中职数学基础模块下册等比数列word教案

合集下载

《等比数列的前n项和公式》优质课教案

《等比数列的前n项和公式》优质课教案

《等比数列的前n项和公式》的教学设计一、教学背景分析1、教材分析:本节课是职高数学基础模块下册(高等教育出版第六章第3节第一课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系。

公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。

2、学情分析:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用。

高二学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,因势利导。

不利的因素是:本节公式的推导与等差数列前n 项和的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错。

我班的学生基础知识还行、思维较活跃,应该能在教师的引导下、合作地解决一些问题。

二、教学目标1、知识和技能目标:理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。

2、过程与方法目标:通过公式的推导,提高学生构造数列的意识及探究、分析和解决问题的能力,体会公式探究过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想。

3、情感与态度目标:通过对公式的探索过程,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。

三、重点、难点教学重点:等比数列的前n项和公式的推导和公式的简单应用。

教学难点:公式的推导方法及公式中公比q与1的关系。

四、教学方法利用多媒体辅助教学,采用“多媒体优化组合—激励—发现”式教学模式进行教学。

人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)

人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)

【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前项和公式.n 能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.n 【教学重点】等比数列的前项和的公式.n 【教学难点】等比数列前项和公式的推导.n 【教学设计】本节的主要内容是等比数列的前项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前项和公式的推导、求等比数列的项数的问题及知识的简单实际n n n 应用.等比数列前项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解n 并学会应用.等比数列的通项公式与前项和公式中共涉及五个量:n ,只要知道其中的三个量,就可以求出另外的两个量.n n S a n q a 、、、、1教材中例6是已知求的例子.将等号两边化成同底数幂的形式,利n n S a a 、、1n q 、用指数相等来求解的方法是研究等比数列问题的常用方法.n 【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】教学 过程教师行为学生行为教学意图时间*揭示课题6.3 等比数列.*创设情境 兴趣导入【趣味数学问题】从趣过 程行为行为意图间传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.质疑引导分析思考参与分析味小故事出发使得学生自然的走向知识点10*动脑思考 探索新知下面来研究求等比数列前n 项和的方法.等比数列的前n 项和为{}n a (1).321n n a a a a S ++++= 由于故将(1)式的两边同时乘以q ,得1,n n a q a +⋅= (2) 2341+=+++++ n n n qS a a a a a .用(1)式的两边分别减去(2)式的两边,得 (3)()()1111111+-=-=-⋅=-n n n n q S a a a a q a q .当时,由(3)式得等到数列的前项和公式1≠q {}n a n 总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等比数列通项公式过程行为行为意图间 (6.7)1111-=≠-nn a q S q q()().知道了等比数列中的、n 和,利用公式{}n a 1a ),1(≠q q (6.7)可以直接计算.n S 由于,11q a a q a n n n ==+因此公式(6.7)还可以写成(6.8)111-=≠-n n a a q S q q ().当时,等比数列的各项都相等,此时它的前项和1=q n 为.(6.9) 1na S n =【想一想】在等比数列中,知道了、q 、n 、、五个量{}n a 1a n a n S 中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?【注意】在求等比数列的前n 项和时,一定要判断公比q 是否为1.引导分析参与分析引导启发学生思考求解35*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为,所以等比数列的前n 项313,11-=-==q a 说明强调引领观察思考通过例题进一过程行为行为意图间和公式为,1[1(3)]1(3)1(3)4n nn S ⨯----==--故 .881(3)16404S --==-*例6 一个等比数列的首项为,末项为,各项的和4994为,求数列的公比并判断数列是由几项组成.36211解 设该数列由n 项组成,其公比为q ,则,194a =,.49n a =21136n S =于是 9421149361q q-⋅=-,即,⎪⎭⎫ ⎝⎛-=-q q 944936)1(211解得 .23q =所以数列的通项公式为 192,43n n a -⎛⎫=⋅ ⎪⎝⎭于是 ,1492943n -⎛⎫= ⎪⎝⎭即,323241⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-n 解得 .5n =故数列的公比为,该数列共有5项.23【注意】讲解说明引领分析强调含义主动求解观察思考求解领会步领会注意观察学生是否理解知识点45过 程行为行为意图间例6中求项数n 时,将等号两边化成同底数幂的形式,利用指数相等来求解.这种方法是研究等比数列问题的常用方法.现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,646419641(12)21 1.841012S -==-≈⨯-据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×g ,约合7360多亿吨.我国2000年小麦1710的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!说明思考反复强调50*运用知识 强化练习练习6.3.31.求等比数列,,,,…的前10项的和.919294982.已知等比数列{}的公比为2,=1,求.n a 4S 8S 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*巩固知识 典型例题【趣味问题】设报纸的厚度为0.07毫米,你将一张报纸对折5次后的厚度是多少?能否对折50次,为什么?【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行贷款20万元,贷款期限为5年,年利率为5.76%, 说明强调引领讲解说明观察思考主动求解通过例题进一步领会注意观察学生是否过 程行为行为意图间如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到0.000001万元)解 货款第一年后的本利和为2020 5.76%20(10.0576) 1.057620,+⨯=+=⨯第二年后的本利和为21.057620 1.057620 5.76% 1.057620,⨯+⨯⨯=⨯依次下去,从第一年后起,每年后的本利和组成的数列为等比数列…231.057620,1.057620,1.057620,⨯⨯⨯其通项公式为11.057620 1.0576 1.057620-=⨯⨯=⨯n n n a 故.55 1.05762026.462886=⨯=a 答 小王应偿还银行26.462886万元.引领分析强调含义说明观察思考求解领会思考求解理解知识点反复强调4550*运用知识 强化练习张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%,5年后应偿还银行多少钱?质疑求解强化60*理论升华 整体建构思考并回答下面的问题:等比数列的前n 项和公式是什么?结论:).1(1)1(1≠--=q qq a S n n 质疑归纳回答理解及时了解学生知识掌握情况70过程行为行为意图间).1(11≠--=q qq a a S n n 强调强化*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知等比数列{}中,求n a 13226==a S ,,3q a 与.2.等比数列{}的首项是6,第6项是,这个数列n a 316-的前多少项之和是?25564提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题6.3A 组(必做);教材习题6.3B 组(选做)(3)实践调查:运用等比数列求和公式解决现实生活中的实际问题.说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;−辈子时光在匆忙中流逝,谁都无法挽留。

高教版中职教材—数学(基础模块)(下册)电子教(学)案

高教版中职教材—数学(基础模块)(下册)电子教(学)案

【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】.从小到大依次取正整数时,cos,….的近似值(四舍五入法),,n a ,.()n N.其中,下角码中的数为项数,1a 表示第由小至大依次取正整数值时,以表示数列中的各项,因此,通常把第n 项【教师教学后记】【课题】6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力. 【教学重点】等差数列的通项公式. 【教学难点】等差数列通项公式的推导. 【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】6.3 等比数列(一)【教学目标】知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.【教学重点】等比数列的通项公式.【教学难点】等比数列通项公式的推导.【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出.【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a -b =a +(-b ),它可以通过几何作图的方法得到,即a -b 可表示为从向量b 的终点指向向量a 的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=ab a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间 *揭示课题7.1 平面向量的概念及线性运算*创设情境 兴趣导入如图7-1所示,用100N ①的力,按照不同的方向拉一辆车,效果一样吗?图7-1介绍 播放 课件引导 分析了解 观看 课件 思考 自我 分析从实例出发使学生自然的走向知识点0 3AB.也可以使用小写英文字母,印刷用黑体表示,记作手写时应在字母上面加箭头,记作a.aAB的模依次记作AB.模为零的向量叫做,零向量的方向是不确定的.模为AB与MN,它们所在的直线平行,两个向量的方向相同;向量CD与PQ所在的直线平行,两个AB与MN,方向相同,模相等;平HG与TK,方向相反,模相等.我们所研究的向量只有大小与方向两个要素.的模相等并且方向相同时,称向量= b.也就是说,种性质的向量叫做自由向量.AB= MN,GH= -TK.DA 相等的向量;DC 的负向量;)找出与向量AB 平行的向量要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.CB =DA ;BA =DC -,CD DC =-;BA //AB ,DC //AB ,CD //AB .强化练习如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写EF 相等的向量;AD 共线的向量OC 相等的向量;OC 的负向量;A D E (练习题FABOC共线的向量.AC叫做AB与位BC的和AC=AB+BC.aa bAB=a, BC=b,AC叫做向量a+b ,即AB+BC=AC(7.求向量的和的运算叫做向量的加法.上述求向量的和的方三角形法则.可以看到:依照三角形法则进行向量的加法运算,运算的结果仍然是向量,叫做AD=BC,AB+AD=AB+BC=AC这说明,在平行四边形AC所表示的向量就是AB与AD的和.这种求和向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质:a)= 0;总结归纳AB表示船速,AC为水流速度,由向量加法的平行四边形法则,AD是船的实际航行速度,显然22AD AB AC=+=12又512tan =∠CAD ,利用计算器求得即船的实际航行速度大小是流方向)的夹角约6723'︒.过程行为行为意图间图7-12 讲解说明思考求解反复强调62*运用知识强化练习练习7.1.21.如图,已知a,b,求a+b.2.填空(向量如图所示):(1)a+b =_____________ ,(2)b+c =_____________ ,(3)a+b+c =_____________ .3.计算:(1)AB+BC+CD;(2)OB+BC+CA.启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳65(图1-15)bbaa (1)(2)第1题图=OA,b OB,则-=+-+=+=.OA OB OA OB OA BO BO OA BA()=-=BA(7.OA OB观察图7-13可以得到:起点相同的两个向量a、b,-b仍然是一个向量,叫做a与b的差向量,其起点是减的终点,终点是被减向量a的终点过 程行为行为 意图 间解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即 BA = a -b .【想一想】当a 与 b 共线时,如何画出a -b .说明领会 思考 求解注意 观察 学生 是否 理解 知识 点70*运用知识 强化练习1.填空:(1)AB AD -=_______________,(2)BC BA -=______________, (3)OD OA -=______________.2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .启发 引导 提问 巡视 指导思考 了解 动手 求解可以 交给 学生 自我 发现 归纳72*创设情境 兴趣导入观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .质疑思考引导启发BbOaAba(1)(2)图7-14过 程行为行为 意图 间 类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.仔细 分析 讲解 关键 词语理解 记忆引导 启发 学生 得出 结论78*巩固知识 典型例题例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD .解 AC=a +b ,BD =b −a ,因为O 分别为AC ,BD 的中点,所以1122==AO AC (a +b )=12a +12b , OD =12BD =12(b −a )=−12a +12b . 例6中,12a +12b 和−12a +12b 都叫做向量a ,b 的线性组合,或者说,AO 、OD 可以用向量a ,b 线性表示.强调 含义说明思考 求解 领会注意 观察 学生 是否 理解 知识 点图7-16OA,使OA=12AB的模依次记作AB.a与向量的模相等并且方向相同时,称向量相等,记作计算:AB+BC+CD;(OB+BC+CA.活动探究读书部分:教材【教师教学后记】【课题】7.2 平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则OA x yi j,=+将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式(7.8).数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题7.2 平面向量的坐标表示*创设情境兴趣导入【观察】设平面直角坐标系中,x轴的单位向量为i, y轴的单位向量为j,OA为从原点出发的向量,点A的坐标为(2,3)(图7-17).则图7-172OM=i,3ON=j.由平行四边形法则知介绍质疑引导了解思考从实例出发使学生自然的走向知识点2OA OM ON =+=+i 可以看到,从原点出发的向量,其坐标在数值上与向量终点的i +=OM x 22,)x y (如图(x ,y )2212(()(i =-==-+AB OB OA x x x y 由此看到,对任一个平面向量, 使得(2,3)=OA )所示,起点为原点,终点为(,=OM x .)所示,起点为2(=-AB x x ,典型例题-19所示,用并写出它们的坐标.OM +MA (5,3)=a (4,3)=-b过 程行为 行为 意图 间【想一想】观察图7-19,OA 与OM 的坐标之间存在什么关系? 例2 已知点(2,1)(3,2)-P Q ,,求PQQP ,的坐标. 解 (3,2)(2,1)(1,3),=--=PQ (2,1)(3,2)(1,3)=--=--QP .引领 讲解 说明主动 求解会15*运用知识 强化练习1. 点A 的坐标为(-2,3),写出向量OA 的坐标,并用i 与j 的线性组合表示向量OA .2. 设向量34a i j =-,写出向量a 的坐标. 3. 已知A ,B 两点的坐标,求AB BA ,的坐标. (1) (5,3),(3,1);-A B (2) (1,2),(2,1);A B (3) (4,0),(0,3)-A B . 提问 巡视 指导思考 口答及时 了解 学生 知识 掌握 得情 况20*创设情境 兴趣导入图7-19过 程行为 行为 意图 间 【观察】观察图7-20,向量(5,3)OA =,(3,0)OP =,(8,3)OM OA OP =+=.可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和.质疑 引导 分析思考 参与 分析引导启发学生思考27*动脑思考 探索新知 【新知识】设平面直角坐标系中,11(,)x y =a ,22(,)x y =b ,则 1122()()x y x y +=+++a b i j i j1212()()x x y y =+++i j .所以1212(,)x x y y +=++a b . (7.6)类似可以得到1212(,)x x y y -=--a b . (7.7)总结 归纳思考 归纳带领 学生 总结图7-20。

中职数学(基础模块)下册第六章《数列》教学设计

中职数学(基础模块)下册第六章《数列》教学设计

6.1 数列的概念教学目标:(1)了解数列的有关概念;(2)理解数列的通项(一般项)和通项公式.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.教学过程:,.的值排成一列数为,….,依照有效数字的个数,排成一列数为,3.1416,….,n a ,.()n ∈N下角码中的数为项数,1a 表示第1项,2a 表示第依次可以表示数列中的各项,.教学目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.教学过程:6.2 等差数列(二)教学目标:理解等差数列通项公式及前n项和公式.教学重点:等差数列的前n项和的公式.教学难点:等差数列前n项和公式的推导.课时安排:2课时.教学过程:2n a -++3a a +++)1n a a =+,)a d +=1212)+=1000+111.15=12111.15形架的最下面6.3 等比数列(一)教学目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.教学过程:6.3 等比数列(二)教学目标:理解等比数列前n项和公式.教学重点:等比数列的前n项和的公式.教学难点:等比数列前n项和公式的推导.课时安排:3课时.教学过程:++n a a 式的两边分别减去(2)式的两边,得111=-a a 式得等到数列−。

等比数列教案模板范文

等比数列教案模板范文

---一、教学目标1. 知识与技能:- 理解等比数列的概念,掌握等比数列的通项公式。

- 掌握等比数列的性质,包括首项、公比、项数等。

- 熟练运用等比数列的通项公式和前n项和公式解决实际问题。

2. 过程与方法:- 通过观察、类比、归纳等方法,培养学生的逻辑思维能力。

- 通过小组讨论和合作探究,提高学生的团队协作能力。

3. 情感态度与价值观:- 体会数学在生活中的应用,增强学生对数学的兴趣。

- 培养学生严谨求实的科学态度和勇于探索的精神。

二、教学重难点1. 教学重点:- 等比数列的概念和通项公式。

- 等比数列前n项和公式的推导和应用。

2. 教学难点:- 等比数列前n项和公式的推导过程。

- 等比数列在实际问题中的应用。

三、教学准备1. 教学课件2. 多媒体设备3. 练习题四、教学过程(一)导入新课1. 复习等差数列的概念和性质。

2. 引入等比数列的概念,通过实例让学生体会等比数列的特点。

(二)新课讲授1. 等比数列的概念:- 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列就叫做等比数列。

- 公比:等比数列中,后一项与前一项的比值称为公比,记作q。

- 首项:等比数列的第一项称为首项,记作a1。

2. 等比数列的通项公式:- 公式:an = a1 q^(n-1)- 推导过程:通过实例引导学生推导出通项公式。

3. 等比数列的性质:- 性质1:等比数列的相邻两项的比都等于公比。

- 性质2:等比数列的任意两项的乘积等于这两项之间的项数的平方乘以首项。

4. 等比数列前n项和公式:- 公式:S_n = a1 (1 - q^n) / (1 - q)(q ≠ 1)- 推导过程:通过分组求和法引导学生推导出前n项和公式。

(三)巩固练习1. 完成课件中的例题和练习题。

2. 学生分组讨论,互相解答问题。

(四)课堂小结1. 回顾本节课所学内容,总结等比数列的概念、通项公式和前n项和公式。

2. 强调等比数列在实际问题中的应用。

(完整版)中职数学基础模块下册《等比数列》ppt课件

(完整版)中职数学基础模块下册《等比数列》ppt课件

讲解范例:
例1. 一个等比数列的第3项与第4项分别 是12与18,求它的第1项与第2项.
练习:
教材P.52练习第1、2题.
课堂小结
1. 等比数列的定义; 2. 等比数列的通项公式及变形式.
课后作业
1. 阅读教材P.48到P.50; 2.习题2.4A组第1题
an q (q≠0) an1
思考:
(1) 等比数列中有为0的项吗?
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列?
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列
存在吗?
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列
存在吗? (4) 常数列都是等比数列吗?
等比数列的通项公式:
通项公式一:
等比数列的通项公式:
通项公式一:
an a1 qn1(a1, q 0)
等比数列的通项公式:
通项公式一:
an a1 qn1(a1, q 0)
等比数列的通项公式:
通项公式一:
an a1 qn1(a1, q 0)
2.4 等比数列 (一)
复习引入
观察这几个数列,看有何共同特点?
1, 2, 4, 8, 16, …,263;

1, 1 , 1 , 1 ;

248
1, 20, 202, 203, … ;

1.0198, 1.01982, 1.01983, … . ④
复习引入
观察这几个数列,看有何共同特点?
1, 2, 4, 8, 16, …,263;

中职数学基础模块下册《等比数列》 ppt课件

中职数学基础模块下册《等比数列》 ppt课件
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
复习回顾
1. 等比数列的定义: 一般地,若一个数列从第二项起,
每一项与它的前一项的比等于同一个 常数,这个数列就叫做等比数列.
中职数学基础模块下册《等比数列》
5
讲授新课
1. 等比数列的定义: 一般地,若一个数列从第二项起,
a n q (q≠0) a n1
中职数学基础模块下册《等比数列》
7
思考:
(1) 等比数列中有为0的项吗?
中职数学基础模块下册《等比数列》
8
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列?
中职数学基础模块下册《等比数列》
9
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列
中职数学基础模块下册《等比数列》
14
练习:
教材P.20练习第1、2题.
中职数学基础模块下册《等比数列》
15
12
讲解范例:
例4. 一个 等比数列的第3项是45,第4项是 -135,求它的首项。
例5. 在2和8之间插入一个数G,使2,G,8 成等比数列。
中职数学基础模块下册《等比数列》
13
等比中项: 在a和b之间插入一个数G,使a,G,b成等比数
列,那么G就叫做a和b的等比中项。
G^2=ab.
容易看出, 在一个等比数列中,从第2项起,每一 项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项。
存在吗?
中职数学基础模块下册《等比数列》
10
思考:
(1) 等比数列中有为0的项吗? (2) 公比为1的数列是什么数列? (3) 既是等差数列又是等比数列的数列

等比数列的前n项和公式说课稿.doc

等比数列的前n项和公式说课稿.doc

《等比数列的前n项和公式》说课稿休宁一职高吴水仙一、教材分析:1、地位和作用《等比数列前n项和公式》是高教版中等职业教育课程改革国家规划新教材《基础模块》下册高一年级第二学期第六章第三节内容。

教学对象为高一学生,教学课时为2课时,本节课为第一课时。

在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和打下基础。

本节课既是本章的重点,同时也是教材的重点。

2、重点和难点本节的教学重点是等比数列的前n项和的公式;教学难点是等比数列前n项和公式的推导。

3、教学目标知识目标:理解等比数列前n项和公式。

能力目标:通过学习等比数列前n项和公式,培养学生处理数据的能力。

情感目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

4、教学方法本节课将采用类比推导法教学模式进行教学。

该模式能够将教学过程中的各要素进行积极的整合,使其融为一体,创造最佳的教学氛围。

5、教学手段教学中,利用多媒体等现代化教学手段来激发学生的学习兴趣,启发学生思维,增大课堂容量,提高课堂效率。

二、教学过程1、课题的引入首先给出以下实例(多媒体演示):传说国际象棋的发明人是印度的大臣西萨·班·达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏。

国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子,并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒。

计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺。

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【课题】 6.3 等比数列
【教学目标】
知识目标:
理解等比数列前n 项和公式. 能力目标:
通过学习等比数列前n 项和公式,培养学生处理数据的能力.
【教学重点】
等比数列的前n 项和的公式.
【教学难点】
等比数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等比数列的前n 项和公式,等比数列应用举例.重点是等比数列的前
n 项和公式;难点是前n 项和公式的推导、求等比数列的项数n 的问题及知识的简单实际
应用.
等比数列前n 项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解并学会应用.等比数列的通项公式与前n 项和公式中共涉及五个量:n n S a n q a 、、、、1,只要知道其中的三个量,就可以求出另外的两个量.
教材中例6是已知n n S a a 、、1求n q 、的例子.将等号两边化成同底数幂的形式,利用指数相等来求解n 的方法是研究等比数列问题的常用方法.
【教学备品】
教学课件.
【课时安排】
3课时.(135分钟)
【教学过程】
式的两边分别减去(2)式的两边,得
【教师教学后记】
−。

等比数列前n项的求和公式教学设计(1)

等比数列前n项的求和公式教学设计(1)

等比数列前n项的求和公式教学设计一、教学分析1、从在教材中的地位与作用来看本节课讲述内容是职高数学《基础模块》下册第六章第三节等比数列前n项和的公式及其应用。

2、从学生的认知角度来看学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是认知的有利因素.认知的不利因素有:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维定势是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.3、学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨.(比如,q取值问题)4、重点、难点分析:会判断等比数列,会用求和公式。

能够利用公式解决各种实际问题。

二、教学目标1、知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.2.过程与方法目标通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、错位相减法、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.3、情感、态度与价值观通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、教法分析1、在教学中,主要运用了错位相减法推导等比数列前n项和公式。

采用了“故事----问题----探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

这样容易使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系.2.前期内容准备:教学课件、围棋棋单、课堂练习题;3.教学媒体条件:支持幻灯片展示。

三、教学过程设计开门见山,揭示课题引语:大家还记得前面我们学习的等差数列、等差数列前项和公式、等比数列慨念和通项公式吗?那么等比数列前n项和怎么求呀?1、导入新课:创设情境、提出问题(幻灯片展示)提出问题:在古代一位国王想奖赏他的一位臣子,于是问他的臣子想要什么?这位聪明的臣子是这样回答的:陛下,请您在国际象棋棋盘的第一个格子内放上1粒麦粒,在第二个格子内放上2粒麦粒,第三个格子里放上4粒麦粒,第四个格子里放上8粒麦粒,。

【人教版】中职数学(基础模块)下册:6.4《数列的应用》教案(Word版)

【人教版】中职数学(基础模块)下册:6.4《数列的应用》教案(Word版)

6.4 数列的应用教学设计
【教学目标】
1. 能够应用等差数列、等比数列的知识解决简单的实际问题.
2.通过解决实际问题,培养学生分析问题、解决问题的能力,渗透数学建模的思想.
3. 在应用数列知识解决问题的过程中,培养学生勇于探索、积极进取的精神,激发学生学习数学的热情.
【教学重点】
通过数列知识的应用,培养学生分析问题、解决问题的能力和运用数学的意识.
【教学难点】
根据实际问题,建立相应的数列模型.
【教学方法】
这节课主要采用问题解决法和分组合作探究的教学方法.在教学过程中,从学生身边的实例入手,引起学生兴趣,体会所学知识的重要性.培养学生分析问题、解决问题的能力,为今后进一步学习打好基础.
【教学过程】。

《等比数列》中职数学(基础模块)下册6.3【高教版】3

《等比数列》中职数学(基础模块)下册6.3【高教版】3


但是,那却是提升成绩最快的方法。学习要带有一定程度的紧张感,坐在前面,自然而然就会紧张起来。没有必要自己费心思集中精神,那种环境就能帮助你做到。虽然看上去好像不太方便,但其实那才是最便于学习的位置。

2、不要看书,要看老师的眼睛

只要老师不是在一味地读教材,那老师的“话”就不可能和你低头看着的教材上的“文字”一致。头脑聪明的学生,也许能做到既集中精神听老师的话,又集中精神看眼前书上的内容。可是实际上大部分的学生都做不到这一点。

与此相反,如果坐在前面,首先心情就很不同,自己比别人靠前的感觉让你听课时的态度变得更积极。与老师眼神交会的机会增多,感觉就好像是老师在做一对一个人辅导。

有的学生恰恰就是因为这一点,讨厌坐在前面。和老师眼神交会非常有负担,稍微做点儿小动作就会被老师发现,非常不方便。而且坐在前面说不定还会被问到一些难以回答的问题。

认真听讲的第一个阶段就是上课时间无条件地“往前看”,上课的时候看书往往很容易开小差。摒除杂念,将视线从摊在眼前的书上移开。老师讲课的时候只看前面,集中注意力听老师嘴里说出来的话,那才是认真听讲的态度。

低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
一项的比都等于同一个不为零的常数,那么这样
的数列称为等比数列,这个常数称为公比,通常
用q(q≠0)来表示
a2 a3 a4 an1 q(q 0)
a1 a2 a3
an
在等比数列1,2,4,8,16,…中,试回答: 问题1:a6 32 , 问题2:a10 512 。

《等比数列》中职数学(基础模块)下册6.3【高教版】

《等比数列》中职数学(基础模块)下册6.3【高教版】
上述各个格子的麦粒数构成一个数列1:,2,22,23,,,263.
等比数列
新课讲授
等比数列的定义
如果一个数列{an}从第2项起,每一项与它的前一项的比都 等于同一个 不为零的常数q,则称数列{an}为等比数列,常数q称 为公比.
a
数学语言: n
qn 2.
a
n1
等比数列的通项公式
若数列{an}是首项为a1,公比为q的等比数列,则

有的学生恰恰就是因为这一点,讨厌坐在前面。和老师眼神交会非常有负担,稍微做点儿小动作就会被老师发现,非常不方便。而且坐在前面说不定还会被问到一些难以回答的问题。

但是,那却是提升成绩最快的方法。学习要带有一定程度的紧张感,坐在前面,自然而然就会紧张起来。没有必要自己费心思集中精神,那种环境就能帮助你做到。虽然看上去好像不太方便,但其实那才是最便于学习的位置。
2019/8/11
教学资料精选
13
谢谢欣赏!
2019/8/11
教学资料精选
14
是老师在上课时补充讲解的,如果不听讲很可能就会错过这些重点。

所以,上课的时间一定要专注于课堂,决不能打开别的习题集去学习,这样才是高效率的学习,才是提高成绩最快的方法。因此,困难也要先听课,那对你将来的自学一定会很有帮助,哪怕你只是记住了一些经常出现的术语,上课的内容好像马上就忘光
了,但等到你日后自己学习的时候,也能让你回想起很多内容。
⑴-⑵,得 1 q Sn a1 a1qn ,
∴当q≠1时,
Sn

a1
1 qn 1 q
当q=1时, S na
n
1
等比数列的前n项和公式
等比数列的前n项和公式:

职高最新数学基础模块下册教案

职高最新数学基础模块下册教案

【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】,….表示第【教师教学后记】【课题】6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】等差数列的通项公式.【教学难点】等差数列通项公式的推导.【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量.【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】6.3 等比数列(一)【教学目标】知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式. 能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力. 【教学重点】等比数列的通项公式. 【教学难点】等比数列通项公式的推导. 【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a ,只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力. 【教学重点】向量的线性运算. 【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件. 【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念. 向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a >b ”没有意义,而“︱a ︱>︱b ︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a -b =a +(-b ),它可以通过几何作图的方法得到,即a -b 可表示为从向量b 的终点指向向量a 的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a ,是数乘运算,其结果记作λa ,它是一个向量,其方向与向量a 相同,其模为a 的λ倍.由此得到λ⇔=a b a b ∥.对向量共线的充要条件,要特别注意“非零向量a 、b ”与“0λ≠ ”等条件. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】过程行为行为意图间图7-1 引导分析思考自我分析发使学生自然的走向知识点3*动脑思考探索新知【新知识】在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.图7-2向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.总结归纳仔细分析讲解关键词语思考理解记忆带领学生分析引导式启发学生得出结果aAB我们所研究的向量只有大小与方向两个要素.的模相等并且方向相同时,要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必指导D Aab =AB+BC=AC(三角形法则.归纳这说明,在平行四边形平行四边形法则不适用于共线向量,可以验证,向量的加22=+= AD AB ACtan∠CAD5过 程行为 行为 意图 间 12),两臂成什么角度时,双臂受力最小?图7-12 讲解 说明思考 求解反复 强调62*运用知识 强化练习练习7.1.21. 如图,已知a ,b ,求a +b .2.填空(向量如图所示): (1)a +b =_____________ , (2)b +c =_____________ , (3)a +b +c =_____________ . 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA .启发 引导 提问 巡视 指导 思考 了解 动手 求解可以 交给 学生 自我 发现 归纳65*创设情境 兴趣导入在进行数学运算的时候,减去一个数可以看作加上这个数的相反数.质疑 引导 分析 思考 参与 分析 引导启发学生思考 66 *动脑思考 探索新知(图1-15)bbaa(1)(2)第1题图观察图7-13可以得到:起点相同的两个向量a、b,仍然是一个向量,叫做a与b的差向量【想一想】当a与过 程行为 行为 意图 间 *运用知识 强化练习1.填空:(1)AB AD -=_______________,(2)BC BA -=______________, (3)OD OA -=______________.2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .启发 引导 提问 巡视 指导思考 了解 动手 求解可以 交给 学生 自我 发现 归纳72 *创设情境 兴趣导入观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .图7−15质疑引导 分析 思考 参与 分析引导启发学生思考74*动脑思考 探索新知一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4)总结 归纳思考 归纳带领 学生 分析a a a aOAB C过 程行为 行为 意图 间 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ; ()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 . 【做一做】请画出图形来,分别验证这些法则.向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数的运算的意义是不同的.仔细 分析讲解 关键 词语理解 记忆 理解 记忆引导 启发 学生 得出 结论78 *巩固知识 典型例题例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD .解 AC强调 含义思考 求解注意 观察 学生 是否图7-16AO111l =λa+μb,则称AB.的模相等并且方向相同时,称向量相等,记作读书部分:教材【教师教学后记】【课题】7.2 平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则=+i j,OA x y将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式(7.8).数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题7.2 平面向量的坐标表示*创设情境兴趣导入【观察】设平面直角坐标系中,x轴的单位向量为i, y轴的单位向量为j,OA为从原点出发的向量,点A的坐标为(2,3)(图7-17).则图7-172OM=i,3ON=j.由平行四边形法则知23OA OM ON=+=+i j.【说明】可以看到,从原点出发的向量,其坐标在数值上与向量终点的坐标是相同的.介绍质疑引导分析了解思考自我分析从实例出发使学生自然的走向知识点5由此看到,对任一个平面向量过 程行为行为意图间如图7-17所示,向量的坐标为(2,3)=OA .如图7-18(1)所示,起点为原点,终点为(,)M x y 的向量的坐标为(,)=OM x y .如图7-18(2)所示,起点为11(,)A x y ,终点为22(,)B x y 的向量坐标为2121()=--AB x x y y ,. (7.5)*巩固知识 典型例题例1 如图7-19所示,用x 轴与y 轴上的单位向量i 、j 表示向量a 、b , 并写出它们的坐标.解 因为a =OM +MA =5i +3j ,所以 (5,3)=a . 同理可得 (4,3)=-b .【想一想】观察图7-19,OA 与OM 的坐标之间存在什么关系? 例2 已知点(2,1)(3,2)-P Q ,,求PQQP ,的坐标. 解 (3,2)(2,1)(1,3),=--=PQ说明 强调 引领 讲解 说明观察 思考 主动 求解通过例题进一步领会图7-19过 程行为行为意图间 (2,1)(3,2)(1,3)=--=--QP . 15*运用知识 强化练习1. 点A 的坐标为(-2,3),写出向量OA 的坐标,并用i 与j 的线性组合表示向量OA .2. 设向量34a i j =-,写出向量a 的坐标. 3. 已知A ,B 两点的坐标,求AB BA ,的坐标. (1) (5,3),(3,1);-A B (2) (1,2),(2,1);A B (3) (4,0),(0,3)-A B . 提问 巡视 指导思考 口答及时 了解 学生 知识 掌握 得情 况20*创设情境 兴趣导入 【观察】观察图7-20,向量(5,3)OA =,(3,0)OP =,(8,3)OM OA OP =+=.可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和.质疑引导 分析思考 参与 分析引导启发学生思考27*动脑思考 探索新知 【新知识】图7-20【教师教学后记】【课题】7.3 平面向量的内积【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础. 能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力. 【教学重点】平面向量数量积的概念及计算公式. 【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角. 【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;(2)向量数量积的正确书写方法是用实心圆点连接两个向量. 教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a |公式的基础;(3)cos<a ,b >=||||⋅a ba b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;(4)“a·b=0⇔a⊥b”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】+cos30F是水平方向的力与垂直方向的力的和,垂直方向上没有.两个向量。

中职数学基础模块下册《等比数列》word教案

中职数学基础模块下册《等比数列》word教案

等比数列教案教学目标:(1)掌握等比数列的定义;归纳出等比数列的通项公式。

(2)通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;会解决关于等比数列的简单问题。

(3)进行史志教育,激发学生学习的学习兴趣;渗透数学中的类比、归纳、猜测等合情推理方法;充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的。

重难点:等比数列的定义及通项公式、性质。

教学重点:灵活应用定义式及通项公式、性质解决相关问题。

教学过程:1、复习导入:(1)等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d来表示。

(2)等差数列的通项公式:An=A1+(n-1)d(3)An=Am+(n-m)d (n>m)(4)若m+n=p+q,则Am+An=Ap+Aq.2、引入:早在春秋战国时代,我国名家公孙子龙就有个著名论断:“一尺之锤,日取其半,万世不竭。

”(用粉笔在手中演练)若设该锤的单位长度为1,则每天所得的长度构成一个数列:1/2,1/4,1/8,1/16……在此引入数学史料,进行数学史志教育。

在印度有这样一个美妙的传说,印度国王为了嘉奖国际象棋的发明者,将他召到王宫,并让他尽管提条件,这个发明者说:“请国王在国际象棋棋盘的第1个格子里放上1粒麦子,第2个格子里放上2粒麦子,第3个格子里放上4粒麦子,第4个格子里放上8粒麦子,以此类推,直到最后一个格子。

国王听后哈哈大笑,说他条件太少了,便吩咐人去办,可经办人一算,吓了一跳,发现全印度的麦子给了他还远远不够。

那在这里呢,毎格的麦子数构成了这样一个数列:1,2,4,8,……由此激发学生的学习兴趣。

3、定义:在认真考察以上两个数列,寻求他们的共同点,并对照等差数列的定义,绝大部分同学都非常轻松地自己给出等比数列的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列教案
教学目标:
(1)掌握等比数列的定义;归纳出等比数列的通项公式。

(2)通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;会解决关于等比数列的简单问题。

(3)进行史志教育,激发学生学习的学习兴趣;渗透数学中的类比、归纳、猜测等合情推理方法;充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的。

重难点:等比数列的定义及通项公式、性质。

教学重点:灵活应用定义式及通项公式、性质解决相关问题。

教学过程:
1、复习导入:
(1)等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d
来表示。

(2)等差数列的通项公式:An=A1+(n-1)d
(3)An=Am+(n-m)d (n>m)
(4)若m+n=p+q,则Am+An=Ap+Aq.
2、引入:
早在春秋战国时代,我国名家公孙子龙就有个著名论断:“一尺之锤,日取其半,万世不竭。

”(用粉笔在手中演练)若设该锤的单位长度为1,则每天所得的长度构成一个数列:1/2,1/4,1/8,1/16……在此引入数学史料,进行数学史志教育。

在印度有这样一个美妙的传说,印度国王为了嘉奖国际象棋的发明者,将他召到王宫,并让他尽管提条件,这个发明者说:“请国王在国际象棋棋盘的第1个格子里放上1粒麦子,第2个格子里放上2粒麦子,第3个格子里放上4粒麦子,第4个格子里放上8粒麦子,以此类推,直到最后一个格子。

国王听后哈哈大笑,说他条件太少了,便吩咐人去办,可经办人一算,吓了一跳,发现全印度的麦子给了他还远远不够。

那在这里呢,毎格的麦子数构成了这样一个数列:1,2,4,8,……由此激发学生的学习兴趣。

3、定义:
在认真考察以上两个数列,寻求他们的共同点,并对照等差数列的定义,绝大部分同学都非常轻松地自己给出等比数列的定义。

(在等差数列定义的基础上,用彩色粉笔改动几个关键词即可)
1、定义:等比数列的定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,则这个数列就叫做等比数列,并且这个常数叫做等比数列的公比,通常用q来表示。

2、思考:(1)常数数列是不是等比数列。

(常数数列是等差数列,但不一定是等比数列,只有非零常数数列才是等比数列,同时强调等比数列的各项不能为0,在此培养学生思维的严谨性)
(2) q不等于0
4、探索发现通项公式:
先请同学们写出上述两个实例的通项公式。

对于一般情况,公比为q的等比数列{An}的通项公式怎样求呢?由于学生有求等差数列的通项公式的经验,他们非常自然地想到用归
纳推理:
a2=a1.q
a3=a2.q=(a1.q)q=a1.q^2
a4=a3.q=(a1.q^2)q=a1.q^3
…...
由此学生便可以提出大胆的猜想:等比数列{An}的通项公式是:
An=a1.q^(n-1)
说明:在通项公式中涉及四个量,只需知其中三个便可求出另外一个量;用所得的通项公式去将上述实例的通项公式用等比数列的通项公式表示出来,加强对通项公式的掌握。

5、 练习巩固(例题讲解):
例1 一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.
解:设首项为a1,公比为q ,则
a1.q^2=12 (1)
a1.q^3=18 (2)
解(1)(2)所得的方程组得,a1=3/2, q=16/3
所以a2=a1.q=16/3*3/2=8
所以 a1=3/2 a2=8
例2 一个等比数列{An}中a1+a2=30,a3+a4=120,求a5+a6.
分析:绝大部分同学会仿照例1的解法求出首项和公比,进而求得
a5+a6(此题的解题过程在这里就不写了,但在授课过程中必须得写出来)
观察:我们不仅会解题,还要学会从每道题中获得我们更多有用的东西。

由已知:a1+a2=30,a3+a4=120,又求得a5+a6=480,所以可以给同学们这样的一个推论:(留下这道例题的题目,解题过程擦掉,然后将例2改为推论,同过增减字可得所要的推论) 推论:如果一个等比数列{An}的公比为q ,则
(1) a1+a2,a3+a4,a5+a6,…,a(n-1)+an 也为等比数列且q ’=q^2
(2) a1+a2,a2+a3,a3+a4,…,a(n-1)+an 也为等比数列且q ’=q
这个推论的过程可布置为学生的课后作业。

6、 等差数列有公式:
an=am+(n-m)d (n>m); 若m+n=p+q,则am+an=ap+aq 的结论。

那同学们能否在等比数列中得出类似的结论呢?带领学生一起探索,推导。

绝大部分同学都能归纳出结论:
(1)an=am.q^(n-m) (n>m);
(2)若m+n=p+q,则am.an=ap.aq
注意:对于公式(1),可指出它与通项公式的“一般与特殊”的关系。

7、 作业:
1) 在等比数列n a 中81=a ,21=
q ,2
1=n a ,求n S
2) 等比数列1,2,4,…求从第5项到第10项的和。

3) 设等比数列{a n }的前n 项和为S n ,S 4=1,S 8=17,求通项公式。

8、小结:
这堂课我们把等比数列与等差数列的有关概念和性质进行类比与对比,十分自然地得出等比数列的定义及其类似的性质,又非常清楚地揭示了等比数列本身的特点和规律。

课堂上推论的证明以及课后习题1、2两题。

相关文档
最新文档