分别称为有理数域、实数域和复数域。
另外,数集},3{)3(Q b a b a Q ∈+=也是一个数域,但整数集不是数域。
我们知道n 维向量空间n R 就是全体n 维向量组成的集合,在其中定义了加法运算和实数与向量的数乘运算,并且这二种运算满足八条规律。
另外,在全体n m ⨯阶实矩阵组成的集合n m R ⨯中,也定义了矩阵的加法运算和实数与矩阵的数乘运算,且这二种运算满足八条规律。
还有很多这样的例子,从这些例子中可见,所考虑的对象虽然完全不同,但它们有一个共同点,即它们都具有两种运算:一种是两个元素之间的加法运算;另一种运算是数与元素之间的数乘运算,且满足八条规律。
我们撇开这些对象的具体含义,加以抽象化,得到线性空间的概念。
定义2 设P 是一个数域,V 是一个非空集合,如果1. V 中元素具有可加性 对任意V ∈βα,,在V 中总存在唯一元素γ与它们对应,γ称为α与β的和,记作βαγ+=,并且对任意V ∈γβα,,满足:(1)交换律 αββα+=+(2)结合律 )()(γβαγβα++=++(3)在V 中存在零元素0,使对任意V ∈α,都有αα=+0;(4)对任意V ∈α,存在V 中的元素β,使得0=+βα(β称为α的负元素,记为-α);2. V 中元素与数域P 中的数具有可乘性 对任意P k ∈和任意V ∈α,在V 中总存在唯一元素δ与之对应,δ称为数k 与α的数量乘法(简称数乘),记为αδk =,并且对任意P l k ∈,,任意V ∈α,满足(5)αα=1;(6)结合律 αα)()(kl l k =;(7)左分配律 αααl k l k +=+)(;(8)右分配律 βαβαk k k +=+)(;则称非空集合V 为数域P 上的一个线性空间。
第1章 线性空间与线性变换讲义
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线
第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。
(完整版)线性代数教案(正式打印版)
2023
PART 06
二次型与正定矩阵
REPORTING
二次型概念及标准形
二次型定义
二次型是n个变量的二次多项式,其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n}a_{ij}x_ix_j$,其中$a_{ij}$为常数,且$a_{ij} = a_{ ji}$。
行列式中如果有两行(列)元素成比例, 若行列式的某一列(行)的元素都是两
则此行列式等于零。
数之和,例如第j列的元素都是两数之
和:a1j=b1+c1,a2j=b2+c2,....,
anj=bn+cn,则此行列式等于两个行
列式之和。
矩阵概念及运算
矩阵的定义
由m×n个数排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。记作:A = (aij)m×n,这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数aij为(i,j)元的 矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
机器学习
在机器学习中,线性方程组常常 出现在最小二乘法和梯度下降法 等优化算法中,用于求解模型的
参数。
2023
PART 05
特征值与特征向量
REPORTING
特征值与特征向量定义及性质
定义:设A是n阶方阵, 如果存在数λ和非零n 维列向量x,使得 Ax=λx成立,则称λ是 A的特征值,x是A的 对应于特征值λ的特征 向量。
要作用。
向量空间与子空间
向量空间的定义 向量空间是一个集合,其中的元素称为向量,满足特定的 加法和数乘运算规则。向量空间必须包含零向量,且对加 法和数乘运算封闭。
简明线性代数讲义(郭志军,2015,8)
a11 a21 an1
a12 a22 an 2
a1n a2 n ann
N i1i2 in N j1 j2 jn
aij
nn
j1 j2
1
jn
N j1 j2
jn
a1 j1 a2 j2
anjn
i1i2
1
in
N i1i2
1
增加未知量的个数(二元、三元方程组) ;②增加未知量的 幂次(一元二次方程) 。韦达曾经这样地描述过“算术”与 “代数” :所谓“算术” ,即仅研究关于具体数的计算方法; 所谓“代数” ,即是研究关于事物的类或形式的运算方法— 字母表示数的思想方法是代数学发展史上的一个重大转折。 代数学的深化阶段即是高等代数阶段。十七世纪下半叶,从 研究线性方程组的解出发, 在莱布尼茨、 凯莱等人的努力下, 建立了以行列式、矩阵和线性方程组为主要内容的线性代 数,标志着高等代数理论体系的建立。由于计算机的飞速发 展与广泛应用,许多实际问题可以通过离散化的数值计算加 以解决;作为处理离散问题的线性代数,已成为科研与设计 等的必备数学基础。代数学的抽象化阶段—近世代数(抽象 代数)产生于十九世纪,其研究各种抽象的合理化的代数系 统,包括群论、环论、线性代数等许多分支。一般认为,其 形成的时间为 1926 年;从此代数学的研究对象由代数方程 根的计算与分布,进入到研究数字、文字和更一般元素的代 数运算规律和各种代数结构。
in
ai1 ,1ai2 ,2
ain ,n
1, 2,
i1i2 in j1 j2 jn
1
ai1 ai2 j2
这里, j1 j2 ain jn ,
jn 表示求和取遍
contents-beamer
录
()
10 / 11
目
第八章 二次型 § 8.1 定 义 和 基 本 性 质 § 8.2 复 二 次 型 与 实 二 次 型 § 8.3 正 定 二 次 型
录
()
111
目
第一章 一元多项式 § 1.1 定 义 和 基 本 性 质 § 1.2 多 项 式 的 整 除 性 § 1.3 最 大 公 因 式 § 1.4 因 式 分 解 § 1.5 重 因 式 § 1.6 多 项 式 函 数
录
§ 1.7 复 系 数 多 项 式 和 实 系 数 多 项 式 § 1.8 有 理 系 数 多 项 式 § 1.9 部 分分 式
高 等 代 数 讲 义
(详 细 版)
()
清华大学出版社
1 / 11
目
预备知识 第一章 一元多项式 第二章 行列式 第三章 线性方程组 第四章 矩 阵 第五章 线性空间 第六章 线性映射 第七章 欧氏空间 第八章 二次型
()
录
2 / 11
目
预备知识 § 0.1 常 用 概 念 · 方法 和 符 号 § 0.2 整 数 的 整 除 性 § 0.3 数 环 和 数 域
录
()
7 / 11
目
第五章 线性空间 § 5.1 定 义 和 基 本 性 质 § 5.2 线 性 相 关 性 § 5.3 向 量 组 的 秩 § 5.4 基 · 维 数 和 坐 标 § 5.5 子 空 间 § 5.6 子 空 间 的 交 与 和 § 5.7 线 性 空 间 的 同 构
录
()
8 / 11
目
第六章 线性映射 § 6.1 定 义 和 基 本 性 质 § 6.2 线 性 映 射 的 运 算 § 6.3 线 性 映 射 的 矩 阵 表 示 § 6.4 不变 子 空 间 § 6.5 特 征值 和 特 征 向 量 § 6.6 可 对 角 化 的 线 性 变 换
高等代数 讲义 第六章
则称σ是M到M´的一个单射(或称σ为1—1的);
3)若σ既是单射,又是满射,则称σ为双射, (或称σ为 1—1对应)
§6.1 集合 映射
☆集合的表示方法一般有两种:描述法、列举法 描述法:给出这个集合的元素所具有的特征性质.
M={x | x具有性质P} 列举法:把构成集合的全部元素一一列举出来.
M={a1,a2,…,an}
例1 M = {( x, y) x2 + y2 = 4, x, y ∈ R} 例2 N= {0,1, 2, 3,LL}, 2Z= {0, ±2,±4,±6,LL} 例3 M = { x x2 − 1 = 0, x ∈ R} = {−1,1}
A U B ⊆ B. 又因 B ⊆ A U B,∴ A U B = B.
§6.1 集合 映射
二、映射
1、定义
设M、M´是给定的两个非空集合,如果有 一个对 应法则σ,通过这个法则σ对于M中的每一个元素a, 都有M´中一个唯一确定的元素a´与它对应, 则称 σ为
M到M´的一个映射,记作 :σ : M → M'或 M ⎯σ⎯→M' 称 a´为 a 在映射σ下的象,而 a´ 称为a在映射σ下的 原象,记作σ(a)=a´ 或 σ : a a a′.
又对∀a ∈ R+,存在
x
=
log
a 2
∈
R
,使
σ
(log
a 2
)
=
2log
a 2
=a
大学数学(高数微积分)第七章线性变换第三节(课堂讲义)
1. 定义
定义 7 设 1 , 2 , … , n 是数域 P
空间 上V 的n一维组基线,性A 是 V 中的一个线性变换.
基
向量的像可以被基线性表出:
A 1 a111 a21 2 an1 n ,
A
2
a121 a22 2 an2 n
3) 因为
( k 1 , k 2 , … , k n ) = ( 1 , 2 , … , n )kE . 所以数乘变换 K 在任何一组基下都对应于数量矩 阵kE . 由此可知,数量乘积 kA 对应于矩阵的数 量乘积 kA .
4) 单位变换 E 对应于单位矩阵,因之等式
与等式
A B = BA = E
B = X-1AX , 就说 A 相似于 B,记作 A ~ B .
2. 性质
相似是矩阵之间的一种关系,这种关系具有下
面三个性质:
1) 反身性:A ~ A .
这是因为 A = E-1AE .
2) 对称性:如果 A ~ B,那么 B ~ A .
如果 A ~ B,那么有 X 使 B = X-1AX .
令 Y=X-1
得
A = XBX-1 .
所以
An = A A A = (XBX-1) (XBX-1) … (XBX-1)
n个
n个
= X B n X -1
11 4 301 6 0n11 4 31
域 P 上的 n 维线性空间 V 的线性变换到数域 P 上
的 n n 矩阵的一个映射.
前面的
说明这
个映射是单射,
说明这个映射是满射.
换
句话说,我们在这二者之间建立了一个双射.
这个
对应的重要性表现在它保持运算,即有
线性代数第12讲
14 2010-12-1
定理2中的W称为由V的非空子集S生成的V的 子空间, 或者说S生成W, 当S为有限子集 {α1,α2,...,αm}时, 记W=L(α1,α2,...,αm), 并称W是 由向量组α1,α2,...,αm生成的子空间 例如, 齐次线性方程组AX=0的解空间是由它 的基础解系生成的子空间; R3中任一个过原点 的平面上的全体向量所构成的子空间, 由由该 平面上任意两个线性无关的向量生成的子空 间.
4 2010-12-1
定理6 若列向量X,Y∈Rn在n阶正交矩阵A作用 下变换为AX, AY∈Rn, 则向量的内积与长度及 向量间的夹角都保持不变, 即 (AX,AY)=(X,Y), |AX|=|X|, {AX,AY}={X,Y}. 证 (AX,AY)=(AX)T(AY)=XT(ATA)Y =XTY=(X,Y). 当Y=X时, 有(AX,AX)=(X,X), 即|AX|=|X|, 因此 ( AX , AY) ( X ,Y) cos〈 AX , AY〉 = = = cos〈 X ,Y〉, | AX || AY | | X || Y | 所以AX与AY夹角与X,Y的夹角相同.
17 2010-12-1
由于线性空间关于两种运算和Fn关于其线性 运算一样满足相同的8条规则和简单的性质, 因此, Fn中的向量的线性相关性的定义及有关 的基本结论也都适用于一般的线性空间V. 对 此, 不再重复叙述, 但要注意, 那里的向量 α,β,γ, ..., 在这里是V中的元素, 那里的零向量 是这里的V的零元素.
2 2010-12-1
于是 T T T T α1 α1 α1 α2 L α1 αn α1 αTα αTα L αTα αT T 2 2 2 n A A = 2 [α1,α2 ,L,αn ] = 2 1
江苏省天一中学学年高二数学新课系列讲义:空间向量01空间向量及其线性运算(无答案)
01空间向量及其线性运算编写:王凯[目标要求]1、类比平面向量了解空间向量的概念2、掌握空间向量的加、减、数乘及其运算律3、掌握共线向量的定义及共线向量定理 [重点难点]重点:空间向量的加、减、数乘及其运算律和共线向量定理 难点:找到平面图形处理空间向量运算 [典例剖析] 例1、(1)在空间四边形ABCD 中,E 为AB 中点,CF=2DF ,则: _____AC CB BD ++=u u u r u u u r u u u r②_____AF BF AC --=u u u r u u u r u u u r③12_____23AB BC CD ++=u u ur u u u r u u u r(2)已知2334,385x y a b c x y a b c +=-++--=-+r u r r r r r u r r r r ,则用,,a b c r r r 表示,x y r u r,得x =r,y =u r(3)设有四边形ABCD ,O 为空间一点,且AO OB DO OC +=+u u u r u u u r u u u r u u u r, 则四边形ABCD 的形状为(4)将⊿ABC 按向量1AA uuu r 平移得到⊿111A B C ,设1,,CA a CB b CC c ===u u u r r u u u r r u u u u r r,则1A B uuu r用,,a b c r r r 可表示为例2、如图所示,设,,AB b AC c AD d ===u u u r r u u u r r u u u r u r ,试用向量,,b c d r r u r 表示,,BC CD BD u u u r u u u r u u u r ,以及面BCD 上的中线DM u u u u r和向量AQ u u u r ,其中Q 是面BCD 的重心.例3、如图所示,ABCD 、ABEF 都是平行四边形,且不共面,M 、N 分别是AC 、BF 的中点.判断CE →与MN →是否共线.M cd b QD B A例4、证明:不共线的,,OA OB OC u u u r u u u r u u u r的终点共线的充要条件是存在实数,m n ,且1m n +=,使得OC mOA nOB =+u u u r u u u r u u u r .[学后反思]1、在空间向量中, 且 的向量叫做相等向量; 叫做共线向量(或)平行向量;2、共线向量定理: .[课外作业] 班级:_________姓名:____________未订正及错误订正题号:_________1、在长方体1111ABCD A B C D -中,下列关于1AC u u u u r的表述中错误..的序号是 ____ (1)11111AA A B A D ++u u u r u u u u r u u u u r (2)111AB DD D C ++u u u r u u u u r u u u u u r (3)111AD CC D C ++u u u r u u u u r u u u u u r (4) 11111()2AB CD AC ++u u u uu r u u u u r u u u u r 2、在正方体1AC ,,E F 分别为1111A B C D 和11CDD C 的中心, (1)1AE mAB nAD AA =++u u u r u u u r u u u r u u u r,则___,____m n == (2)1AF mAB AD nAA =++u u u r u u u r u u u r u u u r,则___,____m n ==3、在三棱锥OABC 中,E 、F 分别为AC 、AB 的中点,,,OA a OB b OC c ===u u u r r u u u r r u u u r r,则下列命题:(1)AB a b =+u u u r r r (2)1()2BE b a c =++u u u r r r r(3)1()2CF a b c =+-u u u r r r r (4)1122AF a b =-+u u u r r r ,其中正确的命题序号为 .4、在空间四边形ABCD 中,G 为CD 的中点, 则1()2AB BD BC ++=u u u r u u u r u u u r5、若ABCD Y 的对角线AC 、BD 交于O ,P 为空间一点,则PA PB PC PD +++=u u u r u u u r u u u r u u u r6、在平行六面体1AC 中,M 为AC 、BD 的交点,若11111,,A B a A D b A A c ===u u u u r r u u u u r r u u u r r, 则1B M =u u u u r7、直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===u u u r r u u u r r u u u u r r ,则1A B uuu r=8、在空间四边形ABCD 中,E 、F 分别为AD 、BC 的中点,若,AB a DC b ==u u u r r u u u r r ,则______EF =u u u r9、在平行六面体1AC 中, 则下列命题:(1)11AC AD DC CC =++u u u u r u u u r u u u r u u u u r (2)11AC AB AD AA =++u u u u r u u u r u u u r u u u r(3)11AC AC CD DC =++u u u u r u u u r u u u r u u u u r (4)111AC AB B D AA =++u u u u r u u u r u u u u r u u u r,其中正确的命题序号为10、在平行六面体1AC 中,若1,,AB a AD b AA c ===u u u r r u u u r r u u u r r,E 、F 分别为1,AD BD 的中点,(1)用,,a b c r r r 表示1,D B EF u u u u r u u u r; (2)化简:11112AB BB BC C D D E ++++u u u r u u u r u u u r u u u u u r u u u u r .11、在三棱锥OABC 中,,,OA a OB b OC c ===u u u r r u u u r r u u u r r,M 是三角形ABC 的重心,CM 交AB 于D ,求:(1)OD u u u r ;(2)OM u u u u r。
第十章 双线性函数
第十章 双线性函数§10.1 线性函数1.设V 是数域F 上的一个线性空间, f 是V 到F 的一个映射, 若f 满足:(1)()()();(2)()(),f f f f k kf αβαβαα+=+=式中,αβ是V 中任意元素, k 是F 中任意数, 则称f 为V 上的一个线性函数.2.简单性质:设f 是V 上的线性函数 (1) (0)0,()().f f f αα=−=−(2)11221122()()()()t t t t f k k k k f k f k f αααααα+++=++L L例1 对数域F 上的任意方阵()ijn nA a ×=, 我们已定义1122()nn tr A a a a =+++L为A 的对角元之和, 称为A 的迹. 容易验证映射 :,()n n tr A tr A ×→→F F满足条件:(1)()()(),,;(2)()(),,.n n n ntr A B tr A tr B A B tr kA k tr A A k ××+=+∀∈=∀∈∈ F F F因此tr 是n n×F的线性函数.例2 设[]V F x =, a 是F 中一个取定的数. 定义[]F x 上的函数a L 为: (())(),()[],a L f x f a f x F x =∈即(())a L f x 为()f x 在a 点的值, (())a L f x 是[]F x 上的线性函数.如果V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL . 对V 上任意线性函数f 及V 中任意向量α:1122n n x x x αεεε=+++L都有1122()()()()n n f x f x f x f αεεε=+++L因此, ()f α由12(),(),,()n f f f εεεL 的值唯一确定. 反之, 任给F 中n 个数12,,,n a a a L , 用下式定义V 上一个函数f :11()n ni ii ii i f x a x ε===∑∑这是一个线性函数, 而且(),1,2,,i i f a i n ε==L我们有:3. 设V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL , 对于任给F 中n 个数12,,,n a a a L , 存在唯一的V 上线性函数f 使(),1,2,,i i f a i n ε==L .§10.2 对偶空间1.对偶空间定义设V 是数域F 上的n 维线性空间. V 上全体线性函数组成的集合记为*V .*V 上定义加法与数乘:()()()(),f g f g V αααα+=+∈.()()(()),.kf k f V ααα=∈则,f g kf +都是线性函数, 故*V 成为F 上的线性空间. *V 称为V 的对偶空间3.对偶基取定V 的一组基12,,,n εεεL ,定义V 上的n 个线性函数(1,2,,)i f i n =L 如下: ()i j ij f εδ= 则12,,,n f f f L 是*V 中线性无关的向量组, 构成*V 的一组基. 我们称之为12,,,n εεεL 的对偶基.4.对偶空间的维数*dim dim V V n ==.5.对偶基之间的关系 设12,,,n εεεL 及12,,,n ηηηL 是线性空间V 的两组基, 它们的对偶基分别是12,,,n f f f L 及12,,,n g g g L . 再设由12,,,n εεεL 到12,,,n ηηηL 的过渡矩阵为A , 那么由12,,,n f f f L 到12,,,n g g g L 的过渡矩阵为1()T A −.6.V 到**V 的同构(1)取定V 中一个向量x , 定义*V 的一个函数**x 如下: ***()(),x f f x f V =∈.(2)函数**x 具有下列性质 z****x V ∈z 若**()0x f =对一切x V ∈成立, 则0f =;z 若**()0x f =对一切*f V ∈成立的充分必要条件是0x =. (3)同构V 是一个线性空间, **V 是V 的对偶空间的对偶空间. V 到**V 的映射 **x x → 是一个同构映射.如果把V 与**V 在这个同构下等同起来, 则V 可以看成*V 的对偶空间. 这样V 与**V 具有同等的地位, 它们互为对偶.§10.3 双线性函数一、 双线性函数的定义与矩阵1.定义设V 是数域F 上一个线性空间, (,)f αβ是V 上一个二元函数, 即将V 中任意两个向量,αβ对应于F 中一个数(,)f αβ, 并且满足如下条件:1122112211221122(1)(,)(,)(,);(2)(,)(,)(,)f k k k f k f f k k k f k f αββαβαβααβαβαβ+=++=+这里121212,,,,,;,V k k αααβββ∈∈F . 我们称(,)f αβ是V 上一个双线性函数.注:将V 中一个变元固定时的映射 :,(,)f V f αβαβ→a F 和:,(,)V αϕβϕβα→a F都是V 上的线性函数, 就是说,f ααϕ都是V 的对偶空间*V 中的向量.2. 定理(双线性函数的形式)设在数域F 上的线性空间V 上定义了双线性函数f ,12,,,n εεεL 是V 的任意一组基.则任意,V αβ∈在f 下的值(,)f αβ可以由,αβ在该基下的坐标,X Y 按下列公式计算: (,)Tf X AY αβ=,其中()ij n n A a ×=由(,)ij i j a f εε=组成, 称为双线性函数f 在12,,,n εεεL 下的度量矩阵.3.简单性质设,f g 在12,,,n εεεL 下的度量矩阵分别是,A B , 则 (1)f g +在12,,,n εεεL 下的矩阵分别是A B +; (2)kf 在12,,,n εεεL 下的矩阵分别是kA 。
线性代数总复习讲义PPT课件
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
线性代数讲义 (18)
a b c d 0,
a b c d 0,
2a b c 3d 0.
解之可得: x (2 2 ,0, 1 , 3 ) 13 26 26
或
x (2 2 ,0, 1 , 3 ).
13 26 26
e2
b2 b2
1 0,2,1,3T
14
0,
2 , 14
1 , 14
3 14
T
e3
b3 b3
1 1,1,2,0T
6
1, 6
1 6
,
2 6
,0
T
解毕
例3
已知a1
1 1 1
,
求一组非零
向量a2
,
a3
,
使
a1
,
a
2
,
a 两两正交.
3 解 a2 ,a3应满足方程a1T x 0,即
x1 x2 x3 0.
说明
1 、 nn 4维向量的内积是3维向量数量积
的推广,但是没有3维向量直观的几何意义.
2、内积是向量的一种运算,如果x, y都是列 向量,内积可用矩阵记号表示为 :
x, y xT y
内积的运算性质
其中 x, y, z为n维向量,为实数 :
(1) x, y y, x yT x;
它的基础解系为
1 0
1
0 , 1
2
1 . 1
把基础解系正交化,即为所求.亦即取
a ,
2
1
a3
2
1
, ,
2
1
.
11
其中 , 1, , 2,于是得
12
11
1
0 1 1
1 1
a2 0 , 1
高中数学第1部分第3章3.1空间向量及其运算3.1.1空间向量及其线性运算讲义含解析苏教版选修2_1
3.1.1 空间向量及其线性运算[对应学生用书P48]春节期间,我国南方遭受了寒潮袭击,大风降温天气频发,已知某人某天骑车以a km/h 的速度向东行驶,感到风是从正北方向吹来.问题:某人骑车的速度和风速是空间向量吗?提示:是.1.空间向量(1)定义:在空间中,既有大小又有方向的量,叫做空间向量.(2)表示方法:空间向量用有向线段表示,并且空间任意两个向量都可以用同一平面内的两条有向线段表示.2.相等向量凡是方向相同且长度相等的有向线段都表示同一向量或者相等向量.问题1:如何进行平面向量的加法、减法及数乘运算.提示:利用平行四边形法则、三角形法则等.问题2:平面向量的加法及数乘向量满足哪些运算律?提示:交换律、结合律、分配律.1.空间向量的加减运算和数乘运算=+=a+b,=-=a-b,=λa(λ∈R).2.空间向量的加法和数乘运算满足如下运算律(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)分配律:λ(a+b)=λa+λb(λ∈R).空间中有向量a,b,c(均为非零向量).问题1:向量a与b共线的条件是什么?提示:存在惟一实数λ,使a=λb.问题2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定.1.共线向量或平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.向量a与b平行,记作a∥b.规定,零向量与任何向量共线.2.共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.1.空间向量的加法满足平行四边形和三角形法则.2.空间向量的数乘运算是线性运算的一种,结果仍是一个向量,方向取决于λ的正负,模为原向量模的|λ|倍.3.两向量共线,两向量所在的直线不一定共线,可能平行.[对应学生用书P49][例1] 下列四个命题:(1)所有的单位向量都相等;(2)方向相反的两个向量是相反向量;(3)若a、b满足|a|>|b|,且a、b同向,则a>b;(4)零向量没有方向.其中不正确的命题的序号为________.[思路点拨] 根据空间向量的概念进行逐一判断,得出结论.[精解详析] 对于(1):单位向量是指长度等于1个单位长度的向量,而其方向不一定相同,它不符合相等向量的定义,故(1)错;对于(2):长度相等且方向相反的两个向量是相反向量,故(2)错;对于(3):向量是不能比较大小的,故不正确;对于(4):零向量有方向,只是没有确定的方向,故(4)错.[答案] (1)(2)(3)(4)[一点通]1.因为空间任何两个向量都可以平移到同一平面上,故空间的两个向量间的关系都可以转化为平面向量来解决.2.对于有关向量基本概念的考查,可以从概念的特征入手,也可以通过举出反例而排除或否定相关命题。
大学数学高数微积分第七章线性变换第四节课件课堂讲义
域 P 中的一个根,即 |0E - A | = 0,那么齐次线性
方程组 ( 0E A ) X = 0 就有非零解.
这时,如果
(x01 , x02 , … , x0n ) 是方程组 ( 0E - A ) X = 0 的一
个非零解,那么非零向量
= x011 + x022 + … + x0nn 满足 A = 0 ,即 0 是线性变换 A 的一个特征值
由定义可知,
每个非零向量都是属于数乘变换 K 的特征向量.
例 2 设线性变换 A 在基1 , 2 , 3下的矩阵是
1 2 2 A 2 1 2,
2 2 1
求 A 的特征值与特征向量.
解
单击这里求特征值 A 的特征多项式为
1 2 2 EA 2 1 2
2 2 1
(1)2(5).
所以,A 的特征值为
0
1
0 1
0 0
|
E
D|
n
.
0 0 0 1
0
0
0
因此,D 的特征值只有 0 .
通过解相应的齐次线性
方程组知道,属于特征值 0 的线性无关的特征向量
组只能是任一非零常数.
这表明微商为零的多项式
只能是零或非零的常数.
例 4 平面上全体向量构成实数域上一个二维
线性空间,第一节 下的矩阵为
例 1 平面上的向量构成实数域上的二维线性 空间. 把平面围绕坐标原点按反时针方向旋转 角 就 是 一 个 线 性 变 换 , 我 们 用 I 表 示 . 如 果 平 面 上 一 个 向 量 在 直 角 坐 标 系 下 的 坐 标 是 ( x , y ), 那 么
像 I ( ) 的 坐 标 , 即 旋 转 角 之 后 的 坐 标 ( x , y ) 是 按 照 公 式