数学建模论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模论文
题目生活中的数学建模问题
学院
专业班级
学生姓名
成绩
年月日
摘要钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。
关键词:获利最多,0-1变量
一.自来水输送问题
问题某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?
问题分析
分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。
模型建立
决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为x ij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。
由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有
min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190 *x31+200*x32+230*x33;
约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为
x11+x12+x13+x14=60;
x21+x22+x23+x24=70;
x31+x32+x33=40;
考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为
80<=x21+x11+x31;
50<=x12+x22+x32;
10<=x13+x23+x33;
20<=x14+x24;
x21+x11+x31<=90;
x12+x22+x32<=70;
x13+x23+x33<=40;
x14+x24<=70;
模型求解
将以上式子,输入LINGO求解,得到如下输出:
Optimal solution found at step: 10
Objective value: 25800.00
Variable Value Reduced Cost
X11 0.0000000 20.00000
X12 60.00000 0.0000000
X13 0.0000000 40.00000
X14 0.0000000 20.00000
X21 50.00000 0.0000000
X22 0.0000000 0.0000000
X23 0.0000000 10.00000
X24 20.00000 0.0000000
X31 30.00000 0.0000000
X32 0.0000000 20.00000
X33 10.00000 0.0000000
送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水
库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为
161500-68000-25800=67700元。
二.货机装运
问题某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的
体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重
量必须与其最大容许重量成比例。
现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后
所获得的利润。应如何安排装运,使货机本次飞行获利最大?
模型假设问题中没有对货物装运提出其他要求,我们可以作如下假设:
(1)每种货物可以分割到任意小;
(2)每种货物可以在一个或多个货舱中任意分布;
(3)多种货物可以混装,并保证不留空隙。
模型建立
决策变量:用X
表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表ij
示前舱、中舱、后舱。
决策目标是最大化利润,即
max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x
42+x43);
约束条件包括以下4个方面:
(1)供装载的四种货物的总重量约束,即
x11+x12+x13<=20;
x21+x22+x23<=18;
x31+x32+x33<=35;
x41+x42+x43<=15;
(2)三个货舱的重量限制,即
x11+x21+x31+x41<=15;
x12+x22+x32+x42<=26;
x13+x23+x33+x43<=12;
(3)三个货舱的空间限制,即
480*x11+650*x21+600*x31+390*x41<=8000;
480*x12+650*x22+600*x32+390*x42<=9000;
480*x13+650*x23+600*x33+390*x43<=6000;
(4)三个货舱装入重量的平衡约束,即
(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;
(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12;
模型求解
将以上模型输入LINGO求解,可以得到:
Optimal solution found at step: 10
Objective value: 155340.1
Variable Value Reduced Cost
X11 0.5055147 0.0000000
X12 6.562500 0.0000000
X13 2.286953 0.0000000
X21 11.93439 0.0000000
X22 0.0000000 2526.843
X23 6.065611 0.0000000
X31 0.0000000 0.4547474E-12
X32 0.0000000 1783.654
X33 1.599359 0.0000000
X41 0.0000000 1337.740
X42 15.00000 0.0000000
X43 0.0000000 1337.740
实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。