数集,确界原理共26页文档

合集下载

数集和确界原理DOC

数集和确界原理DOC

§2 数集和确界原理教学目的与要求:使学生正确理解实数集合的定义及各种表示方法,掌握实数集合有界,有上下确界的定义,理解确界原理。

教学重点,难点:集合有界,有上下确界的定义, 确界原理的证明及应用。

教学内容:本节内容分两部分介绍,我们首先定义实数集R 中的两类重要数集—区间与邻域,然后讨论有界集并给出确界定义和确界原理。

一 区间与邻域1、区间的定义 设a 、b ∈R 且a <b.开区间(a, b )、闭区间 [a, b]、半开半闭区间([]b a b a ,),和、有限区间的定义。

几何意义。

区间[)∞+,a 、(]a ,∞-、),(∞+a 、()a ,∞-、R =∞+-∞),(、无限区间的定义。

有限区间和无限区间统称为区间。

满足绝对值不等式δ<-a x 的全体实数x 的集合称为2、邻域的定义 设0,>∈δR a 。

点a 的δ邻域 );(δa U 或)(a U 的定义点a 的空心δ邻域()δ;a U 或)(a U 的定义 ()δδ;);(a U a U 与 的差别点a 的δ右邻域()δ;a U +或)(a U + 点a 的δ左邻域()δ;a U -或)(a U -点a 的空心δ左、右邻域()a U- 、()a U - 等的定义 ∞邻域()∞U 、+∞邻域()∞+U 、∞-邻域()∞-U 。

二 有界集·确界原理1、有阶集的定义定义1 设S 为R 中的一个数集。

若存在数M (L ),使得对一切,S x ∈都有(),L x M x ≥≤则称S 为有上界(下界)的数集,数M (L )称为S 的一个上界(下界)。

若数集S 既有上界又有下界,则称S 为有界集。

若S 不是有界集,则称S 为无界集。

注:介绍有界集的几种等价定义,正面叙述无界集的概念。

例1 证明数集{}为正整数n n N =+有下界而无上界。

分析证例 任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集。

数集·确界原理

数集·确界原理

设 2)不成立,则 0 0, 使得 x E ,均有 x M 0 ,与 M 是上确界矛盾.
充分性, 用反证法.设 M 不是 E 的上确界,即 M 是上界,但 M M .令 M M 0 ,
x E , 由 2) , 使得 x M M , 与M 是E
例4 设 A, B为非空数集,满足: x A, y B有x y.
证: 由假设,数集B中任一数 y 都是数集A的上界,
A中任一数 x 都是B的下界, 故有确界原理知,数集A有上确界,数集B有下确界.
y B, y是数集A的一个上界,而由上确界的定义知
试证明:
x inf A


x inf B. x min inf A , inf B .
min inf A , inf B 是数集 S 的下界,
inf S min inf A , inf B .
3.数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.
(a, b) (a, b 为有限数) a, b 、 、 邻域等都是有界数集; 集合 E y y sin x, x ( , )也是有界数集.
( , ) , ( , 0 ) , ( 0 , ) 等都是无界数集,
1 例1 证明集合 E y y , x ( 0 , 1 ) x 是无界数集. 1 (0, 1) , 证明: 对任意的M 0,x M 1 1
supA 是数集A的最小上界, 故有 supA y.
而此式又表明数
supA 是数集B的一个下界,
故由下确界的定义证得
sup A inf B.
例5
A 和 B 为非空数集, S A B.

1-02-数集与确界原理

1-02-数集与确界原理
o a
( −∞ , b ) = { x x < b}
无限区间
x o
b
x
区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 设a与δ是两个实数 , 且δ > 0. .邻域:
数集{ x x − a < δ }称为点a的δ邻域 ,
中的一个数集, 满足: 定义 2 设 S 是 R 中的一个数集,若数ξ 满足: 的下界) (1)对一切 x ∈ S , 有 x ≥ ξ (即ξ 是 S 的下界) ) ; 存在 (2) ) 对任何β>ξ ,存在 x0 ∈ S , 使得 x0 < β (即ξ 是 S 的下界中最大的一个)则称数 ξ 为数集 S 的下 的下界中最大的一个) , 确界, 确界,记作 ξ = inf S .
∴sup S ≤ max{sup A,sup B} ; 同理又有sup B ≤ sup S. ∴sup S ≥ max{sup A,sup B} ; ∴sup S = max{sup A,sup B} . 从而有x ≤ max{sup A,sup B} , 又: ∀x ∈ A, x ∈ S ⇒ x ≤ sup S ⇒sup A ≤ sup S,
数集S有上界 数集 有上界 ⇔ ∃M ∈ R, ∀x ∈ S有x ≤ M. 数集S无上界 数集 无上界 ⇔ ∀M ∈ R, ∃x0 ∈ S有x0 > M. 数集S有下界 数集 有下界 数集S无下界 数集 无下界
[ a , b ] , ( a , b ),(a , b 为有限数)是有界数集 为有限数)是有界数集;
+
Β为非空数集 满足: 为非空数集, 例4 设 Α, Β为非空数集,满足: ∀x ∈ A, ∀y ∈ B有 ≤ y x 证明: 有上确界, 有下确界,且 证明:数集 A有上确界 数集 有下确界 且sup A ≤ inf B 有上确界 数集B有下确界 由假设,数集 数集B中任一数 都是数集A的上界 的上界, 证: 由假设 数集 中任一数 y 都是数集 的上界 A中任一数 x 都是 的下界 中任一数 都是B的下界 的下界, 故由确界原理知,数集A有上确界 数集 有下确界 有上确界,数集 有下确界. 故由确界原理知 数集 有上确界 数集B有下确界 确界原理 是数集A的一个上界 的一个上界,而由上确界的定义知 ∀y∈B, y是数集 的一个上界 而由上确界的定义知 是数集A的最小上界, supA 是数集 的最小上界, 故有 supA ≤ y 是数集Β的一个下界, 而此式又表明数 supA 是数集Β的一个下界, 故由下确界的定义证得

数集,确界原理

数集,确界原理
o
a
x
(, b) { x x b}
o
b
x
(, ) { x x < }
x
2、邻域
定义1 设a与 是两个实数 , 且 0. 数集
{ x x a }称为点a 的δ邻域 , 点 a 叫做这邻
域中心, 叫做这邻域的半径 . 记作
U (a, ) { x a x a }.
存在某个正整数n0 N+ , 使得n0 M .
事实上,对任何正数M,取 n0 M 1,
则n0 N , 且n0 M , 这就证明了N 无上界.
1 例 2 证明集合E y / y , x (0, 1) 是无界集. x
证明
对任何M 0,
0

a

a
a
x

a 的 左邻域 和 点 a 的空心 左邻域
U (a, ) { x a x a } (a , a]
U (a, ) { x a x a } (a , a)
0
邻域
U ( ) x | x | M , U ( ) x x M , U ( ) x x M
即 又是S 的最大下界, 则 称 数 为数集 S 的
下确界, 记为 inf S .

x0

S
(ii) 对任意 0, 存在x0 S , 使得x0 即 是 S 的最大下界.
的确界. 例3 讨论数集 S {x | x为(0, 1)中的有理数}
supS = 1
上确界, 记为 sup S . S

第一章2数集 确界原理

第一章2数集 确界原理

1 2
正无穷大 负无穷大
王利梅 数学分析
设 a ∈ R, δ > 0, 满足绝对值不等式 |x − a| < δ 的全体 x 的集合 称为点 a 的 δ 领域, 记为 U (a, δ ), 或简记为 U (a), 即有 U (a, δ ) = {x | |x − a| < δ } = (a − δ, a + δ ). 点 a 的空心 δ 领域定义为 U 0 (a, δ ) = {x | 0 < |x − a| < δ } = (a − δ, a + δ ) \ {a} = U 0 (a). 点 a 的 δ 右领域为 U+ (a, δ ) = [a, a + δ ) = U+ (a). 点 a 的 δ 左领域定义为 U− (a, δ ) = (a − δ, a] = U− (a). 点 a = {x | x 为区间(0, 1)内的有理数},试按上, 下确界的定义验 证 sup S = 1, inf S = 0. . 证明. 先证明 sup S = 1. (i) 对 ∀ x ∈ S , 显然有 x ≤ 1. 即 1 是 S 的上界. (ii) 对 ∀ α < 1, 若 α ≤ 0, 则任取 x0 ∈ S , 有 x0 > α; 若 α > 0, 则 由有理数在实数中的稠密性知, 在 (α, 1) 内必有有理数 x0 , 即 ∃ x0 ∈ S 使得 x0 > α. 即 η 是 S 的最小上界. 类似地可验证 inf S = 0. 例:闭区间 [0, 1] 的上, 下确界分别为 1 和 0. 开区间 (0, 1) 的上, 下确界分别为 1 和 0. 正整数集有下确界 1, 而没有上确界.
王利梅
数学分析
王利梅

1_2数集确界原理

1_2数集确界原理

例5 设A、B 为非空有界数集,S A B. 证明: (i) sup S = max{sup A, sup B}; (ii) inf S = min{inf A, inf B}; 证: (ii)由题设易知数集A , B及S的确界都存在。
inf A x or inf B x 从而有 min inf A, inf B x, 即 min inf A, inf B 是 S的
上页 下页 返回 结束
EX2 设A、B 为非空有界数集,T A B. 证明: sup T ≤ min{sup A, sup B}; 证: 由题设易知数集A , B及T的确界都存在。不妨设
min sup A, sup B sup A
由上确界定义知 0, x0 T , s.t. x0 sup T .
y B, y是A的一个上界,从而sup A存在; x A, x是B的一个下界,从而inf B存在。
再证sup A ≤ inf B.
y B, y是A的一个上界,∴sup A≤y 。
由此可知sup A 是 B的一个下界,从而由下确界定义又有
sup A inf B
上页 下页 返回 结束
上页 下页 返| 0 x a a, a 点a的δ左邻域: U (a; ) x | x a 0 a , a
∞邻域:
U () x | x | M , M为充分大的正数
x b 称为半开区间, 记作 [a , b)
称为半开区间, 记作 (a , b]
上页 下页 返回
有 限 区 间
结束
[a ,) { x a x }
o
a
x
( , b) { x x b}

数集确界原理

数集确界原理

作业 :
P9: 1, 2, 3, 4, 5.
§2 数集.确界原理
1.区间和邻域 有限区间 数集{x|a<x<b}称为开区间, 记为(a, b), 即 (a, b){x|a<x<b}. [a, b]{x|axb}——闭区间.
[a, b){x|ax<b}——半开区间, (a, b]{x|a<xb}——半开区间. 上述区间都是有限区间, 其中 a和b称为区间的端点, b-a 称为区 间的长度.
S
确界原理 设S为非空数集,若S有上界,则S必有上确界;若S有下界, 则S必有下确界. 例3 设 A, B为非空数集,满足: x A, y B有x y. 证明数集 A有上确界, 数集B有下确界,且
sup A inf B.
证: 由假设,数集B中任一数 y 都是数集A的上界, A中任一数 x 都是B的下界, 故有确界原理知,数集A有上确界,数集B有下确界.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b, 则e为正数且 a b e , 这与假设 a < b e矛盾.从而必有 a b.
3.小结 (1), 两个实数的大小关系; (2), 实数的性质; (3), 区间和邻域的概念; (4), 确界原理.
直积(笛卡儿乘积) 设A、B是任意两个集合, 则有序对集合 AB{(x, y)|xA且yB} 称为集合A与集合B的直积. 例如, RR{(x, y)| xR且yR }即为xOy面上全体点 的集合, RR常记作R2.
3.实数集 两个实数的大小关系 • 定义1
给定两个非负实数 x a0 .a1a2 L an L, y b0 .b1b2 Lbn L, 其中a0 , b0为非负整数, ak , bk (k 1,2,L)为整数, 0 ak 9,0 bk 9. 若有ak bk , k 1,2,L, 则称x与y相等,记为x y; 若a0 > b0或存在非负整数l , 使得ak bk (k 1,2Ll )而al 1 > bl 1 则称x大于y或y小于x,分别记为x > y或y < x.

数集确界原理

数集确界原理
前页 后页 返回
一般地用归纳法可证明存在 nk ∈ N 及
S k = { x | x ∈ S + , x = n0 .n1 L nk ak +1 L},
则 Sk ≠ ∅ , ∃ xk ∈ S k , xk > n0 .n1 L nk ; ∀x ∈ S ,
1 x < n0 .n1 L nk + k . 10 LL
∀n, ∃ x = a0 .a1 L an bn+1 L ∈ S + , 由 于 x 由 正 规 小 数 表示, 必有 k > 0, 使 bn+ k > 0. 由于
xn+ k = a0 .a1 Lanan+1 Lan+ k ≥ a0 .a1 Lanbn+1 Lbn+ k ,
前页 后页 返回
因此 an+1 , an+ 2 ,L an+ k 不全为 0, 即η = a0 .a1a2 L
∃ k , 使 a0 .a1a2 L ak = n0 .n1n2 L nk , 而 ak +1 > nk +1 ,
1 此与 ∀x ∈ S ,x < n0 .n1 L nk + k 矛盾. 10
(ii) ∀α < η , 设 α = α 0 .α1 Lα k L . 则 ∃ k , 使 α 0 .α1 Lα k = n0 .n1 L nk, α k +1 < nk +1 . 而
前页 后页 返回
由定义∃ xk +1 ∈ Sk +1 , xk +1 > n0 .n1 L nk +1 . 则
xk +1 > n0 .n1 L nk +1 ≥ α 0 .α1 Lα k +1 L = α .

数学分析1.2数集与确界原理

数学分析1.2数集与确界原理

第一章实数集与函数2 数集·确界原理一、区间与邻域设a、b∈R,且a<b,我们称数集{x|a<x<b}为开区间,记作(a,b);数集{x|a≤x≤b}称为闭区间,记作[a,b];数集{x|a≤x<b}和{x|a<x≤b}称为半开半闭区间,记作[a,b)和(a,b],它们统称为有限区间。

(−∞,a]={x|x≤a},[a,+∞)={x|x≥a},(−∞,a)={x|x<a},(a,+∞)={x|x>a},(−∞, +∞) ={x|−∞<x<+∞}=R;它们统称为无限区间。

设a∈R,δ>0。

满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a;δ),或简单地写作U(a),即有U(a;δ)={ x||x-a|<δ}=(a-δ,a+δ)点a的空心δ邻域定义为U⁰(a;δ)={ x|0<|x-a|<δ}也简单地记作U⁰ (a).点a的δ右邻域U+(a;δ)=[a, a+δ),简记为U+(a);点a的δ左邻域U-(a;δ)= (a-δ, a],简记为U-(a);去除点a后的点a的空心δ左、右邻域分别简记为U⁰+(a)和U⁰-(a).∞邻域U(∞)= { x||x|>M},其中M为充分大的正数(下同);+∞邻域U(+∞)= { x|x>M},-∞邻域U(-∞)= { x|x<-M}.二、有界集·确界原理定义1:设S为R中的一个数集。

若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。

若数集S既有上界又有下界,则称S为有界集。

若S不是有界集,则称S为无界集。

例1:证明数集N+={n|n为正整数}有下界而无上界。

证:显然,任何一个不大于1的实数都是的N+下界,故N+为有下界的数集;∀M>0,取n0=[M]+1,则n0∈N+,且n0> M,故N+为无上界的数集。

§2.数集.确界原理.

§2.数集.确界原理.
5
§2.数集.确界原理 一. 区间与邻域 2.邻域(neighborhood)
(5) 邻域,邻域与 邻域 : 设M是一个充分大的正数 ,则
邻域:U: x R x M ,M M ,;
邻域:U: xR x M ,M ; 邻域:U : xR x M M,.
6
§2.数集.确界原理 一. 区间与邻域
例2(P6) 设S x x为区间(0,1)中的有理数,试按上,下
[思考题](PP6 7) 证明:
(1) 设S [0,1], 则supS 1, inf S 0;
(2)
设E
1n
n
n 1,2,,
则sup E
1, 2
inf
E
1;
(3) 对于正整数集N 1,2,, 则inf N 1, 而没有上确界.
a
a
a
x
4
§2.数集.确界原理 一. 区间与邻域 2.邻域(neighborhood)
设a R, 0. (3) a的右邻域与a的空心右邻域 :
Ua; : xR a x a a,a ; U0a; : xR a x a a,a .
(4) a的左邻域与a的空心左邻域 :
Ua; : xR a x a a ,a; U0a; : xR a x a a ,a.
设a R, 0.
(1) a的邻域 : 集合 x R x a 称为以a为中心为半径的邻域 ,
简称为a的邻域,记为U a; ,即
Ua; : x R x a a , a ;
(2)a的空心邻域 : 点a的邻域去掉中心" a"后所得到的集合, 记为
U 0a; ,即
U 0a; : x R 0 x a a , a a, a .
(i)x S, x ,即是S的一个下界;

第二节--数集--确界原理ppt课件

第二节--数集--确界原理ppt课件
若S为既有上界、又有下界的数集,则称S 为有界集。
若S没有上界或没有下界,则称S为无界集。
7
若 S有 上 ( 下 ) 界 , 则 一 定 有 无 限 多 个 上 ( 下 ) 界 。
若对于任意的数M,都存在一个
∈S,使得 >M, 则称S是一个无上
界的数集。
请同学写出“S是无下界的数集”的定义。
8
有下界(可取1),无上界。 下界可取1/2,上界可取1。
28
作业 p9. 2,
4 (1) (3).
29
18
证: 仅证上确界的结论。 不妨设S有非负数。由于S有上界,故可找
到非负整数n,使得: (1)对于任何x ∈S,有x<n+1;
对[n,n+1)作10等分,分点为n.1,n.2,…,n.9, 则存在0 ,1 ,2, … , 9中的一个数 ,使
19
则存在0 ,1 ,2, … , 9中的一个数 ,使
3
邻域:
4
右邻域: 左邻域:
5
二、有界集、确界原理 定义1 设S是实数集R中的一个数集,若存在
数M,使得对一切的x ∈S, 都有
则称S为有上界的数集,称M为S的一个上
界。
6
定义2 设S是实数集R中的一个数集,若
存在数L,使得对一切的x ∈S, 都有
x L,则称S为有下界的数集,称L为S的一个 下界。
继续下去,则对任意的k=1,2,3,…,存在 0,1,2,3,…,9中的一个数 ,使
20
现在证明 = supS. 为此要证:
21
从而于是(ⅠBiblioteka 得证 。矛盾!22
于是(Ⅱ)得证。
从而
23
例4:求A={x|x>0, <2, x 是有理数}的上下 确界,并证明上确界不属于有理数集.

第二节 数集与确界原理

第二节 数集与确界原理
Байду номын сангаас

又 S A, S 的下界就是 A 的下界, inf S 是 S 的下界, inf S inf A; 同理有 inf S inf B. 于是有
inf S 是 A 的下界
11

min inf A ,inf SBmin inf S 的下界, inf 是数集 A , inf B .
o
a
3
[a,) {x a x}
o
a
x
(, b) {x x b}
o
b
x
( , )
x
4
(见下页示图)
5

a

a
a
x
6

有界数集 . 确界原理:
1. 有界数集: 定义(上、 下有界, 有界) 设 S 为实数 R 上的一个数集, 若存在一个数 M L) ( , 使得对一切 x S 都有 x M ( x L) ,则称 S 为有上界(下界)的数集。 若集合 S 既有上界又有下界,则称 S 为有界集。 例如,闭区间、 (a, b) ( a, b 为有限数)、邻域等都是有界数集,集合 E y y sin x, x ( , ) 也是有界数集. 无界数集: 若对任意 M 0 ,存在 x S , | x | M ,则称 S 为无界集。
例4
设 A 和 B 是非空数集. 若对 x A 和 y B, 都有 x y , 则有 sup A inf B.

x A 和 y B, 都有 x y ,
y 是 A 的上界, 而 sup A 是 A 的最
小上界 sup A y. 下界)
例5
此式又 sup A 是 B 的下界, sup A inf B(B 的最大

§2.数集.确界原理.

§2.数集.确界原理.
例4(P8) 设A, B为非空数集 , 满足 : x A和y B有x y.证明 : 数集 A有上确界 , 数集 B有下确界 , 且 sup A inf B.
例5(P8) 设A, B为非空有界数集 , S A B.证明 : (i) sup S maxsup A, sup B; (ii) inf S mininf A, inf B.


U a; : x R x a a , a ;


(2)a的空心 邻域 : 点a的邻域去掉中心 " a" 后所得到的集合 , 记为 U 0 a; , 即
U 0 a; : x R 0 x a a , a a, a .
[思考题 ](P21/1 )设a, b R.证明 : 1 (1) maxa, b a b a b ; 2 1 (2) mina, b a b a b . 2
17
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
例3(P7) 设数集 S有上确界 .证明 :
14
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界;
[问题]如何用正面的语言定义 ( )不是数集 S的上(下)确界 ?
15
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界; (2)(P7)由上(下)确界的定义可知 , 若数集 S存在上 (下)确界, 则必唯一 ; (3)(P7)若数集 S存在上 , 下确界 , 则有 inf S sup S ; (4)(P7)数集S的上(下)确界可能属于 S , 也可能不属于 S;

实数集与函数数集确界原理

实数集与函数数集确界原理
前页 后页 返回
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其
中最小的一个具有重要的作用. 最小的上界称为
上确界. 同样, 若S 有下界, 则最大的下界称为下 确界. 定义2 设 S R, S . 若 R满足 :
(i ) x S , x ; (ii) , x0 S , 使得 x0 ,

x0
点击上图动画演示

x
前页 后页 返回
定义3 设 S R, S . 若 R 满足 :
(i) x S , x ;
(ii) , x0 S , x0 ; 则称 是 S 的下确界, 记为 inf S .
注1 由定义,下确界是最大的下界.
(3) 若 S 既有上界又有下界, 则称 S 为有界集.
其充要条件为 : M 0, 使 x S , 有 | x | M .
前页 后页 返回
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 使得 | x0 | M .
§2 数集 · 确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点. 一、有界集 二、确界 三、确界的存在性定理
四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域
U (a; ) { x | 0 | x a | }: 点 a 的 空心邻域

数集与确界原理.

数集与确界原理.

数集分类:
N----自然数集 Q----有理数集
Z----整数集 R----实数集
数集间的关系: N Z , Z Q , Q R.
若A B, 且B A, 就称集合A与B相等. ( A B )
例如 A {1,2},
C { x x 2 3 x 2 0}, 则 A C .
集 S 的上确界,记作 sup S .
命题 1 =supS 的充要条件为 1) 是 S 的上界, 2) > 0 , yS,使得 y> .
命题 1 =supS 的充要条件为 1) 是 S 的上界, 2) > 0, yS,使得 y> .
证 必要性,用反证法.
无限区间
o
a o
b
x x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数, 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心 , 叫做这邻域的半径.
U (a ) { x a x a }.
a a a 点a的去心的邻域, 记作U 0 (a ).
U (a ) { x 0 x a }.
x
点a的 去心邻域U o (a ) x : 0 x a ; 点a的 右去心邻域U (a ) x : 0 x a ;
sup S maxsup A,sup B;inf S min inf A,inf B .
证: 由于S A B显然是非空有界数集, 因此S的上、下确界都存在, x S , 有x A或x B x sup A或x sup B ,
从而有x max sup A,sup B , sup S max sup A,sup B ; 又 : x A, x S x sup S sup A sup S , 同理又有 sup B sup S . sup S max sup A,sup B ; sup S max sup A,sup B .

数集确界原理

数集确界原理

• 例5 设A、B为非空有界数集, S=A∪B.证明:
• (1) sup S =max{sup A , supB};(2) inf S = min{inf A, inf B}.
• 证 由于S=A∪B,显然也是非空有界数集,因此S的上 下确界都存在.
• (1)对任何x∈S ,有x∈A或x∈B,故x≤sup A 或
上、下确界的另一精确定义
定义2 设S是R中的一个数集,若数 满足以下两条: (1)对一切 x S, 有 x , 即 是数集S的上界;
(2)对任意 e 0, 存在 x0 S 使得 x0 e ,
(即η是S的最小上界)
则称数η为数集S的上确界。记作 sup S.
e
U (a)与U (a)去除点a后,分别为点a的空心 左,
右邻域,
简记为U
0
(a)与U
0
(a)
邻域U () {x x M},其中M为充分大的正数;
邻域U() {x x M},其中M为充分大的正数;
邻域U() {x x M},其中M为充分大的正数;
二、有界集 确界原理
定义1 设S为R中的一个数集。若存在数M(L),使得对一 切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数 集,数M(L)称为S的一个上界(下界).
若数集S既有上界又有下界,则称S为有界集.若S不是 有界集,则称S为无界集。
例1: 证明数集N {n n为正整数}有下界而无上界.
证 由假设,数集B中任一数y都是数集A的上界,
数集A中任一数x都是数集B的下界, 由确界原理可知数集A有上确界,数集B有下确界。 对任何y∈B, y是数集A的一个上界, 又由上确界的定义知 supA 是数集A的最小上界, 故有supA ≤ y。 而此式表明数supA 是数集B的一个下界, 由下确界的定义知, supA≤infB。

第二节数集确界原理

第二节数集确界原理

确界原理的扩充
若把 和 补充到实数集中, 并规定一实数 a 与 、 的大小关系为 a , a , , 则确界概念可扩充为 若 S 无上界, 则定义 + 为 S 的非正常上确界,记作 sup ; 若 S 无下界, 则定义 - 为 S 的非正常下确界, 记作 inf .
相应地,前面定义2和定义3中所定义的确界分别称为正 常上、下确界. 推广的确界原理 任一非空数集必有上、下确界(正常的或非 正ቤተ መጻሕፍቲ ባይዱ的).

正整数N+有
S y y 2 x 2 , x R 的 inf , sup 2.

inf N+ =1,sup N+ = +∞.

是S的下界中最大的一个) ,则称数 为数集S 的下确界,记作 inf S .
命题 2 inf S 的充要条件: 1) 是S下界; 2) >0, x0 S, 有x0 < .
例3 设S { x | x为区间(0,1)中的有理数}.试按上、 下确界的定义验证: sup S 1,inf S 0.
2.邻域: 设a与 是两个实数 , 且 0.
U (a) {x a x a }.
U 0 (a) {x 0 x a }.

a

a
a
x
U () {x x M }.
二 有界集 确界原理
(一)有界集
定义1 S为R中的一个数集,若 M R, x S有x M .
注1 确界若存在则必唯一 注2 S sup S inf S 注3 S 的确界可能 S 可能 S
定义4 最大数与最小数

数集确界原理

数集确界原理

a
a
a x
点a 旳 右邻域 和 点 a 旳空心 右邻域
U (a, ) {x a x a } [a, a ) U 0(a, ) {x a x < a } (a,a )
a
a
a x
点 a 旳 左邻域 和 点 a 旳空心 左邻域
U(a, ) {x a x a } (a ,a] U 0(a, ) {x a x a } (a ,a)
2、数集与确界的关系:确界不一定属于原集合.
3、确界与最值的关系:设E为数集. E 的最 值必属于E,但确界未必, 确界是一种临 界点. 非空有界数集必有确界, 但未必有 最值. 若max E存在, 必有 max E = supE, 对下确界有类似的结论.
思索题
1、任何有限数集是否一定都存在上、下确界? 若都存在,它们分别是数集中的什么数?
上确界
M
上界
M1
M2
下界 下确界
m2 m1 m
确界旳精拟定义
定义3 设 S 是 R 中旳一种数集,若数 满足
(i) 对一切 x S, 有x , 即 是 S 的上界; (ii) 对任何 , 存在 x0 S, 使得 x0 , 即 又是 S 的最小上界,则称数 为数集 S 旳
上确界,记为 sup S.
例1 证明数集 N+{n / n为正整数}有下界而无上界.
证 显然,任何一个不大于1 的实数都是N 的下界,
பைடு நூலகம்故N
为有下界的数集
下证 N+ 无上界
按照无界集定义, 只须证:即对任意M 0,
存在某个正整数n0 N+ , 使得n0 M .
事实上,对任何正数M,取 n0 M 1,
则n0 N , 且n0 M , 这就证明了N无上界.

数集,确界原理26页文档

数集,确界原理26页文档

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
数集,确界原理
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档