热电偶传感器精编版
热电偶传感器电子教案
![热电偶传感器电子教案](https://img.taocdn.com/s3/m/14482376abea998fcc22bcd126fff705cc175cb9.png)
热电偶传感器电子教案第一章:热电偶传感器概述1.1 热电偶传感器的定义1.2 热电偶传感器的工作原理1.3 热电偶传感器的特点与应用第二章:热电偶的分类与结构2.1 热电偶的分类2.1.1 按材料分类2.1.2 按构造分类2.2 热电偶的结构2.2.1 热电偶的热电极2.2.2 热电偶的绝缘材料2.2.3 热电偶的连接线第三章:热电偶的工作原理与性能3.1 热电偶的工作原理3.1.1 塞贝克效应3.1.2 热电偶的工作曲线3.2 热电偶的性能参数3.2.1 热电偶的热电特性3.2.2 热电偶的温度范围3.2.3 热电偶的测量精度第四章:热电偶的应用与安装4.1 热电偶的应用领域4.1.1 工业生产4.1.2 科学研究4.1.3 日常生活4.2 热电偶的安装方法4.2.1 插入式安装4.2.2 固定式安装4.2.3 铠装式安装第五章:热电偶传感器的测量与校准5.1 热电偶传感器的测量原理5.2 热电偶传感器的测量电路5.3 热电偶传感器的校准方法5.3.1 对比法5.3.2 自动校准法5.3.3 手动校准法第六章:热电偶传感器的电路设计与应用6.1 热电偶传感器电路设计基础6.1.1 热电偶的冷端补偿电路6.1.2 热电偶的放大电路6.1.3 热电偶的线性化电路6.2 热电偶传感器在自动化控制系统中的应用6.2.1 温度控制系统的组成6.2.2 热电偶在温度控制系统中的应用案例第七章:常见热电偶传感器的选用与维护7.1 常见热电偶传感器的选用7.1.1 根据测量温度范围选用7.1.2 根据测量精度选用7.1.3 根据使用环境选用7.2 热电偶传感器的维护与保养7.2.1 清洁与保护7.2.2 定期校准7.2.3 注意使用寿命第八章:热电偶传感器的故障分析与处理8.1 热电偶传感器的常见故障8.1.1 测量误差过大8.1.2 显示值不稳定8.1.3 传感器损坏8.2 故障原因分析8.3 故障处理方法8.3.1 故障排查步骤8.3.2 故障处理策略第九章:新型热电偶传感器的研发与进展9.1 纳米材料在热电偶传感器中的应用9.2 光纤热电偶传感器的研发与应用9.3 无线热电偶传感器的研究与发展9.4 多功能热电偶传感器的创新应用第十章:热电偶传感器在国内外的发展趋势与展望10.1 国内外热电偶传感器市场现状10.2 热电偶传感器行业的发展趋势10.3 我国热电偶传感器产业的发展策略与展望10.4 热电偶传感器在未来的应用前景重点和难点解析重点环节一:热电偶传感器的工作原理解析:热电偶传感器的工作原理是基于塞贝克效应,即两种不同金属连接在一起形成的回路在温度变化时会产生电动势。
第7章热电偶传感器
![第7章热电偶传感器](https://img.taocdn.com/s3/m/8fb5a7f8f7ec4afe05a1df20.png)
对制成热电偶的材料的要求: (1)温度测量范围广,温度线性度好,测量精确度高,
输出热电动势大。 (2)热电性能稳定。 (3)物理化学性能好。不蒸发、抗氧化等。
我国标准热电偶有六种:
铜-康铜
镍铬-考铜
镍铬-镍铝
铂铑10-铂
非标准热电偶: 铂铑13-铂
发展中产品:
镍铬-康铜
铑质量的百分比
镍铬-镍硅 铂铑30-铂铑6 铂铑-铱 等 铁-康铜
八种国际通用热电偶: B:铂铑30—铂铑6 、R:铂铑13—铂 、S:铂铑10—铂 、 K:镍铬—镍硅 、N:镍铬硅—镍硅 、E:镍铬—铜镍、 J:铁—铜镍 、 T:铜—铜镍
用于制造铂热电偶 的各种铂热电偶丝
二、热电偶结构 1.普通工业热电偶的结构
(1)热电极(偶丝) 普通的直径为0.5~3.2mm 贵重的直径为0.3~0.6mm 长度为300~2000mm,一般350mm
第七章 热电偶传感器
热电偶传感器基于热电效应原理而工作。属于有源 传感器,使用时不需要外加电源,可以方便地测量炉子、 管道中的气体或液体温度,也可以测量固体表面温度。
结构简单、制造方便、测量范围广、精度高、惯性小、 便于远距离传送。
与热电阻的主要区别: 1、原理不同—信号性质不同:热电阻是阻值的变化,而热
(2)绝缘管
对热电极间、热电极与保护套管间
进行绝缘保护。 (3)保护套管
保护热电偶感温元件免受被测介质
化学腐蚀和机械损伤 (4) 接线盒
固定接线座和作为连接补偿导线的装置。
有普通式、防溅式、防水式和接插座式。
接线盒 保护套管 绝缘管
热电极
普通装配型热电偶的外形
安装 螺纹
安装 法兰
接线盒 普通装配型 热电偶的结 构放大图
热电偶传感器ppt课件
![热电偶传感器ppt课件](https://img.taocdn.com/s3/m/4d596a2c7ed5360cba1aa8114431b90d6d858907.png)
3. 镍铬-镍硅热电偶(K型)
使用量最大旳便宜金属热电偶,用量为其他热电 偶旳总和。 正极(KP)旳名义化学成份为:Ni:Cr=90:10, 负极(KN)旳名义化学化学成份为Ni:Si=97:3。 其使用温度为-200~1300℃。
正
较硬
B
负
稍软
0.033
600~900
0~1600
1800
Ⅲ
>800
±4℃ ±0.5%t
正
不亲磁
Ⅱ
-40~1300
±2.5℃或±0.75%t
K
4.096
0~1200
1300
负
稍亲磁
Ⅲ
-200~40
±2.5℃或±1.5%t
N
正
不亲磁
负
稍亲磁
2.774
200~1200
1300
Ⅰ Ⅱ
-40~1100 -40~1300
T —— 接触面旳绝对温度
e —— 单位电荷量 NA——金属电极A旳自由电子密度 NB——金属电极B旳自由电子密度
2. 温差电势
温差电势(汤姆逊电势)
T
eA (T ,T0 )
dT
T0
(6.3.2)
图6.3.3 热电偶旳温差电势
δ —— 汤姆逊系数,它表达温差为1℃时所产生旳 电动势值,它与材料旳性质有关。
热电极旳温度分布无关; 假如热电偶旳热电极是非匀质导体,在不均匀温度
场中测温时将造成测量误差。所以热电极材料旳均 匀性是衡量热电偶质量旳主要技术指标之一。
2. 中间导体定律 在热电偶回路中接入与A、B电极不同旳另一种
导体称中间导体C,只要中间导体旳两端温度相同, 热电偶回路总电动势不受中间导体接入旳影响。
热电偶温度传感器
![热电偶温度传感器](https://img.taocdn.com/s3/m/3b6d1b256bd97f192279e9a6.png)
●热电偶温度传感器介绍
标准化热电偶温度传感器我国从1988年1月1日起,热电 偶温度传感器和温度传感器热电阻全部按IEC国际标准生 产,并指定S、B、E、K、R、J、T七种标准化热电偶温度 传感器为我国统一设计型热电偶温度传感器。
●热电偶温度传感器介绍
2. K型热电偶温度传感器
K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电 子调节器配套使用[1]。K型热电偶可以直接测量各种生产中从0℃到1300℃范 围的液体蒸汽和气体介质以及固体的表面温度。K型热电偶通常由感温元件、 安装固定装置和接线盒等主要部件组成。K型热电偶是目前用量最大的廉金属 热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。 正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分 为:Ni:Si=97:3,其使用温度为-200~1300℃。K型热电偶具有线性度好,热 电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等 优点,能用于氧化性惰性气氛中广泛为用户所采用。K型热电偶不能直接在高 温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱 氧化气氛.
常用热电偶温度传感器可分为标准热电偶温度传感器和非标准热电偶温度 传感器两大类。所调用标准热电偶温度传感器是指国家标准规定了其热电势 与温度的关系、允许误差、并有统一的标准分度表的热电偶温度传感器,它 有与其配套的显示仪表可供选用。非标准化热电偶温度传感器在使用范围或 数量级上均不及标准化热电偶温度传感器,一般也没有统一的分度表,主要 用于某些特殊场合的测量。
●热电偶温度传感器介绍
3.热电偶温度传感器的价格参考
CEM/华盛昌NR38
标准价:179
普量 PT100 热电偶温度传感器 使用说明书
![普量 PT100 热电偶温度传感器 使用说明书](https://img.taocdn.com/s3/m/2a6690c8d1d233d4b14e852458fb770bf68a3b63.png)
PT100/热电偶温度传感器产品使用说明佛山市普量电子有限公司2020-V1.0●欢迎选购佛山市普量电子有限公司产品。
●佛山市普量电子有限公司保留所有权利。
●产品订购和使用前请详细阅读《PT100/热电偶温度传感器使用说明书》。
●产品使用后,请保留《使用说明》,以便产品维护及售后服务。
一、产品外观及组成1、进口PT100铂电阻/J、K、E型热电偶温度芯体;2、精度等级:B级、A级、1/3B级可选;3、产品响应快速,反应灵敏,精度高;4、结构多样化:螺纹安装式、铠装式、贴片式、插入式、法兰式等;5、电气连接IP65/68,二线/三芯/四芯屏蔽温度补偿线;6、304/316/制定材料外壳,探杆长度/直径/螺纹规格/法兰尺寸可制定;7、温度范围:-198℃~-40℃~0~100℃~500℃~1000℃;二、使用时注意事项安装使用请,核对产品标牌及合格证相关参数与使用工况是否相符合;热电阻/热电偶安装时,其插入深度不小于热电阻保护管外径的8倍~10倍;尽可能使热电阻/热电偶受热部分增长;热电阻/热电偶尽可能垂直安装,以防在高温下弯曲变形。
热电阻/热电偶使用中为了减小误差,应尽量使保护套管表面和被测介质温度接近;产品安装时,受力部位为“过程连接六方扳手位”,扳手规格与六方相对应;严禁被测系统的介质温度、压力量程、激励电压超过变送器的额定使用范围;注意保护传感器/变送器电缆线或补偿导线;尽量避免直接接近引起干扰的用户装置或电器;三、产品质量保证免责范围维修服务1、品质保证服务(1)产品质量实行三包:质保期以交货之日起计算,为期13个月。
在质保期内,如因产品本身质量问题,我公司提供免费维修、更换和退货服务。
1)、产品一般零部件、元器件失效,更换后即能恢复使用要求的,免费按期修复;2)、产品主要零部件、元器件失效,不能按期修复的,更换同规格的合格产品;3)、产品因设计、制造等原因造成主要功能不符合企业标准和合同规定的要求,客户要求退货时,收回故障产品,退回客户货款。
热电偶温度传感器
![热电偶温度传感器](https://img.taocdn.com/s3/m/d228ae985122aaea998fcc22bcd126fff7055d8d.png)
3.电桥补偿法
电桥补偿法也称自由端补偿法,是利用不平衡电桥产生的 热电动势来补偿热电偶温度传感器因自由端温度变化而引起的 热电动势变化。
4.计算修正法
图4-19 电桥补偿法
求出当自由端为0℃时的热电动势,通过查表计算的方法,得 到被测实际温度。
1.4 分类
1.普通热电偶温度传感器
普通热电偶温度传感器主要由接线盒、热电极、绝缘套管、 保护套管及热端等部分组成。
T 工作端
A T0
B 自由端
图4-11 测温原理
1.接触电动势
导体 A、B 在接触点温度为 T 时形成的接触电动势 eAB (T ) 可表示为
eAB (T )
kT e
ln
NAT NBT
(4-3)
式中, k 1.381023 J/K,称为波尔茨曼常数;T 表示接触点的绝对温度,单位为 K(开尔
文);e 1.6 1019 C,表示单位电荷;NAT 、 NBT 分别表示导体 A、B 温度为 T 时的自由电子密
图4-17 参考电极定律
1.3 温度补偿方法
1.补偿导线法
可以用一对金属导线将自由端延长,这对导线称为 “补偿导线”。
补偿导线的热电特性在测量范围内必须与热电偶 温度传感器相同或基本相同,且价格相对较低。
A
A
T
B
B
T0
图4-18 补偿导线法
2.自由端恒温法
在实验室和精密测量中,通 常把自由端放入装满冰水混合物 的容器中,以使自由端温度保持 在0℃,这种方法称为零度恒温 法。
反之,如果唯一导体材料组成的回路中存 在热电动势,可验证此材料是非均质的。
在实际应用中,常用均质导体定律来检验 热电极材料成分是否相同,或该材料是否为均 质的。
热电偶温度传感器尺寸参数表_共享版
![热电偶温度传感器尺寸参数表_共享版](https://img.taocdn.com/s3/m/a4f3f6d733d4b14e85246885.png)
指定
W 导线末端处理方式
0=无
1=压M4接线端子
指定
S 特殊要求
0=无
指定
说明:1.指定 选项直接填写数据规格即可
2.特殊要求S如有多个选项时,请用/分隔依次填写即可
选型举例:STTT-V----AT----B2----L2----PⅠ----T6----W0----S0
类别代码 T型 直径0.2mm 引线 精度Ⅰ级 温度范围 无
指定
F 补偿导线类型 2=特氟龙F4 3=金属网
L 引线长度AL (mm)
1=1000 2=2000 3=3000
指定
P 精度 Ⅰ=Ⅰ级 Ⅱ=Ⅱ级
T 温度范围 (℃)
5=-200~200 6=0~200 7=0~400
W 导线末端处理方式
指定
0=无 1=压M4接线端子
指定
S 特殊要求 0=无 5=露头式 6=接壳式
指定
说明:1.指定 选项直接填写数据规格即可 2.特殊要求S如有多个选项时,请用/分隔依次填写即可 3.标准供货产品为绝缘式规格
选型举例:STTT-R----ADK----B6----C50----D1-----F2----L1----PⅡ----T7----W0----S0
类别代码 双只K型 直径6mm 长度50mm 材质sus321 特氟龙F4 引线 精度Ⅱ级 温度范围 无
V 产品类别代码
A 传感器类型 K=K E=E J=J T=T
B 丝材直径D (mm) 1=0.1 2=0.2 3=0.32 6=0.6 指定
L 引线长度 (mm) 1=1000 2=2000 3=3000 指定
P 精度 Ⅰ=Ⅰ级 Ⅱ=Ⅱ级
T 温度范围(℃) 5=-200~200 6=0~200 7=0~400
pt100热电偶温度传感器检定点(R0和R100)选择与检定方法
![pt100热电偶温度传感器检定点(R0和R100)选择与检定方法](https://img.taocdn.com/s3/m/6e0e68cf7d1cfad6195f312b3169a4517623e571.png)
pt100热电偶温度传感器检定点(R0和R100)选择与检定方法昌晖仪表在本文介绍Pt100铂电阻检定点选择方法、R0和R100检定与合格推断依据,是各行业验收Pt100是否合格的技术标准。
文章内容节选自国家标准DL/T 774-2023。
Pt100检定点选择与基本方法1、各等级Pt100的检定点,均应选择0℃和100℃,并检查实际电阻温度系数a的符合性;2、当℃a不符合要求时,应进行表1中相应允差等级有效温度范围的上限(或下限)的温度的检定;3、Pt100和二等标准铂电阻温度计的电阻值测量,均应采纳四线制测量方法;4、校验Pt100时通过热电阻电流应不大于1mA,宜选用符合测量精确度要求的数字多用表;铂电阻的方法,交替重复不少于4次(包括电流换向),分别取平均值作为测量结果。
R0(温度为0℃时的电阻值)的检定1、在冰点槽(或具有0℃的恒温槽,偏差不超过±0.2℃)中,分别测量Pt100的电阻值与二等标准铂电阻温度计测量的温度,比较和计算其0℃的偏差值±℃t0;2、爱护管可以拆卸的热电阻,应放置在内径略大于感温元件直径的玻璃试管中,管口用脱脂棉或木塞塞紧后,插入冰水充分混合的冰点槽内,插入深度应不小于30mm;3、爱护管不行拆卸的Pt100热电阻,可直接插入介质中,检定时测量数据稳定所方可读数;4、假如使用0℃恒温槽,Pt100热电阻应有足够的插入深度,尽可能削减热损失;5、检定AA级以上的Pt100热电阻,为减小测试不确定度,宜在水三相点瓶中测量。
R100(温度为100℃时的电阻值)和Rt(温度为t℃时的电阻值)的检定1、在100℃的恒温槽中测量Pt100热电阻R100的电阻值,并与二等标准铂电阻温度计测量的温度进行比较,计算其100℃的偏差值℃t100;2、可拆卸Pt100热电阻的Rt检定与R0的检定一样,将感温元件放置在玻璃试管中(检定温度高于400℃应放置在石英试管中);3、插入恒温槽并保证足够的插入深度,待热平衡后连续增加插入深度l0mm,重新达到热平衡后电阻值的变化,应不超过允许误差的5%;4、当温度t高于500℃,热电阻应以小于1℃/min的速率随槽冷却至0℃后,再从控温槽中取出;5、恒温槽的检定点温度应不超过±2℃,且10min之内变化应不超过±0.02℃。
热电偶温度传感器
![热电偶温度传感器](https://img.taocdn.com/s3/m/5649e97011661ed9ad51f01dc281e53a580251fc.png)
热电偶温度传感器介绍热电偶温度传感器是一种常见的温度测量设备,广泛应用于各种工业场所和实验室中。
它通过利用热电效应测量温度,并将其转换为电信号输出。
本文将介绍热电偶温度传感器的原理、使用方法、优缺点以及应用领域。
原理热电偶温度传感器是基于Seebeck效应的原理工作的。
Seebeck效应指的是当两个不同金属或合金的两个接触点存在温度差时,会产生一个电动势。
具体来说,热电偶传感器由两种不同金属或合金的导线组成,这两条导线的一端相互接触,形成冷端,而另一端则被暴露在被测量温度的环境下,形成热端。
当热端和冷端存在温度差时,将会在两者之间产生一个电势差。
这个电势差可以通过热电偶电动势来衡量,热电偶电动势与温度之间存在一定的线性关系。
因此,通过测量热电偶电动势即可得到被测量温度的信息。
使用方法热电偶温度传感器的使用方法相对简单。
首先,将热电偶的冷端连接到测量设备,而热端暴露在被测量温度的环境中。
然后,将热电偶的接口连接到温度测量设备或控制系统中。
在使用热电偶传感器时,需要注意以下几点:1.不同类型的热电偶传感器具有不同的温度测量范围,因此需要根据实际需求选择合适的型号。
2.热电偶传感器的冷端连接需要保持良好的接触,以确保温度测量的准确性。
3.热电偶传感器的热端暴露在被测量温度的环境中时,需要避免外界因素的干扰,如热辐射、风扇等。
4.热电偶传感器的电缆长度也会对测量结果产生影响,较长的电缆会引入额外的电阻,影响电压信号的传输。
优缺点热电偶温度传感器具有以下的优点:•宽温度测量范围:热电偶传感器可以测量从极低温度到极高温度范围内的温度变化,适用于各种工业应用。
•高精度:热电偶传感器的温度测量精度较高,一般可达到几毫克或更高。
•快速响应:热电偶传感器的响应时间较短,可以实时监测温度的变化。
•耐高温性能:热电偶传感器可以在高温环境下工作,一些特殊的热电偶传感器甚至可在几千摄氏度的高温环境下工作。
•耐腐蚀性:热电偶传感器的金属或合金材料具有较好的耐腐蚀性能,适用于一些特殊的工业环境。
热电偶温度传感器简介-2
![热电偶温度传感器简介-2](https://img.taocdn.com/s3/m/b204014169eae009581bec0a.png)
几种持殊用途的热电偶
(1)铱和铱合金热电偶 如铱50铑—铱10钌热电偶它 能在氧化气氛中测量高达2100℃的高温。 (2)钨铼热电偶 是60年代发展起来的,是目前一种 较好的高温热电偶,可使用在真空惰性气体介质或氢 气介质中,但高温抗氧能力差。国产钨铼-钨铼20热 电偶使用温度范围300~2000℃分度精度为1%。 (3)金铁—镍铬热电偶 主要用在低温测量,可在 2~273K范围内使用,灵敏度约为10μV/℃。 (4)钯—铂铱15热电偶 是一种高输出性能的热电 偶,在1398℃时的热电势为47.255mV,比铂—铂铑10 热电偶在同样温度下的热电势高出3倍,因而可配用 灵敏度较低的指示仪表,常应用于航空工业。
后一种情况必须考虑输入的采样通道中除了热电动势之外还应该有冷端温度信号如果多个热电偶的冷端温度不相同还要分别采样若占用的通道数太多宜利用补偿导线把所有的冷端接到同一温度处只用一个冷端温度传感器和一个修正t0的输入通道就可以了
(一)热电偶常用材料 1.铂—铂铑热电偶(S型)
分度号LB—3
工业用热电偶丝:Φ0.5mm,实验室用可更细些。 正极:铂铑合金丝,用90%铂和10%铑(重量比)冶炼而成。 负极:铂丝。 测量温度:长期:1300℃、短期:1600℃。 特点: n 材料性能稳定,测量准确度较高;可做成标准热电偶 或基准热电偶。用途:实验室或校验其它热电偶。 n 测量温度较高,一般用来测量1000℃以上高温。 n 在高温还原性气体中(如气体中含Co、H2等)易被侵 蚀,需要用保护套管。 n 材料属贵金属,成本较高。 n 热电势较弱。
5. 冷端补偿器法
利用不平衡电桥产生热电势补偿热电偶因冷端温度变化 而引起热电势的变化值。不平衡电桥由R1、R2、R3(锰铜 丝绕制)、RCu(铜丝绕制)四个桥臂和桥路电源组成。 设计时,在0℃下使电桥平衡(R1=R2=R3=RCu),此时Uab=0 ,电桥对仪表读数无影响。 T U U E (T,T )
热电偶温度传感器设计报告
![热电偶温度传感器设计报告](https://img.taocdn.com/s3/m/6390b376ef06eff9aef8941ea76e58fafab045c6.png)
热电偶温度传感器设计报告热电偶温度传感器是一种将温度变化转化为电能输出的装置,其设计的主要目标是实现温度的准确测量和控制。
本设计报告将详细介绍热电偶温度传感器的设计过程,包括原理分析、材料选择、结构设计、制造工艺以及测试验证等方面。
热电偶温度传感器是基于塞贝克效应(Seebeck effect)工作的。
塞贝克效应是指两种不同材料组成的闭合回路中,当两个接触点处的温度不同时,回路中会产生电动势。
热电偶温度传感器就是利用这一原理,将温度变化转化为电动势变化,从而实现温度的测量。
热电偶温度传感器的主要材料包括热电偶丝和连接导线。
热电偶丝是实现温度测量的关键元件,需要具备高灵敏度、良好的稳定性和抗氧化性等特性。
常见的热电偶丝有镍铬合金、铜镍合金和铂等。
连接导线主要用于连接热电偶丝和测量仪表,应具备耐高温、抗氧化和良好的导电性能等特性。
热电偶温度传感器的结构设计应考虑测量范围、精度和稳定性等因素。
常见的热电偶温度传感器结构有铠装式和非铠装式两种。
铠装式结构具有较高的抗振性和耐磨性,适用于恶劣环境下的温度测量。
非铠装式结构则具有较小的体积和重量,适用于实验室和工业生产中的温度测量。
热电偶温度传感器的制造工艺主要包括焊接、保护涂层和校准等环节。
焊接工艺应保证热电偶丝和连接导线之间的可靠连接;保护涂层能够有效保护传感器免受腐蚀和氧化;校准环节则确保了传感器的测量精度和稳定性。
为了验证热电偶温度传感器的性能指标是否达到设计要求,需要进行一系列的测试验证。
这些测试包括灵敏度测试、线性度测试、重复性测试和稳定性测试等。
通过这些测试,可以评估传感器的测量精度、响应时间和长期稳定性等性能指标。
本文对热电偶温度传感器的设计进行了详细的介绍和分析。
通过原理分析、材料选择、结构设计、制造工艺以及测试验证等方面的探讨,我们成功地设计出一款具有高灵敏度、良好稳定性和抗氧化性的热电偶温度传感器。
该传感器能够广泛应用于各种温度测量场合,为工业自动化、实验室研究和环境监测等领域提供重要的技术支持。
《热电偶传感器》课件
![《热电偶传感器》课件](https://img.taocdn.com/s3/m/ee2f6702b207e87101f69e3143323968011cf407.png)
热电偶传感器的应用领域
工业自动化
在工业生产过程中,热电偶传感 器常用于测量各种气体和液体的 温度,控制生产过程中的温度参 数。
科学研究
在物理、化学、生物学等科学研 究中,热电偶传感器可用于测量 各种温度变化,如生物体内温度 变化、化学反应过程中的温度变 化等。
医疗领域
在医疗领域,热电偶传感器可用 于测量人体温度、血液温度等, 为医疗诊断和治疗提供重要数据 。
《热电偶传感器》PPT课件
contents
目录
• 热电偶传感器概述 • 热电偶传感器的性能参数 • 热电偶传感器的设计与优化 • 热电偶传感器的校准与标定 • 热电偶传感器的实际应用案例
01 热电偶传感器概 述
定义与工作原理
定义
热电偶传感器是一种将温度差转换为 电势差的传感器,通过测量电势差来 推算温度差。
要点二
要求
定期进行校准与标定,确保传感器性能稳定;遵循相关标 准和规范。
校准与标定的方法与步骤
方法:采用标准温度源、标准
步骤
电阻箱等设备进行校准与标定
。
01
02
1. 准备标准设备和热电偶传感 器;
03
2. 将热电偶传感器连接到标准
设备上;
04
3. 按照规定的测试条件进行测 试;
05
4. 记录测试数据并进行分析。
详细描述
在汽车发动机排放系统中,尾气温度是衡量发动机工作 状态的重要参数。热电偶传感器安装在排气管中,可以 实时监测尾气的温度变化。当尾气温度异常升高时,可 能表明发动机存在故障或燃烧不充分,需要采取相应措 施进行维修或调整。通过监测尾气温度,可以确保发动 机正常运转和排放达标,提高汽车的安全性能和环保性 能。
热电偶传感器PPT课件
![热电偶传感器PPT课件](https://img.taocdn.com/s3/m/97fb87a70242a8956aece430.png)
5.2.2 热电偶结构
1.普通工业热电偶的结构 热电极、绝缘管、 保护套管、接线盒
2.铠装热电偶
1—测量端;2—热电极;3—绝缘管; 4—保护管;5—接线盒
由金属套管、绝缘材料和热电极经焊 图5.4 普通工业热电偶结构
接密封和装配等工艺制成的坚实的组合体。
4.补偿电桥法 补偿电桥法利用不平衡电桥
产生的不平衡电势来补偿因冷端 温度变化引起的热电动势变化值, 可以自动地将冷端温度校正到补 偿电桥的平衡点温度上。
5.显示仪表零位调整法
如果热电偶冷端温度已知且 恒定,则可预先将有零位调整器 的显示仪表的指针从刻度的初始 值调至已知的冷端温度值上,这 时显示仪表的示值即为被测量的 实际温度值。
可编辑
5.1.2 热电偶的基本定律
1.均质导体定律 如果热电偶回路中的两个热电极材料相同,无论两接点的温度如何,
热电势均为零。 2.中间导体定律
在热电偶回路中接入第三种导体,只要第三种导体和原导体的两接点 温度相同,则回路中总的热电动势不变。 3.标准电极定律
如果两种导体分别与第三种导体组成的热电偶所产生的热电动势已知, 则由这两种导体组成的热电偶所产生的热电动势也就已知。 4.中间温度定律
1-热电偶;2-补偿导线;3-铜导线;4-补偿电桥 图5.5 热电偶冷端补偿电桥
可编辑
5.4 热电偶测温线路
1.测量某一点的温度
图5.6 测量某点温度
2.测量两点之间的温度差
3.温差电动势
,
若将导体A或B的两端分别置于不同的温度场t、t0中(t > t0),
在导体两端便产生了电位差,将该电位差称为温差电动势。
热电偶温度传感器
![热电偶温度传感器](https://img.taocdn.com/s3/m/d08d9c32fbd6195f312b3169a45177232f60e4fb.png)
热电偶温度传感器热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计。
热电阻温度传感器分为金属热电阻和半导体热敏电阻两大类。
热电阻广泛用于测量—200~+850°C范围内的温度,少数情况下,低温可测至1K,高温达1000°C。
热电阻传感器由热电阻、连接导线及显示仪表构成,热电阻也可以与温度变送器连接,将温度转换为标准电流信号输出。
用于制造热电阻的材料应具有尽可能大和稳定的电阻温度系数和电阻率,输出呈线性,物理化学性能稳定,复线性好等。
目前最常用的热电阻有铂热电阻和铜热电阻。
目录工作方式优点选型资料影响测量的因素工作方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机掌控装置或者其它一次仪表上。
工业用热电阻安装在生产现场,与掌控室之间存在肯定的距离,因此热电阻的引线对测量结果会有较大的影响。
国标热电阻的引线重要有三种方式1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必定存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的除去引线电阻的影响,是工业过程掌控中的最常用的。
3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻供给恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。
可见这种引线方式可完全除去引线的电阻影响,重要用于高精度的温度检测。
热电阻采纳三线制接法。
采纳三线制是为了除去连接导线电阻引起的测量误差。
这是由于测量热电阻的电路一般是不平衡电桥。
热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。
传感器及实用检测技术(第三版)热电偶
![传感器及实用检测技术(第三版)热电偶](https://img.taocdn.com/s3/m/7f7faba64bfe04a1b0717fd5360cba1aa8118c2f.png)
内容提要
1.热电效应 2.热电偶三大定律 3.材料及结构 4.温度补偿 5.测量电路
一、热电效应
赛贝克的实验仪器,加热其 中一端时,指针转动,说明
导线产生了磁场
1821年,塞贝克将两种不 同的金属导线连接在一起,构 成一个电流回路。他将两条导 线首尾相连形成一个结点,他 突然发现,如果把其中的一个 结加热到很高的温度而另一个 结保持低温的话,电路周围存 在磁场。他实在不敢相信,热 量施加于两种金属构成的一个 结时会有电流产生,这只能用 热磁电流或热磁现象来解释他 的发现。
根据热电效应的原理,任意两种不同材质的导体可作为 热电极组成热电偶。实际情况并非如此,必须严格选择。 1)热电势大,线性关系 2)性能稳定 3)响应速度快 3、三种材料的热电极相对比: 纯金属热电极:容易复制,但热电势小; 非金属热电极:热电势大、熔点高,复制性稳定性较差; 合金热电极:热电件能和工艺性介于前面两者之间。
由以上分析可知,在测量热电势时只要保证引
入导线和仪表处在T0温度场中,就不会影响热电偶 输出。
2.中间温度定律
如图所示,在任何两种匀质材料组成的热电偶回路中,
热端温度为t 、冷端温度为 该热电偶热端为t 、冷端为
t0
t
时的热电势EAB (t
时的热电势 EAB
,t0 )等于
(t , t )与
同一热电偶热端为t,冷端为t0时的热电势
因此,实际上,补偿导线并没有起到补偿作用, 而是由于延长了冷端和热端之间的距离,使得两 端温度差较大,使冷端不受热端温度的影响,从 而减小误差。
六、热电偶的应用
火药燃烧气体温度的测量 其中温度传感器选用Φ0.05mm镍铬—镍硅热电偶,该热
电偶测量最高温度为900℃。响应时间10一20ms。为防止燃 烧气体损坏传感器。传感器应于良好的团定并距气体喷口有 一定的距离。传感器测试前应进行标定。
热电式传感器经典版应用
![热电式传感器经典版应用](https://img.taocdn.com/s3/m/2607774878563c1ec5da50e2524de518964bd3ae.png)
热电式传感器经典版应用热电式传感器是一种基于热电效应原理的传感器。
它利用热电偶、热电阻等元件,将温度、热量等物理量转化为电信号,再通过电子线路进行放大、处理和显示,实现温度、热量等物理量的测量和控制。
热电式传感器在工业、科研、医疗、环保等领域得到了广泛的应用。
1.工业生产中的温度控制在工业生产中,温度是生产过程中重要的参数之一。
热电式传感器可以通过测量温度来控制生产过程中的加热、冷却等过程,保证生产过程的稳定性和产品质量的可靠性。
例如,在塑料注射成型机中,使用热电偶测量模具温度,通过控制系统实现对模具加热和冷却的自动控制,从而生产出高质量的塑料制品。
2.能源监测和节能热电式传感器可以用于能源监测和节能领域。
在电力系统中,使用热电式传感器监测发电厂、变电站等设备的温度,及时发现设备的异常情况,预防事故的发生。
同时,通过监测温度等参数,可以优化设备的运行,实现节能减排的目的。
在建筑领域,热电式传感器被广泛应用于建筑节能监测系统中,监测建筑物的能耗和室内外温度等参数,为建筑物节能减排提供数据支持。
3.环境监测和保护热电式传感器可以用于环境监测和保护领域。
在废气监测中,使用热电式传感器监测烟囱排放的废气温度,从而计算出废气中各种气体的含量,实现对环境污染的监测和治理。
在气象观测中,热电式传感器可以监测气温、风速、湿度等参数,为气象预报提供准确的数据支持。
4.医学领域的应用热电式传感器在医学领域也有广泛的应用。
在医疗设备中,例如呼吸机、麻醉机等设备中,使用热电式传感器监测患者的呼吸、心率等参数,保证患者的安全和医疗质量。
同时,在医疗诊断中,热电式传感器可以用于监测肿瘤、炎症等疾病引起的局部高温现象,为疾病诊断提供参考。
5.汽车领域的应用热电式传感器在汽车领域也有广泛的应用。
在汽车发动机中,使用热电偶测量燃烧室的温度,通过控制系统实现对发动机点火和喷油等过程的自动控制,保证汽车的正常运转。
同时,在汽车空调系统中,使用热电式传感器监测车内温度和湿度等参数,实现汽车空调系统的自动控制和调节,提高驾乘人员的舒适度和安全性。
热电偶传感器实验报告
![热电偶传感器实验报告](https://img.taocdn.com/s3/m/b0204060580102020740be1e650e52ea5418ce74.png)
热电偶传感器实验报告热电偶传感器实验报告引言:热电偶传感器是一种常用的温度测量设备,它基于热电效应原理,通过测量两个不同金属导线的温度差异来确定温度。
本实验旨在通过对热电偶传感器的实际应用和性能测试,深入了解其原理和特性。
一、实验目的本实验的主要目的是通过热电偶传感器的实际应用,探究其温度测量的准确性和稳定性。
同时,通过实验数据的分析和处理,了解热电偶传感器的线性度、响应时间等性能指标。
二、实验装置与方法实验装置主要包括热电偶传感器、温度控制器、数字温度计等设备。
首先,将热电偶传感器的两个导线分别连接到温度控制器上,并校准温度控制器的零点和量程。
然后,将热电偶传感器放置在待测物体上,调节温度控制器的输出,使得待测物体的温度逐渐升高。
同时,使用数字温度计实时监测热电偶传感器的输出温度。
三、实验结果与分析在实验过程中,我们记录了不同温度下热电偶传感器的输出电压,并将其与数字温度计测得的温度进行对比。
实验数据显示,热电偶传感器的输出电压与温度呈线性关系,符合热电效应的基本原理。
此外,我们还观察到热电偶传感器的响应时间较短,可以实时反映温度变化。
为了更好地评估热电偶传感器的性能,我们进行了数据处理和分析。
通过对实验数据的线性回归拟合,我们得到了热电偶传感器的灵敏度和线性度。
结果显示,该热电偶传感器具有较高的灵敏度和良好的线性度,能够准确测量温度。
此外,我们还计算了热电偶传感器的测量误差和稳定性。
实验结果表明,在稳定温度条件下,热电偶传感器的测量误差较小,且具有良好的稳定性。
四、实验总结与展望通过本实验,我们深入了解了热电偶传感器的原理和性能特点。
实验结果表明,热电偶传感器具有较高的准确性、灵敏度和稳定性,适用于各种温度测量场景。
然而,本实验只涉及了热电偶传感器的基本应用和性能测试,还有许多其他方面的研究有待深入探索。
未来,我们可以进一步研究热电偶传感器的温度范围、抗干扰能力以及在特殊环境下的应用等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量CPU散热片的温度应选用( C )型的 热电偶
A.普通
B.铠装 C.薄膜
标准热电偶
目前工业上常用的4种标准热电偶的组成材料为:
(1)铂铑30—铂铑6热电偶(WRLB)(分度号为B 型), 测温范围0~1800℃
这种材料组成的热电偶的熔点高,可用于较高 温度的测量,误差小,一般适用于较为精密的温 度测量。但它热电动势小,不能用于金属蒸汽和 还原介质中。
热电偶热的电动势的特点
1、当电极材料不同,并且热端温度 t和冷端温度 t0不 同时,热电偶回路才会有热电动势 ;当热电极材料选 定后,热端温度 t和冷端温度 t0的温差越大,热电动 势就越大。
2、热电动势的产生是由两种导体的接触电动势和单 一导体的温差电势两部分组成。一般情况下,热电 偶的接触电势远大于温差电势,因而回路中热电动 势的方向取决于热端的接触电势方向,电子密度大 的导体A为正极,电子密度小的导体 B为负极。
3、标准电极定律
只要测得标准电极与各种金属组成的热电 偶的热电动势,则任何两种电极配对组合 成的热电偶的热电动势就可根据标准电极 定律定律计算出,而不需要逐个测定。
热电偶测温原理
热电动势的大小与热电极A、B的长度和直 径无关,只与热电极的材料和冷、热两端 的温度有关。如果热电极的材料选定,冷 端的温度t0确定,那么热电动势就只与热端 温度t有关,所以可以通过测量热电动势的 大小得到热端的温度值,这就是热电偶测 温度的工作原理。
1、请写出热电效应的概念 2、 热电偶测温必须具备的条件是什么? 3、请写出中间导体定律和中间温度定律 4、热电偶是由哪几部分组成,有哪些结构形式
热电偶测温及参考端温度补偿
热电偶的缺点是存在冷端温度补偿问题。 根据热电偶测量原理可知,当冷端温度保持不 变时,热电偶回路的热电动势与热端温度成单 值对应关系。
导体A、B称热电极;温度 t处称为热端、工作端 或测量端;温度 t0称为冷端、参考端或自由端。
看一个实验——热电偶工作原理演示
热电极A
测量端
(工作端、 热端)
A
热电势
热电极B
自由端 (参考端、 冷端)
B
结论:当两个结点温度不相同时,回路中将产生电动势。
空中加油
请你分析一下,这种加油 方式在怎样的条件下才可 进行?
1、热电偶传感器是将(温度)变化量转变为微 小的(电动势)变化量,经放大后用来控制执行
机构的。
2、热电偶是利用( 热电 )效应制成的,热电 动势由(接触 )电势和( 温差 )电势组成。
3、( C )的数值越大,热电偶的输出热电动 势就越大。
A.热端直径
B.热端和的电导率
任务2 热电偶温度传感器
1、学习热电偶的概念及其特点 2、学习热电偶的基本定律 3、学习热电偶测温原理 4、学习热电偶的结构及标准热电偶 5、学习热电偶的冷端温度补偿法
1、热电偶的概念及其特点 2、热电偶的基本定律 3、热电偶测温原理 4、热电偶的结构及标准热电偶 5、热电偶的冷端温度补偿法
热电偶主要用来测量中高温,它的测温范
热电偶的基本定律
1、中间导体定律 在热电偶回路中接入第三种材料的导体,
只要其两端的温度相等,该导体的接入就 不会影响热电偶回路的总热电动势。
mV
A
T 01
A
t 01
T
T
B
T 02
B
t 02
(a)插入中间导体
(b)应用电路
2、中间温度定律
在热电偶测量电路中,热端温度为t,冷 端温度为t0,中间温度为t1,则(t,t0)的热 电动势等于(t,t1)与(t1,t0)热电动势 的代数和。
(2)铂铑10—铂热电偶(WRLL)(分度号为S型), 测温范围0~1600℃ 这种材料组成的热电偶可长期测量高达1600℃ 的温度,其性能稳定,精度高,适宜在氧化性介 质或中性介质中进行测量,室温下热电动势小, 不需要进行冷端补偿和修正,可作为标准热电偶。
(3)镍铬—镍硅热电偶(WREU)(分度号 为K型) , 测温范围-200~1300℃
1-热电极; 2-绝缘材料; 3-金属套管; 4-接线盒;
5-固定装置
铠装型热电偶
铠装型热电偶外形
铠装型热电偶可 长达上百米
绝缘 材料
AB
薄壁金属 保护套管 (铠体)
铠装型热电偶 横截面
法兰
测量50m深的岩石钻孔中的温度应选用 (B )型的热电偶。
A.普通
B.铠装 C.薄膜
薄膜型热电偶
薄膜型热电偶采用真空镀膜技术,由两种 金属薄膜连接而成的一种特殊结构的热电 偶,其结构示意图如图所示。适用于微小 面积上的表面温度的测量以及快速变化的 表面温度的测量。
(4)镍铬—康铜(WREA)(分度号为E型), 测温范围-200~900℃
后两者材料组成的热电偶的热电动势较 大,易测温,但测温范围小。
组成热电偶的两种材料中,写在前面的为
正极,写在后面的为负极。参考端温度为 0℃时,把热电偶的热电动势与工作端温度 之间的关系制成表格,称为热电偶的分度 表。
作业
工业测量上应用最多的是普通型热电偶。
普通装配型热电偶的外形
安装 螺纹
安装 法兰
接线盒
普通装配型热电 偶的
结构放大图
引出线套管
不锈钢保护管
固定螺纹
(出厂时用塑料包裹)
热电偶工作端(热端)
测量锅炉烟道中的烟气温度应选用( A ) 型的热电偶。
A.普通
B.铠装 C.薄膜
铠装热电偶
铠装型热电偶是把电极、绝缘材料熔铸在 一起,外套金属保护管经拉伸加工而成,它 可以做得很长、很细,在使用中可以随测量 需要进行弯曲。
围大,适用于炼钢炉、炼焦炉等高温地区 的温度测量。
热电偶测温原理
热电效应和热电动势 热电偶是利用热电效应的原理制成的。
热电效应和热电动势
将两种不同材料的导体或半导体 A和B焊接起来, 构成一个闭合回路。当导体 A和B的两个交接点 t和 t0之间存在温差时,两者之间便产生电动势 ,因而 在回路中形成一个大小的电流 ,这种现象称为热电 效应, 也称塞贝尔效应。
简答题 热电偶测温必须具备的条件是什么?
答:两种不同材料的导体 A和B组成一个闭合电 路,两交接点的温度不同
热电偶的结构
热电偶通常由热电极、绝缘管、保护套 管和接线盒等几个主要部分组成。
为满足不同生产对象的测温要求和条件, 热电偶的结构形式有:普通型电偶、铠装 型热电偶、薄膜型热电偶。
普通型热电偶