核磁共振技术及应用 综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核磁共振技术及应用

学号:2011201373 姓名:杨海源

摘要:综述核磁共振技术的基本原理与优势以及该技术作为一种检测分析手段在生物医药、食品、化工业中的应用进展。核磁共振(Nuclear Magnetic Resonance, NMR) 是以原子核自旋的共振跃迁为探测对象的谱学方法。其最基本原理是,原子核在磁场中受到磁化,自旋角动量发生进动,当外加能量(射频场)与原子核震动频率相同时,原子核吸收能量发生能级跃迁,产生共振吸收信号。此方法专属性强、准确快捷, 可与其它方法相互补充, 用于诸多环节且有很好的应用前景。但在实际的应用中也还存在一些问题, 有待于进一步深入研究。

关键词:核磁共振技术,NMR,生物,食品,石油,分析,检测

Abstract

The technology of nuclear magnetic resonance( NMR ) applying in biological medicine,food,chemical industry detection at home and abroad was summarized. The most basic principles of nuclei by magnetized in a magnetic field , the spin angular momentum precession , plus energy nuclei vibration frequency at the same time , the nuclei absorb energy level transition occurs , resonance absorption signal. According to current situation, it has some advantages in food detect ion such as fastness, accuracy, intactness. However, there are still some shortcomings, and we should further research to solve them in future.

1.前言

核磁共振( Nuclear Magnetic Resonance, NMR) 波谱学是一门发展非常迅速的科学,是一种物质与低频电磁波(通常为1000MHz的无线电波)相互作用的基本物理现象。在20世纪中期由荷兰物理学Goveter最先发现,于1946 年由哈佛大学的伯塞尔( E. M. Purcell)和斯坦福大学的布洛赫( F. Bloch )等人用实验所证实。两人因这一发现而分享了1952年诺贝尔物理学奖。初期开始在食品科学领域发挥其优势,随着该技术的不断更新,该技术在物理、化工、生物、医药、食品、航天等领域得到广泛应用。通过大批科学家的深入研究,核磁共振技术不断获得改进和创新,目前已经发展出一系列具有特殊用途的核磁共振信技术,比如核磁双共振、二维核磁共振、核磁共振成像技术、魔角旋转技术、极化转移技术等。这些技术的完善和成熟使得核磁共振技术在生产、生活、科研当中获得了广泛的应用。本文主要介绍了核磁共振技在生物医药、食品、化工业的应用进展。

2.核磁共振基本原理及特点

其最基本原理是,原子核在磁场中受到磁化,自旋角动量发生进动,当外加能量(射频场)与原子核震动频率相同时,原子核吸收能量发生能级跃迁,产生共振吸收信。原子核带有正电,许多元素的原子核进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡,自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子

核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。相比于其他传统的检测方法,核磁共振法能够保持样品的完整性,是一种非破坏性的检测手段,操作方法简单快速,测量精确,重复性高;样品无需添加溶剂,定量测定无需标样;测量结果受材料样本大小与外观色泽的影响较小,且不受操作员的技术和判断所影响。另外,利用该技术可在短时间内同时获得样品中多种组分的弛豫时间曲线图谱,从而能准确地对样品进行分析鉴定。

3.核磁共振技术在生物医药研究中的应用

NMR在生物医学领域的应用最为广泛也最受关注,蛋白质等生物大分子的三维结构和相互作用动力学的测定, 以生物大分子为靶标的药物筛选和药物分子结构优化,NMR已成为蛋白质结构与功能研究和药物研发的强有力的工具。新型NMR实验和各种同位素标记技术的综合运用在解析蛋白复合物结构相互作用界面确定中及其它复合物的研究中,往往能达到意想不到的效果,解析结构的上限提高了一个数量级。NMR弛豫弥散技术( relaxation dispersion) 是近年来蛋白质动力学研究的重要进展之一,它通过改变自旋回波时间(CPMG)来测量横向弛豫速率受到的化学交换或相互作用等慢过程的影响, 用于研究蛋白质中间态的结构和动力学过程。顺磁弛豫增强技术也是近年来NMR领域的一大突破,它可以通过测定蛋白质的动态结构变化,为复

合物形成过程中低分布的激发态蛋白的存在提供有力的结构证据。用NMR技术可研究药物与蛋白质的相互作用,其中最著名的是1996年Abbott实验室Shuker等人提出SAR-by-NMR的概念,即通过比较加入药物前后的同位素标记蛋白质NMR谱图,来确定化合物是否与蛋白质有相互作用,特别适合筛选结合较弱的药物。生物领域常用NMR方法包括转移NOE (nuclear over-hauser effect, NOE)法、饱和转移差谱STD 法、Water-LOGSY法等。其中转移NOE法灵敏度较低,适于测定离解常数在100nM与1mM之间的体系。STD是研究药物与蛋白相互作用的非常普遍并行之有效的方法之一。近年来, 它被用于检测药物8500kDa人源鼻病毒蛋rhinovirus(HRV2)的相互作用以及药物与RNA的相互作用。它和魔角旋转(MAS)技术相结合, 还可测定多糖与固体麦胚凝集素的结合等等。近年来生物NMR发展迅速, 新方法和新技术层出不穷, 研究领域不断扩展。核磁共振技术在医学临床的应用已经成为新的研究热点。主要有脑内疾病检测,非损伤性核磁共振胰胆管显像技术(MRCP)判断胰胆管疾病的方法。相对于X射线透视技术和放射造影技术,MNR对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对心、肝等功能性反应进行精确的判定。在阿尔茨海默氏症、癌症等疾病的诊断方面,核磁共振技术发挥了非常重要的作用。

4.核磁共振技术在食品分析检测中的应用

面对食品业、食品加工、分析检测技术等的快速发展与需求,核

相关文档
最新文档