开题报告-行列式的计算方法和应用

开题报告-行列式的计算方法和应用
开题报告-行列式的计算方法和应用

毕业论文开题报告

信息与计算科学

行列式的计算方法和应用

一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)

1.选题的背景

行列式理论产生于十七世纪末,到十九世纪末,它的理论体系已基本形成了。1693年,德国数学家莱布尼茨(Leibnie,1646—1716)解方程组时将系数分离出来用以表示未知量,得到行列式原始概念。当时,莱布尼兹并没有正式提出行列式这一术语。1729年,英国数学家马克劳林(Maclaurin,1698—1746)以行列式为工具解含有2、3、4个末知量的线性方程组。在1748年发表的马克劳林遗作中,给出了比菜布尼兹更明确的行列式概念。1750年,瑞士数学家克拉默(Gramer,1704—1752)更完整地叙述了行列式的展开法则并将它用于解线性方程组。即产生了克拉默法则。1772年。法国数学家范德蒙(Vandermonde,1735—1796)专门对行列式作了理论上的研究,建立了行列式展开法则,用子式和代数余子式表示一个行列式。1172年,法国数学家拉普拉斯(Laplace。1749梷1827)推广了范德蒙展开行列式的方法。得到我们熟知的拉普拉斯展开定理。1813一1815年,法国数学家柯西(Cauchy,1789—1857,对行列式做了系统的代数处理,对行列式中的元素加上双下标排成有序的行和列,使行列式的记法成为今天的形式。英国数学家凯菜(Cayley,于1841年对数字方阵两边加上两条竖线。柯西证明了行列式乘法定理。1841年,德国数学家雅可比(jacobi)发表的《论行列式的形成与性质》一文,总结了行列式的发展。同年,他还发表了关于函数行列式的研究文章,给出函数行列式求导公式及乘积定理。至19世纪末,有关行列的研究成果仍在式不断公开发表,但行列式的基本理论体系已经形成。

行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具,因此对许多人来说,掌握行列式的计算是重要的。

2.选题的意义

行列式是线性代数的一个重要内容,是讨论线性方程组的一个有力工具,在很多数学分支中都有着广泛的应用,行列式的计算灵活多变,具有一定的规律和技巧,选择合适的方法计算行列式就变得至关重要。

二、研究的基本内容与拟解决的主要问题

我们知道,行列式的计算灵活多变,需要有较强的技巧。当然,任何一个n 阶行列式都可以由它的定义去计算其值。但由定义可知,n 阶行列式的展开式有!n 项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。值的注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。

对行列式进行计算不是唯一目的,我们还需要利用行列式去解决一些实际问题,使复杂问题简单化。在了解行列式的概念、性质的基础上,讨论行列式的求解方法,其中包括化三角法,利用范德蒙行列式求解以及利用拉普拉斯定理的解法。通过对行列式的求解方法的研究,探讨行列式在求解线性方程组中的应用。 1.行列式的相关概念及性质

n 级行列式

nn

n n n

n

a a a a a a a a a (212222111211)

等于所有取自不同行不同列的个元素的乘积n nj j j a a a ...2121的代数和,这里n j j j ...21是

1,2,...,n 的一个排列,每一项都按下列规则带有符号:当n j j j ...21是偶排列时,带有正号;当n j j j ...21是奇排列时,带有负号。这一定义可以写成

n n

n nj j j j j j j j j r nn

n n n

n

a a a a a a a a a a a a ...1.........2211212...1 (21)

2222111211

这里

n

j j j ...21表示对所有n 级排列的求和。

行列式的性质[1][7][8]

性质1. 行列互换,行列式的值不变,即

nn

n n

n n nn

n n n n a a a a a a a a a a a a a a a a a a (212)

22121

211121

2222111211

性质2. 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外,即

nn

n n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a

2

121112112

12

111211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个数乘以此行列式。 事实上,

in in i i i i nn

n n in i i n A ka A ka A ka a a a ka ka ka a a a (22112)

12

1112

11

in in i i i i A a A a A a k (2211)

nn

n n in i i n a a a a a a a a a k

21

2

1

11211 令0 k ,如果行列式中任一行为零,那么行列式值为零。

性质3. 如果行列式中某列(或行)中各元素均为两项之和,即 n i c b a ij ij ij ,...,2,1 ,则这个行列式等于另两个行列式之和。即

nn

nj n n j j

nn

nj n n j j

nn

nj

nj n n j j j j a c a a c a a c a a b a a b a a b a a c b a a c b a a c b a

12221111111222111111122221111111

这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而 这两个行列式除这一行以外全与原来行列式的对应的行一样。

性质4. 如果行列式中有两行(列)相同,则行列式等于零。所谓的两行相同就是说两行的对应元素都相等。

性质5. 如果行列式中两行(列)成比例,则行列式等于零。

性质6. 如果行列式中的某一行(列)的各元素同乘数k 后加到另一行(列)的对应元素上去,则行列式不变。

性质7. 对换行列式中两行(列)的位置,行列式反号。 2.化三角法计算行列式的例子

李尚志[4]

指出化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

我们总结出将行列式化为三角形时常用的三种基本方法: (1)将各行(列)加到某一行(列); (2)将每行(列)减去某一行(列); (3)逐行(列)相加或相减.

浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值,

1

22121

54314321321 n n n n n n D n

分析:显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。注意到从第1列开始,每一列与它一列中有1 n 个数是差1的,根据行列式的性质,先从第1 n 列开始乘以-1加到第n 列,第2 n 列乘以-1加到第1 n 列,一直到第一列乘以-1加到第2列。然后把第1行乘以-1加到各行去,再将其化为三角形行列式,计算就简单多了。 3.降阶法计算行列式的例子

李书超[2]

,裴礼文[5]

在书中介绍了降阶法的计算方法。

设ij n a D 为n 阶行列式,根据行列式的按行(列)展开定理有

n i A a A a A a D in in i i i i n ,...,2,1...2211 或 n j A a A a A a D nj nj j j j j n ,...,2,1...2211 其中ij A 为n D 中的元素ij a 的代数余子式。

按行(列)展开法可以将一个n 阶行列式化为n 个1 n 阶行列式计算。若继续使用按行(列)展开法,可以将n 阶行列式降阶直至化为许多个2阶行列式计算,这是计算行列式的又一基本方法。但一般情况下,按行(列)展开并不能减少计算量,仅当行列式中某一行(列)含有较多零元素时,它才能发挥真正的作用。因此,应用按行(列)展开法时,应利用行列式的性质将某一行(列)化为有较多的零元素,再按该行(列)展开。

对于类似20阶的行列式

1

231819201817161

2

3

191817212

201918321

20

D 由分析可知:这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至化许许多多个2阶行列式计算,需进行120)!20( 次加减法和乘法运算,这是人根本无法完成的,更何况是n 阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。注意到此行列式的相邻两列(行)的对应元素仅差1,因此,可按下述方法计算,

1

1111201

1

11119111

1131111

1

2

11111119,...,11

2318192018

17161

2

3

191817212201918321120

i c c D i i 18181

201

22121210

0000212000020222004

2

22203

111111

20,...,2

r r i i 。

4.范德蒙行列式计算行列式的例子

范德蒙行列式

j i n

i j n n

n n n n n x x x x x x x x x x x x x x 1113

1211

2

23222

1

3211111

根据行列式的特点,适当变形(利用行列式的性质)把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。李尚志[4]

也在书中用以下例子说明了计算范德蒙行列式的方法。

对于下面这个n 阶行列式

1

1

1

1

12112112122

2

21111

a a n a n a a a n a n a a a n a n a D n n n n n n n n n

显然与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质,把它化为范德蒙行列式的类型。先将的第n 行依次与第1 n 行,2 n 行,....,2行,1行对换对换,再将得到的新的行列式的第n 行与第1 n 行,2 n 行,....,2行对换,继续仿此作法,直到最后将第n 行与第1 n 行对换,这样,共经过

2

112...21 n n n n 次对换后,得到

1

1

1

122222

11211211211111

1 n n n n n n n n n n n a a n a n a a a n a n a a a n a n a D

上式右端的行列式已是范德蒙行列式,故利用范德蒙行列式的结果得 BA E AB E m m n n , 所以,

j i j n a i n a D n

i j n n n

i j n n n 12

112

111 。

5.拉普拉斯定理计算行列式的例子

拉普拉斯展开定理: 在n 阶行列式D 中任取k 行(列)(11 n k ),则由这k 行(列)组成的所有k 阶子式分别与其它代数余子式的乘积之和等于行列式D 。 梁保松[1]

,李书超[2]

,马杰[3]

等人在书中指出了拉普拉斯的4种特殊情形

1)

mm nn mm

nm

nn B A B C A 0 2)

mm nn mm

nm nn B A B C A 0

3)

mm nn mn

mn mm nn B A C B A 10 3) mm nn mn

mm

nn nm

B A B A

C 10

对于下面形式的n 阶行列式

a

b a

b

a

b

a

a a

a D n

由分析可知:根据行列式的性质可以把它化为拉普拉斯的4种特殊形式中的一种再进行计算。 先将行列式化为

a a a n a b

a

a

a a

n

0000000021的形式,

再由拉普拉斯定理可以得到

222

20

000021

n n a a a n a b

a

n

2

12 n a n ab n a 。

6.行列式求解线性方程组的例子

谢邦杰

[10]

,李排昌

[12]

等人都曾在书中提出,线性方程的解与系数和常数有关。这本来

就是一个纯代数问题,如果把这个纯代数问题与几何结合起来,在求解线性方程的过程中从整体上考虑系数与常数项的关系,就产生了求解线性方程组的行列式理论和矩阵理论。

已知标准形式的n 元线性方程组

1

22111

22221211

1212111................................................b x a x a x a b x a x a x a b x a x a x a n nn n n n n n n (1)

nn n n n n a a a a a a a a a D

2122221

11211

, nn

n n n n a a b a a b a a b D

22222

11211

,...,

n

n n n b a a b a a b a a D

2122221

11211

(2)

当0 D 时,用数学归纳法可以证明:线性方程组(1)式的唯一解求解公式为 D D x 11 ,D D

x 22 ,...,D

D x n n 。 8.论文要解决的主要问题

本论文总结前人的研究理论的基础上,拟解决以下问题: (1)通过计算行列式辨别有关行列式的一些概念和性质; (2)利用化三角法求解行列式的计算问题; (3)利用范德蒙行列式求解行列式的计算问题; (4)利用拉普拉斯定理求解行列式的计算问题;

(5)利用行列式的计算方法求解线性方程组。

三、研究的方法与技术路线、研究难点,预期达到的目标

1.研究方法及技术路线

本论文主要以查找资料,以现有的知识水平,在前人的研究论述基础上,应用行列式计算的相关理论。采取了从大量阅读已有的数据资料—然后对这些内容进行总结—最后运用相关的知识来通过行列式的各种计算方法及应用来寻求解题的思路和对相关问题的求解。 2.研究难点

(1)从大量的阅读材料中整理与论文相关的资料是一个难点。 (2)整理行列式的各种计算方法是一个难点。 (3)灵活应用行列式的各种计算方法解题时一个难点。

(4)不要简单地重复已有的方法和结果,要有自己独立的分析结果是一个难点。 3.预期达到的目标

通过这次论文的撰写,能更深的理解《线性代数》等相关课程的知识,通过对行列式的计算和应用的研究使我重新审视了行列式的理论,对行列式的相关知识有了更深刻的理解,

对计算行列式的基本方法和基本技能有较好的理解和掌握。同时在本文的撰写过程中掌握参考文献资料查找方法和论文写作的基本要求和方法,培养自己利用所学知识分析和解决问题的能力,学会从不同角度看待问题,从而达到对所学知识融会贯通。

四、论文详细工作进度和安排

第一阶段:第7学期9周至第7学期17周

完成毕业论文文献检索、开题报告、文献综述及外文文献翻译初稿。

第二阶段:第7学期17周至第7学期21周

完成毕业论文开题报告、文献综述及外文文献翻译,交指导老师。

第三阶段:第7学期21周至第8学期3周

完成毕业论文的数据收集、论文初稿;

第四阶段:第8学期3周至第8学期12周

第3周至第11周:进入实习单位进行毕业实习,同时撰写毕业论文。

1.第11周前:返校递交实习报告,继续完善毕业论文。

2.第11周至第12周:将毕业论文交给导师审阅,导师对毕业论文进行评阅。

3.第14周至第16周:对论文进一步修改,定稿和打印,做好答辩准备工作。

五、主要参考文献:

[1] 梁保松,苏本堂.线性代数及其应用.北京:中国农业出版社,2004.

[2] 李书超等.一类矩阵秩的恒等式及其推广.武汉科技大学学报,2004,3(1):96-98.

[3] 马杰,邹本腾,漆毅,等.线性代数辅导.北京:机械工业出版社,2003:321.

[4] 李尚志.线性代数[M].北京:高等教育出版社,2006:504.

[5] 裴礼文.数学分析中的典型问题与方法(第二版)北京:高等教育出版社2006.69-97.

[6] 王萼芳.线性代数[M].北京:清华大学出版社,2000:90-94.

[7] 林升旭.线性代数教程[M].武汉:华中科技大学出版社,2004:1-6.

[8] 居余马.线性代数[M].北京:清华大学出版社,2002:1-5.

[9] 王纪林.线性代数[M].北京:科技出版社,2003:6-7.

[10] 谢邦杰.线性代数[M].北京:人民教育出版社,1978.

[11] 同济大学数学研究室.线性代数[M].北京:高等教育出版社,1999.

[12] 李排昌,左萍.线性代数[M].北京:中国人民公安大学出版社,2005.

[13] 段向阳.浅谈行列式的几种计算方法[J].湖南冶金职业技术学院学报,2008(12):103-104.

[14] 同济大学数学研究室.工程数学线性代数[M].第四版,北京:高等教育出版社,2003.

[15] 杨闻起.计算行列式的三种技巧[J].通化师范学院学报,2003(3):12-16.

[16] A.GALANTAI. A note on the generalized rank reduction[J]. Acta Math Hungar,2007,166(3):239

—246.

[17]Zhong-Peng Yang, Chong-Guang Gao and Xian Zhang. A Matrix Inequality on Schur Complements[J].

J-Applmath & Computing, 2005,18(1): 321—328.

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

关于行列式的计算方法8页word文档

行列式的计算方法综述 目录 1.定义法(线性代数释疑解难参考) 2.化三角形法(线性代数释疑解难参考) 3.逐行(列)相减法(线性代数释疑解难参考) 4.升降法(加边法)(线性代数释疑解难参考) 5.利用范德蒙德行列式(线性代数释疑解难参考) 6.递推法(线性代数释疑解难参考) 7.数学归纳法(线性代数释疑解难参考) 8.拆项法(课外辅导书上参考) 9.换元方法(课外辅导书上参考) 10.拆因法(课外辅导书上参考) 线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。下面由我介绍几种常见的计算行列式的方法: 1.定义法 由定义看出,n级行列式有!n个项。n较大时,!n是一个很大的数字。直接用定义来计算行列式是几乎不可能的事。但在n级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。 例1.算上三角行列式 解:展开式的一般项为 同样,可以计算下三角行列式的值。 2.化三角形法 画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上

第 1 页 (下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。 例2.计算 解:各行加到第一行中 把第二列到第n 列都分别加上第一列的()1-倍,有 3.逐行(列)相减法 有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。 例3.计算n 级行列式 解:从第二行起,每一行的()1-倍都加上上一行,有 上式还不是特殊三角形,但每相邻两行之间有许多相同元素()10或,且最后一行有()1n -元素都是x 。因此可再用两列逐列相减的方法:第()1n -列起,每一列的()1-倍加到后一列上 4.升降法(加边法) 升降法是在原行列式中再添加一列一行,是原来的n 阶成为()1n +阶,且往往让()1n +阶行列式的值与原n 阶行列式的值相等。一般说,阶数高的比阶数低的计算更复杂些。但是如果合理的选择所添加的行,列元素,是新的行列式更便于“消零”的话,则升降后有利于计算行列式的值。 例4.计算n 级行列式

行列式的计算方法

摘要 行列式是高等代数中重要的内容之一,在数学中有着广泛的应用.通过对行列式基本理论的介绍,针对不同类型的行列式,结合具体例题,介绍行列式的计算方法,其中包括降阶法,升阶法,数学归纳法等. 关键词:行列式;范德蒙行列式;计算

Abstract The determinant is an important content of higher algebra, which having wide application in mathematics. Through the introduction of the basic theory of the determinant, combined with concrete examples, the calculation for different types of determinant are introduced, which including the reduction method, order method, mathematical induction, and so on. Key words: determinant;vandermonde determinant;calculation

目录 摘要 ................................................................................................................................I Abstract ....................................................................................................................... II 第1章行列式的形成和性质 .. (1) 第1节行列式的发展史 (1) 第2节行列式的性质 (2) 第2章行列式的计算方法 (4) 第1节化三角形法 (4) 第2节降阶法 (8) 第3节递推法 (9) 第4节加边法 (11) 第5节拆行(列)法 (12) 第6节数学归纳法 (14) 结论 (16) 参考文献 (17) 致谢 (18)

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

(完整word)行列式的计算技巧与方法总结,推荐文档

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ2211222112110 0= 下三角形行列式 nn n n a a a a a a Λ ΛΛΛΛΛΛ2122 21 110 00.2211nn a a a Λ= 对角行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ221121 222111000= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21 2222111211nn n n n n a a a a a a a a a D Λ Λ ΛΛΛΛΛ= 则 nn n n n n T a a a a a a a a a D Λ ΛΛΛΛΛΛ 212 22 12 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .21 21 112112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n ===Λ ΛΛ Λ ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛΛΛ 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D Λ ΛΛΛΛΛ ΛΛΛΛΛ2 1 221111211+++=. 则 2121 21 11211212111211D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+=Λ ΛΛ Λ ΛΛΛ ΛΛΛΛΛ ΛΛΛΛΛ ΛΛ Λ Λ Λ. 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

行列式的计算方法课堂讲解版

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 200 1 0000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300(1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Castelu 【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

浅论行列式及其计算方法

浅论行列式及其计算方法 摘要:本文主要介绍了行列式的概念——行列式是n 阶矩阵的一个特征量。行列式的性质——行列式和它的转置行列式相等等一系列性质。行列式的计算方法——化三角法,定义法等。克莱姆法则。以及和矩阵相关的一些问题。 关键词:行列式的概念 行列式的性质 行列式的计算 矩阵 克莱姆法则 正文 1行列式的概念 1.1 二阶、三阶行列式 行列式是代数式的简要记号,如 1112112212212122a a a a a a a a =- (1.1) 111213 21222311223312233113213231 32 33 a a a a a a a a a a a a a a a a a a =++ 322311332112312213a a a a a a a a a --- (1.2) 分别是二阶、三阶行列式,两式的左端表示行列式的记号,右端是行列式的全面展开式。行列式的元素有两个下标,分别称为行标和列标。如32a 表示该元素位于第3行、第2列。 二阶、三阶行列式的全面展开可以用对角线法。 【例】5152(1)3133 2 -=?--?=; 2 2 2 2 ()a b a b a b b a =--=+-; 250 1334 1 6 ---2361(1)0(5)(3)4=??+?-?+-?-?034-?? (1)(3)21(5)6--?-?-?-?(36)(0)(60)(0)(6)(30)120=++----=。 1.2 n 阶行列式的全面展开 用2 n 个元素可以构成n 阶行列式 nn n n n n a a a a a a a a a 2 1 2222111211 。 行列式有时简记为j i a 。一阶行列式a 就是a 。高于4阶的行列式不能用对角线法展开。参照二阶、三阶行列式的展开式(1.1)、(1.2),规定n 阶行列式的全面展开按如下方式进行: (1)展开式的每一项都是不同行、不同列的n 个元素的乘积。 (2)取自不同行、不同列的n 个元素要出现所有不同的搭配。若将行标顺序安排,则每一项对应列标的一个排列。如332112a a a 对应的排列是2 1 3。所有不同的搭配,对应所有不同的列标排列,n 个自然数共有!n 种排列,因而全面展开式共有!n 项。 (3)各项的前置符号,偶排列取正,奇排列取负。所谓偶(奇)排列是指该排列的逆序数

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

行列式的计算方法总结 毕业论文

1 行列式的概念及性质 1.1 行列式的概念 n 级行列式 nn n n n n a a a a a a a a a 21 2222111211 等于所有取自不同行不同列的个元素的乘积n nj j j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。这一定义可写成 , 这里 ∑ n j j j 21表示对所有n 级排列的求和。 1.2 行列式的性质[1] 性质1 行列互换,行列式值不变,即 =nn n n n n a a a a a a a a a 2 1 2222111211nn n n n n a a a a a a a a a 212 22121 2111 性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外, 即 =nn n n in i i n a a a ka ka ka a a a 2 1 2111211nn n n in i i n a a a a a a a a a k 21 21 11211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个 n n n nj j j j j j r j j j nn n n n n a a a a a a a a a a a a 21212121) (2 1 2222111211) 1(∑-=

数乘以此行列式。 事实上, nn n n in i i n a a a ka ka ka a a a 212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a + nn n n in i i n a a a a a a a a a k 2121 11211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。 性质3 如果行列式中某列(或行)中各元素均为两项之和,即 ),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。 即 nn nj n n j n j nn nj n n j n j nn nj nj n n j j n j j a c a a c a a c a a b a a b a a b a a c b a a c b a a c b a 12221111112221111112222111111+ =+++ 这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而 这两个行列式除这一行以外全与原来行列式的对应的行一样。 性质4 如果行列式中有两行(列)相同,则行列式等于零。所谓的两行相同就是 说两行的对应元素都相等。 性质5 如果行列式中两行(列)成比例,则行列式等于零。 性质6 如果行列式中的某一行(列)的各元素同乘数k 后加到另一行(列)的对 应元素上去,则行列式不变。 性质7 对换行列式中两行(列)的位置,行列式反号。 2 行列式的计算方法 行列式的计算灵活多变,需要有较强的技巧。当然,任何一个n 阶行列式都可以由它的定义去计算其值。但由定义可知,n 阶行列式的展开式有n !项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。值的注意的是:在应

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

相关文档
最新文档