气辅技术简介

合集下载

气辅注塑成型技术介绍

气辅注塑成型技术介绍

气辅注塑成型技术介绍一、前言气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程。

由于气体具有高效的压力传递性,可使气道内部各处的压力保持一致,因而可消除内部应力,防止制品变形,同时可大幅度降低模腔内的压力,因此在成型过程中不需要很高的锁模力,除此之外,气辅注塑还具有减轻制品重量、消除缩痕、提高生产效率、提高制品设计自由度等优点。

近年来,在家电、汽车、家具等行业,气辅注塑得到越来越广泛的应用,前景看好。

科龙集团于98年引进一套气辅设备用于生产电冰箱、空调器的注塑件。

現應用比較廣泛的是英國Cinpres的气体輔助系統, 現在已經和香港气体輔助注塑有限公司(GIL)合并, 現公司名稱為CGI. 目前有TCL, 東江, 格力(珠海), 新加坡富裕,神龍汽車(武漢)應用此技術.二、气辅设备气辅设备包括气辅控制单元和氮气发生装置。

它是独立于注塑机外的另一套系统,其与注塑机的唯一接口是注射信号连接线。

注塑机将一个注射信号注射开始或螺杆位置传递给气辅控制单元之后,便开始一个注气过程,等下一个注射过程开始时给出另一个注射信号,开始另一个循环,如此反复进行。

气辅注塑所使用的气体必须是隋性气体(通常为氮气),气体最高压力为35MPa,特殊者可达70MPa,氮气纯度≥98%。

气辅控制单元是控制注气时间和注气压力的装置,它具有多组气路设计,可同时控制多台注塑机的气辅生产,气辅控制单元设有气体回收功能,尽可能降低气体耗用量。

今后气辅设备的发展趋势是将气辅控制单元内置于注塑机内,作为注塑机的一项新功能。

三、气辅工艺控制1.注气参数气辅控制单元是控制各阶段气体压力大小的装置,气辅参数只有两个值:注气时间(秒)和注气压力(MPa)。

2.气辅注塑过程是在模具内注入塑胶熔体的同时注入高压气体,熔体与气体之间存在着复杂的两相作用,因此工艺参数控制显得相当重要,下面就讨论一下各参数的控制方法:a.注射量气辅注塑是采用所谓的“短射”方法(short size),即先在模腔内注入一定量的料(通常为满射时的70-95%),然后再注入气体,实现全充满过程。

气辅技术总结

气辅技术总结

气辅技术总结随着公司制模量的增多,气辅应用也越来越多,现总结如下:一.气辅的成功运用:1。

解决制品的变形问题。

如1991洗碗机控制板,由于制品材料为PP,制品较软,所以筋位和侧壁变形,经过几次改模,增加了气道,制品变形明显改善。

图1: 洗碗机控制板原因:制品冷却阶段变成了气体保压,分子有足够的动力重新取向,从而降低产品的内应力,变形减少。

由于PP料较软,效果尤其明显。

2.解决制品缩水问题:成功案例较多,如彩电前壳,2836DMG模具图2 2836 DMG模具小注:材料为ABS,制品基本壁厚为3mm,四个进气点(图中箭头所示)。

流道来解决3.节省原料,减轻制品重量,提高产品表面质量一般用于把手,制品局部壁厚过厚(如东风汽车模具3136,3138)图3 3136左右前门杂物袋小注:材料为PP,制品基本壁厚为3mm,箭头所指处为进气点。

首试时由于进气点处气道太薄,溢料井太小,导致制品大面积渗气,调整后进气可顺畅)二.气辅模具设计应注意事项1.进气口位置:A)应接近浇口,以保证气体与熔体流动方一致,但两者距离应在30mm以上,以避免气体反灌入浇口;对于热流道模具需要由浇口进气时,需在热流道部分增加控制阀,吹气时阀门关闭,避免气体倒灌进流道。

图4 :3138前门杂物袋小注:若进气点开在箭头所指处,气体是由压力低到压力高,阻力较大,难以吹出好的制品,若在所指处进则较好;同时应注意浇口与进气点的距离B)开在制品壁厚最厚的部位。

(如把手)小注:此制品材料为PP,可在填充到80%-90%时进气。

开始设计进气点为1处,此处制品壁厚较2处薄,所以改到2处较好。

同时,由于此制品为中空成型,所以溢料井必须开大,否则当气压足够大时,多余的料因无处排将造成制品被吹胀。

C)气道入口不应设置在外观面或制件承受机械外力处D)由浇口进气时,浇口厚度应大于2mm,如气辅把手,使进气顺畅,避免喷射与蠕动(因制件较厚)2.气道设计i)制品截面最好是接近圆形,避免尖角,采用大的圆角过渡,避免熔体在角部产生堆积图6:气道截面ii)采用矩形截面时,气道通常为椭圆形。

气辅注塑工艺成本降低

气辅注塑工艺成本降低

气辅注塑工艺成本降低一、气辅注塑工艺概述气辅注塑工艺是一种先进的注塑技术,它通过在塑料制品成型过程中注入惰性气体,来实现产品的内部结构优化和成本降低。

这种技术不仅能够提高产品的质量和性能,还能有效减少材料的使用量,从而达到降低成本的目的。

1.1 气辅注塑工艺的核心特性气辅注塑工艺的核心特性主要体现在以下几个方面:- 材料节省:通过注入气体,可以在保证产品强度和刚性的前提下,减少塑料材料的使用量。

- 产品性能提升:气辅注塑可以改善产品的内部结构,提高产品的强度和刚性。

- 成本降低:由于材料使用量的减少,可以显著降低产品的生产成本。

- 环境友好:减少材料使用量有助于减少塑料废弃物,对环境更为友好。

1.2 气辅注塑工艺的应用场景气辅注塑工艺的应用场景非常广泛,包括但不限于以下几个方面:- 汽车零部件:如保险杠、仪表盘等,可以减轻重量,提高强度。

- 家电产品:如电视机外壳、洗衣机外壳等,可以提高产品的耐用性和美观性。

- 包装材料:如食品包装盒、饮料瓶等,可以提高包装的强度和保护性能。

二、气辅注塑工艺的实施气辅注塑工艺的实施是一个系统化的过程,需要精确的控制和优化。

2.1 气辅注塑工艺的关键技术气辅注塑工艺的关键技术包括以下几个方面:- 注气系统:需要精确控制气体的注入量和注入时间,以保证产品的内部结构均匀。

- 模具设计:模具的设计需要考虑到气体的流动路径和分布,以确保气体能够均匀地填充产品的内部空间。

- 材料选择:选择合适的塑料材料,以确保其与气体的兼容性,以及在注塑过程中的流动性和成型性。

- 工艺参数控制:需要精确控制注塑过程中的温度、压力、速度等参数,以保证产品质量。

2.2 气辅注塑工艺的实施步骤气辅注塑工艺的实施步骤主要包括以下几个阶段:- 产品设计:在产品设计阶段就需要考虑到气辅注塑工艺的特点,设计出适合气辅注塑的产品结构。

- 模具制造:根据产品设计,制造出适合气辅注塑的模具。

- 工艺参数设定:根据产品和模具的特点,设定合适的注塑工艺参数。

气体辅助注塑成型技术

气体辅助注塑成型技术

气体辅助注塑成型技术第一章: 气体辅助注塑成型简介1、气体辅助注塑成型的发明及发展概述: 多年来,人们一直在研究中空塑料制品的成型加工技术及对塑料产品的质量改善作出研究。

1944年,Opavsky将气体或液体通过注射器注入到树脂中以达到改善产品质量为目的,但未获成功,这是最早的气辅概念研究。

我们今天所知道的气体辅助注塑成型技术是从20世纪70年代中期发展起来的,德国人Ernst Friederich是第一个发明气体辅助注塑成型工艺的人(1975年)(他的原理是将已加压的气体通过喷嘴注射到熔融物料当中,使熔融物料与模具内壁表面充分接触)。

由于当时的技术存在相当的局限性,并没有得到一定的重视。

直到80年代中期,该项技术才开始得到真正的发展及运用。

后来在欧洲出现了包括: Cinpress, Battenfeld, Ferromatik, Stork, Engel 及Johnson Controls 一批设备生产商,并在不断地改良这种技术。

到了90年代后期,气体辅助注塑成型技术得到飞速的发展及运用。

2、气体辅助注塑成型制品的两个主要类型:●封闭式气道(SINGEL GAS CHANNEL) ●开放式气道(GAS CHANNEL) 封闭式气道制品主要由一个厚壁截面和气体穿行的通道组成,如门把手、扶手、管状把手等都属于这种结构。

因为气体的扩散有一条设定好的路线(即胶料较厚,温度较高,流动性较好的部分,亦即是气体流动的方向),制品能达到最佳的节省材料的目的,而且由于制品中空结构使刚性加强而不用增加质量。

开放式气道制品主要是薄壁制品(壁厚不能少于2MM),类似于传统的加强筋结构制品。

气体会从较厚的加强筋向前扩散(及气体流动的方向:胶料相对较厚的部分,形成气道GAS CHANNEL),但气体可能会穿透制品的薄壁部分(有时会出现指形扩散:指纹效应FINGERING),即高压气体往较厚胶料或密度较低的部分渗入。

3、气体辅助注塑成型方法的优点:●制品残余应力降低●翘曲变形较小●减少/消除缩痕●简化模具设计●制品综合性能提高●缩短成型周期●合模力吨位要求降低●射胶压力降低4、气体辅助注塑成型适用材料: ABS、ABS/PC、HIPS、PA、PBT、PC、PS、PVC、PET、PP、PPE等第二章: 气体辅助注塑成型的方法及原理 1、气体辅助注塑成型的原理:通过管道与模具连接,把高压气体(氮气)注入到模腔的塑料熔体中,形成局部的中空,加速产品冷却成型。

气体辅助注射成型技术原理及应用

气体辅助注射成型技术原理及应用
可应用于各种塑料产品上,如电视机或音 箱外壳、汽车塑料产品、家具、浴室、厨具、 家庭电器和日常用品、各类型塑胶盒和玩具等。 具体而言,主要体现为以下几大类:
气体辅助注射成型技术原理及应用
气体辅助注射成型技术的应用
● 管状和棒状零件,如门把手、转椅支座、吊 钩、扶手、导轨、衣架等。这是因为,管状结 构设计使现存的厚截面适于产生气体管道,利 用气体的穿透作用形成中空,从而可消除表面 成型缺陷,节省材料并缩短成型周期。
气体辅助注射成型技术原理及应用
在进行模具设计之前,利用MoldFlow MPI 5.0对设计方案进行了模拟。 分析模型如图8所示,在该分析模型中确定了浇口及进气口位置。在模拟中, 设定预注射量为70%,熔体温度为230℃,注射时间为3s,延迟时间为1.5s, 气体压力为20MPa。
气体辅助注射成型技术原理及应用
● 可通过气体的穿透减轻制品重量,节省原材料 用量,并缩短成型周期,提高生产率。
● 该技术可适用于热塑性塑料、一般工程塑料及 其合金以及其他用于注射成型的材料。
气体辅助注射成型技术原理及应用
气体辅助注射成型技术的缺点是:
●需要增加供气和回收装置及气体压力控制单元, 从而增加了设备投资;对注射机的注射量和注射 压力的精度要求有所提高;制品中接触气体的表 面与贴紧模壁的表面会产生不同的光泽;制品质 量对工艺参数更加敏感,增加了对工艺控制的精 度要求。
气体辅助注射成型CAE分析的主要作用是:
1.分析产品的成型工艺性 2.评价模具的设计是否合理 3.优化成型工艺参数 4.预测制品可能出现的缺陷
气体辅助注射成型技术原理及应用
下面以成型把手为例,介绍气体辅助注射成型 CAE分析的过程。
如图7所示的把手材料为ABS,手柄位置壁厚为14mm。由于是外观件,对 其成型要求很高。

气体辅助注射成型【范本模板】

气体辅助注射成型【范本模板】

气体辅助注射成型2.1气体辅助注射成型概述气体辅助注塑成型技术是一项新兴的塑料注射成型技术,此技术最早可追溯到1971年,美国尝试用加气注射成型方法制造中空鞋跟,但未取得成功,1983年英国采用低发泡注射成型法制造建筑材料时衍生出控制塑料制品内部压力的成型方法,称之为气体辅助注射成型.该技术很快得到迅速的发展,推动各行业的进步。

1、气体辅助注射成型的适用范围气体辅助注射成型最大的优点是制品由于中空结构使刚性增加而不用增加质量,有时还能减轻.由气体辅助注射成型制品有两大类:1)封闭式气道封闭式气道制品主要是由一个厚壁截面和气体穿行的通道组成.如门把手、扶手、框架结构、中空管等.2)开放式气道开放式气道制品主要是薄壁元件,类似于传统的加强筋结构制品。

2、气体辅助注塑技术的优点主要有:1)制品残余应力降低2)翘曲变形较小3)减少/消除缩痕4)更大的设计自由度5)制品综合性能提高6)与结构发泡相比,制品外观质量的到改善7)中空制品有以下特点-—更加易于填充——物料流动距离更长-—刚度与质量之比更大8)与实心制品相比成型周期缩短9)合模力吨位要求降低10)注射压力降低11)气道取代热流道系统从而使模具成本降低3、气体辅助注塑技术的缺点主要有:1)专利使用权限制。

2)附加的成本,一方面是气体辅助注射成型的专用设备要求的一定的附加费用;另一方面是气体的使用。

3)气体喷嘴的设计及位置的选择相当的困难。

4、材料大多数热塑性塑料都可用于气体辅助注射成型加工,表1-1列出了一些常用的材料聚醚酰亚胺HDPE5、设计注意事项:气体辅助注射成型制品的优化设计需要注意以下三点:1)气道布局的优化2)气道尺寸与制品相关3)平衡物料填充方式气道在模腔内的布局既包括气体喷嘴的定位,也包括气道进入模具位置的选择,气体会沿着阻力最小的方向向前流动。

在物料进入模具之后,模腔中压力最小的地方必须靠近气道的末端,这个压力差会促使气流沿着预期流道前进,从而推动物料充满整个型腔。

气辅注射成型原理与技术

气辅注射成型原理与技术

气体注射控制基本参数
1、 2、 3、 4、
熔体温度 熔体预注射量
气体延迟时间
气体注射与保压压力
5、
气体注射时间
气辅注射成型工艺的应用
1、厚壁、偏壁及管棒状制品
*制品内部掏空,减少缩水,减少冷却
时间,气压在制品中均匀传递降低 制品的翘曲和变形;
如:生产塑胶椅子扶手,采用气辅工艺以前, 质量为2。4KG,且收缩十分严重,冷却时 间长;采用气辅注射工艺后,成品质量为1。 8KG,减重达25%,收缩消失,冷却时间减 少至原来的10%;
*制品一体化程度高,可一次成型得到 制品
如:电话听筒,传统的注塑是将两个塑件分别 注射然后再粘贴焊接而成一体;采用气辅注 射,直接把制品掏空,一次得到制品;
2、平板状制品
*对于大型平板制品,传统注射最 容易发生的问题是翘曲,而且生 产时由于流程长,投影面积大锁 模力高;采用气辅注射后,由于气道 的引流作用和短射,大大降低了 锁模力,翘曲减少或完全消失, 提高了尺寸稳定性和钢度,避免 了缩痕; 例如:海尔生产 的电冰箱面板,采用 气辅工艺后,翘曲减少,锁模力由 1700T下降到700T与传统的注塑相比下 降了58.8%,效果明显;
1、设计多样化,外观 优秀 2、外观改善、电镀效 果好、减少或消除后 筋板的缩水减小、内部保压
大型平 板制品
3、家庭用品:桌面、板式家具 4、低压成型、锁模力
4、残留应力小,翘曲减小或消除
目前国内注塑厂家气辅注射的应用情况
1、家电生产(电视机)
长虹、康佳、海信、海尔、 福日、熊猫、飞利浦、厦华、 荣事达等 2、汽车内饰件 上海研丰(上海大众)、四 川航天(富康) 、 哈尔滨塑料九厂(松花江赛 马)等

气体辅助注塑成型技术简介.

气体辅助注塑成型技术简介.
气体辅助注塑成型技术简介
一、气体辅助注塑原理:
气体辅助注塑原理是把高压氮气经气辅 主控制器(分段压力控制系统)直接注射入 模腔内塑化塑料里,使塑件内部膨胀而造成 真空,但仍然保持产品表面的外形完整无缺, 减小产品表面的收缩、产品变形和翘曲,从 而达到提高产品的质量,降低成本的目的。
二、采用气体辅助注塑技术的优点:
应用气辅技术的国内公司:康佳、长虹、创维、科龙、 美的、海信等等;上海延锋伟世通、浙江远翅、上海龙贤汽 配、余姚塑料四厂、宁波国雅汽车内饰件厂以及各类注塑厂 都应用了气辅技术。
四、气体辅助注塑整系统的原理图:
A、整套系统
氮气 发生 器
低压 贮气缸
电动 高压 增压机
高压 贮气缸
气辅 主控 制器
单相电源 压缩空气 三相电源
六、气道形式:
• C、全部中空
七、我厂第一副气辅产品-前门拉手 (LZ111-6402101)
八、前门拉手采用气辅方案:
八、前门拉手采用气辅方案:
谢谢!
——END——
B、简易系统
氮气 缸瓶
气动 高压 增压机
压缩空气
单相电源
高压 贮气缸
气辅 主控 制器
单相——以定量塑化塑料充填入模腔内。所需塑料 份量要通过试验找出来,以保证在充氮期间,气体不 会把成品表面冲破及能有一理想的充氮体积。
2、充气期——注塑期中或后,不同时间注入气体,气体 注入的压力必需大于注塑压力,以达至产品成中空状 态。
模具的工作寿命; 7、降低注塑机的锁模压力,可高达50%; 8、提高注塑机的工作寿命和降低耗电量。
三、气体辅助注塑技术的应用:
基本上所有用于注塑的热塑性塑料及一般的工程材料 (如PS、HIPS、PP、ABS…)都适用于气辅技术。

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。

当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。

当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。

气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。

成型者希望以低制造成本生产高质量的产品。

在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。

通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。

使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。

1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低;2、减少锁模压力:低的注射压力使合模力降低,可以使用小吨位机台;3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性;4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%;5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半;6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高;7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型;8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命;9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低;10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。

第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴;第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央;第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;第四阶段:塑胶件的中空部分继续保持高压,压力迫使塑料向外紧贴模具,直到冷却下来;第五阶段:塑料制品冷却定型后,排除制品内部的高压气体,然后开模取出制品。

气体辅助成型综述

气体辅助成型综述

注射成型产品及模具设计综述引言:人们很早就开始研究如何彻底消除裂痕而又能节省材料的有效方法。

曾经研究过的方法有低压注塑、气体补压注塑、混合注塑、气体发泡成型等,但效果都不很理想。

气体辅助注塑工艺是将气体直接注入熔胶中,气体内的压力抵消了塑料在冷却过程中的体积收缩。

用这种方式注塑出来的制品,不仅没有裂痕,而且还有许多其他的优越性。

气体辅助注射成型技术(简称:气辅成型)是20世纪80年代在结构发泡成型工艺基础上发展起来的一项新兴的塑料注射成型技术,是塑料注射成型工艺技术中的一项革命。

气辅成型应用在最近一、二年来有强劲的增长趋势,它具有多种优点,但因为经验不足和气体不易控制,增加了气辅成型产品开发上的困难。

简要介绍:气辅注射模塑,又称气体注射模塑是一种创新的注射成型工艺。

它是自住复式螺杆注射机问世以来.注射成型工业上最重要的发展之一,它能用于生产无内应力、表面光滑且无凹陷的大型制件.在生产较厚的制件时,气辅注射模塑还可以通过减少所需的夹紧吨位、用材量和循环时间来降低制件成本.气辅注射模塑的工艺过程如图1所示。

首先把部分熔融的塑料注射到模具中.我们称此为“欠料注射”。

紧接着再注入一定体积或一定压力的惰性气体(通常为氮气)到熔融塑料流中。

由于靠近模具表面部分的塑料温度低、表面张力高.而处在制件较厚部分中心的塑料熔融体的温度高、粘度低,致使气体易于在制件较厚的部位(如加强筋)形成空腔.而被气体所取代的熔融塑料被推向模具的末端,形成所要成型的制件。

在气辅注射模塑中.由于气体的压力始终使塑料紧贴着模具的表面.制件较厚部分的外表面不能形成“凹陷”.大大提高了制件的质量。

此工艺不但简化了模具设计,降低了模具成本.还增加了制件设计的灵活性。

在合理的设计下,可使制件的重量比传统注射模塑减少10--50%,且使制件得到较高的强度与重量比。

另外。

氮气充满制件的气体压力与传统注射模塑所需的压力柑比要小得多.因此所需的模具夹紧力也较小。

外门把手气辅工艺介绍

外门把手气辅工艺介绍
外门把手气辅工艺介绍
目 录
• 气辅工艺简介 • 外门把手气辅工艺流程 • 外门把手气辅工艺的优势 • 外门把手气辅工艺的挑战与解决方案 • 外门把手气辅工艺的未来发展
01 气辅工艺简介
气辅工艺的定义
气辅工艺的原理
在塑料熔体注入模具的过程中,高压气体被注入到熔体中,随着注射的进行, 气体在熔体中形成气泡并膨胀,推动熔体向模具的各个角落流动,最终充满整 个模腔。
感谢您的观看
05 外门把手气辅工艺的未来 发展
未来发展方向
智能化
随着人工智能和物联网技术的发 展,外门把手气辅工艺将向智能 化方向发展,实现自动化控制和
智能调节。
绿色环保
随着环保意识的提高,外门把手气 辅工艺将更加注重环保和节能,采 用更加环保的材料和工艺,降低能 耗和排放。
定制化
随着消费者需求的多样化,外门把 手气辅工艺将更加注重产品的个性 化定制,满足不同消费者的需求。
未来技术革新
新材料的应用
3D打印技术的应用
随着新材料技术的发展,外门把手气 辅工艺将采用更加优质、耐用的材料, 提高产品的质量和寿命。
随着3D打印技术的发展,外门把手气 辅工艺将采用3D打印技术进行快速原 型制造和小批量生产。
智能控制技术的提升
通过提升智能控制技术,实现更加精 准的气辅工艺控制,提高产品的稳定 性和可靠性。
未来市场前景
汽车行业的持续发展
随着汽车行业的持续发展,外门把手气辅工艺的市场需求将不断 增长。
新能源汽车的崛起
随着新能源汽车的崛起,外门把手气辅工艺在新能源汽车领域的应 用也将逐渐增加。
智能出行的趋势
随着智能出行的发展,外门把手气辅工艺在智能车门系统中的应用 也将得到推广。

气辅注塑原理

气辅注塑原理

气辅注塑原理气辅注塑是一种新型的注塑技术,它是在传统注塑技术的基础上发展而来的。

它采用了气体辅助注塑的原理,通过在注塑过程中注入气体,使得塑料材料在注塑过程中得到更好的填充和冷却,从而提高了注塑产品的质量和生产效率。

气辅注塑的原理是在注塑过程中,通过在模具中注入气体,使得塑料材料在注塑过程中得到更好的填充和冷却。

在注塑过程中,塑料材料会受到很大的压力,这会导致塑料材料在注塑过程中出现缩孔、气泡等缺陷。

而气辅注塑技术可以通过注入气体的方式,使得塑料材料在注塑过程中得到更好的填充和冷却,从而避免了这些缺陷的产生。

气辅注塑技术的优点在于可以提高注塑产品的质量和生产效率。

在传统注塑技术中,塑料材料在注塑过程中往往会出现缩孔、气泡等缺陷,这会导致注塑产品的质量下降。

而气辅注塑技术可以通过注入气体的方式,使得塑料材料在注塑过程中得到更好的填充和冷却,从而避免了这些缺陷的产生。

同时,气辅注塑技术还可以提高注塑产品的生产效率,因为它可以使得塑料材料在注塑过程中更加均匀地填充模具,从而减少了注塑周期和注塑成本。

气辅注塑技术的应用范围非常广泛,它可以用于生产各种塑料制品,如塑料零件、塑料容器、塑料管道等。

在汽车、电子、医疗、家电等行业中,气辅注塑技术已经得到了广泛的应用。

在汽车行业中,气辅注塑技术可以用于生产汽车零部件,如仪表板、门板、座椅等。

在电子行业中,气辅注塑技术可以用于生产电子产品外壳、键盘、鼠标等。

在医疗行业中,气辅注塑技术可以用于生产医疗器械、医疗用品等。

在家电行业中,气辅注塑技术可以用于生产电视机外壳、空调外壳、洗衣机外壳等。

气辅注塑技术是一种非常有前途的注塑技术,它可以提高注塑产品的质量和生产效率,同时还可以应用于各种行业中。

随着科技的不断发展,气辅注塑技术将会得到更加广泛的应用,为各行各业的发展带来更多的机遇和挑战。

气辅成型技术

气辅成型技术

气辅成型技术在注塑业中又称气体辅助住宿和中空成型,在近10年来发展起来的革新成型技术,也可说是注塑技术的第二次革命。

目前该技术主要用于汽车、大型家电等大件注塑行业。

其主要原理是:先注入一定量的熔融塑胶(通常为90%-98%,以产品的总胶量而言)可通过分析计算+经验。

然后再在熔融塑胶内注入高压氮气,高压氮气在熔融的塑胶内沿预设的路径形成气道(最好是和流向一致当然有特殊具体情况你决定)。

使不到100%的熔融塑胶充满整个模腔,此后进入保压阶段,同时冷却,最后排气、脱模。

高压氮气进入塑料后自然会穿越粘度低(温度高)和低压的部位,并中在冷却过程中利用气体高压来保压而紧贴模具壁成型。

此项技术除需传统注塑设备外,还需所体辅助注塑控制系统(新科益有MDI控制器)。

与传统的注塑成型相比,气体辅助注塑成型有下列优点:1.减少内部的残留应力,从而减弱甚至完全消除翘曲变形状况,同时增加其机械强度和刚性。

2.成品壁厚部分的中央是中空的,可以减少原料,特别是短射和中空型的模具,塑料最多可以节约达30%。

3.减少或消除加强筋造成的表现收缩凹陷现象。

4.降低制品的收缩不均,提高制品的精密度。

5.设备耗减,大量减少锁模力,可以用小吨位的注塑机替代大吨位的注塑机。

6.利用气道来形成加强结构,提高成品的强度。

7.减少射入点。

8.缩短成期。

9.厚薄比大的制品也能通过气辅一次成型。

10。

改变传统成品设计观念,能使用一体化设计来减少附属的零组件。

缺点:1.由于所体具有压缩特征因而不容易作精确控制,加上对周围操作环境敏感,因此工艺的重复性与稳定性比传统工艺差。

2.国内技术和经验问题导致资源较浪费(废品率高)。

目前用于的产品有:汽车门把手、座椅、保险杠、门板、电视机外客、空调、冰箱、马桶........你说呢曾做过:汽车门把手、门板、雪上摩托前罩三类7款。

气体辅助注塑成型的预注塑部分与普通注塑成型一样,主要增加了一个氮气注射和回收系统。

根据注气压力产生方式的不同,目前,常用的气体注射装置有以下两种:(1)不连续压力产生法即体积控制法,如Cinpres公司的设备,它首先往汽缸中注入一定体积的气体(通常是氮气),然后采用液压装置压缩,使气体压力达到设定值时才进行注射充填。

气辅技术

气辅技术

一、什么是气辅注塑
它是利用高压惰性气体在注塑件内部产生中空截面,并推动 熔体完成充填过程的一项技术。原理是当氮气注入熔胶后, 沿着阻力最小的路径形成中空的连续通道,包括了3个方面:
1、氮气容易进入产品的厚截面处; 2、氮气从高压处向低压处推动熔胶;
3、氮气推动熔胶充填模腔最后的位置。
二、气辅注塑的分类及应用
11 多型腔多气道成形产品,是否一条气道由一路气来控制成形。
6 气道周边气道白印
气道边缘材料在气道内部气压作用下受挤压而造成边缘一 条白色痕迹。此白印因气辅局部气体保压造成完全消除比较困 难,从工艺角度可减轻。
1 降低气辅成形压力,此白印会减轻。
(包括前面提到解决产品串气在模具上作的改进方法也适用)
2 模具气道边缘皮纹长时间受侧向积压,轻微变形,模具喷砂处理 后白印会减轻。
3 产品皮纹深度深,会掩盖此缺陷。表面白印不会很明显。
(深皮纹对气辅成形有利:A 可掩盖缩瘪,白印缺陷。B 深皮纹产 品同模具表面接触面积大,散热快可提高气道外壁同内部熔融料 的温差,有利于气辅成形。)
4 材料颜色 :浅色材料产品此缺陷不明显 ,黑色材料产品此缺陷 明显。
1 产品气道表面缩瘪
A 整条气道缩瘪 1 产品是否吹气, 气道不吹通产品表面肯定缩瘪 2 吹气压力是否偏低?吹气保压压力低无法抵御材 料收缩引起表面缩瘪。 3 溢料井是否完整?溢料井不完整,吹气压力在溢料井 处被卸压,气道内实际压力低于显示压力。 4 溢料口及溢料冷流道偏小。溢料口和溢料冷流道偏小,气道 内废料不能在短时间内吹出,引起气道表面缩瘪。
b气道未被完全吹通,溢料井未被填满,吹气压力低或发生气针堵塞导 致废料无法完全吹出引起表面缩瘪。调整吹气压力和检查气路是否通 畅。

气辅注塑专业知识课件

气辅注塑专业知识课件
• 降低生产成本
– 因为降低了壁厚,所以降低了零件成品旳总重量. – 因为壁厚较小,所以缩短了冷却时间和循环时间. – 因为降低了锁模力和注塑保压压力,能源消耗成本降低. – 因为零件旳集成化,从而降低了装配成本.
• 降低投资成本
– 因为注射压力较低,所以能够降低注塑机旳锁模压力,可使用吨位较小旳注塑 机.辅注塑原理简介 • 二、气辅注塑应用范围 • 三、气辅注塑优点 • 四、气辅注塑模具设计注意事项 • 五、气辅注塑设备简介
一、气辅注塑原理简介
• 原理:气体辅助注塑系统,这个先进旳系统和技术,是把惰性气体(一般
用氮气)经由分段压力控制系统直接注射入模腔内旳塑化塑料里,使塑件 内部膨胀而造成中空,但依然保持产品表面旳外形完整无缺。
同老式注射成型工艺相比.应用气体辅助注塑技术,有下列优点:
• 自由设计
– 综合功能较为复杂旳塑胶零件能够整装为单一旳组件. – 能够在同一零件上结合厚壁和薄壁部分. – 使用空心旳"加强筋"部分能够提升其强度.
• 提升零件质量
– 因为减小了微收缩,所以扭曲和变形就降低了. – 消除缩痕. – 因为注射点旳数量降低,所以波纹和熔接线也相应降低.
– 因为注射压力较低,从而降低模式具制造成本.
– 因为注射压力较低使模具旳损耗降低,从而降低了维修成本.
四、气辅注塑模具简介
• 气体辅助注塑模具与一般旳塑胶模在构造上没太多差
别,就只是增长了一种气针,但设计气辅模具旳几种
基本要点需尤其注意
1.首先考虑哪些壁厚处需要注气掏空,然后再决定怎样用气道将它们连接 起来
• 氣輔注塑成型可被認爲是中空吹塑成型旳變型,其過程是先向模具腔中注
入經過準確計量旳占模腔一定百分比旳塑膠熔體,這一過程稱爲“欠料注 塑”,再直接往熔融塑膠中注入一定體積和壓力旳高壓氮氣,氣體在塑膠 熔體旳包圍下沿著阻力最小旳方向擴散前進。由於靠模壁部分旳塑膠溫度 低,表面粘度高,而製作較厚部分中心塑膠熔體旳溫度高,粘度低,所以 氣體轻易對中心塑膠熔體進行穿透和排空,在製件旳厚部形成中空氣道, 而被氣體所排空旳熔融塑膠又被氣體壓力推向模具末端直至充滿模具型腔, 在冷卻階段壓縮氣體對塑膠熔體進行保壓補縮。待製品冷卻凝固後再卸氣, 然後開模頂出。

气辅成型

气辅成型

气辅成型(GIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术.要点:1、计量管理。

2、利用气辅控制器把高压氮气直接压入到模腔内熔胶里。

3、使塑件内部膨胀而造成中空。

编辑本段气辅成型的优点1、降低产品的残余应力,使产品不变形。

2、解决和消除产品表面缩痕问题,应用于厚度变化大的产品。

3、降低注塑机的锁模力,减少成型机的损耗。

4、提高注塑机的工作寿命。

5、节省塑胶原材料,节省率可达百分之三十。

6、缩短产品生产成型周期时间,提高生产效率。

7、降低模腔内的压力,使模具的损耗减少和提高模具的使用寿命。

8、对某些塑胶产品,模具可采用铝合金属材料。

9、简化产品的繁复设计。

编辑本段气辅成型过程• 合模• 射座前进• 熔胶充填• 气体注入• 预塑计量(气体保压)• 射座后退(排气卸压)• 冷却定型• 开模• 顶出制件编辑本段气体辅助注塑周期1、注塑期以定量的塑化塑料充填到模腔内。

(保证在充气期间,气体不会把产品表面冲破及能有一理想的充气体。

)2、充气期可以注塑期中或后,不同时间注入气体。

气体注入的压力必需大于注塑压力,以致使产品成中空状态。

3、气体保压期当产品内部被气体充填后,气体作用于产品中空部分的压力就是保压压力,可大大减低产品的缩水及变形率4、脱模期随着冷却周期的完成,模具的气体压力降至大气压力,产品由模腔内顶出。

编辑本段气辅成型所需的条件• 注塑成型机• 气体的来源(氮气发生器)• 输送气体的管道• 控制氮气有效流动的设备(氮气控制台)• 带有气道设置的成型模具(气辅模具)编辑本段成型条件的设定1、注塑机的设定o 原材料的烘干温度与传统成型一致o 料筒的塑化温度比传统注塑偏高o 模温要求较严,冷却水路布置要使冷却效果均衡o 注塑压力与传统注塑基本一致o 注塑速度一般采用高速填充2、氮气设备的设定a、氮气发生器的压力一般设定在30MPA左右b、氮气控制台要素的设定(延迟时间、气体压入时间、气体保持时间、气体放气时间、压力的设定、气体速率)气辅注塑成型技术 2009-6-22 中国设备网文字选择:大中小气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程,使产品形成真空。

气体辅助注射成型技术简介

气体辅助注射成型技术简介
保证; (4) 气道的末端避免是模具上的死角, 应留有一定的空间。 2.2 GAIM 工艺
影响气体穿透的参数有熔体注射速度、模具温度、熔体温度、气体延迟时间、初始气体 压力、熔体注射体积等等,这些因素之间相互作用、相互影响。因此,GAIM 工艺参数难于 确定。 2.3 CAE 分析技术
由于 GAIM 存在着大量的不确定性和难控制因素,CAE 技术的应用才显得更加重要。 通过 CAE 分析可在计算机上实现对熔体充模的全过程模拟、对多种进浇方案进行比较、调 整工艺参数、预测缺陷出现的部位、优化模具设计、降低生产成本等。
图 7 活动型芯法
3.特点
与传统的注射成型技术相比,GAIM 技术具有一些明显的优点,使其发展迅速,同时也 有一定的局限性。 3.1 GAIM 技术的优点 (1)可用于成型壁厚差异较大的制品,且能保证壁厚差异较大制品的成型质量;(壁厚的地方 形成中空) (2)可降低注射压力和锁模力;(一般采用“缺料”注射充填型腔) (3)可消除缩痕,提高表面质量;(避免了因浇口提前冷却补料不充分造成的缩痕) (4)降低制品的翘曲变形;(气压作用面压力相等且可不减小地作用较长时间) (5)节省材料,减轻制品质量,缩短成型周期; (6)可在不增加制品重量的情况下,通过气体加强筋增加制品截面惯性矩,从而增加制品的 刚度和强度; (7)为制件结构和模具设计拓展了思路,设计可塑性好,可成型各种结构复杂的零件; (8)对模具材质的要求也大大地降低,可以用材质要求不高的模具如铝制材料等; (9)延长模具使用寿命,降低模具制造成本。 3.2 GAIM 技术的缺点 (1)许多技术的使用需要得到专利许可; (2)需要专用的气辅设备和模具,使用净化的氮气,使其前期投资成本提高; (3)成型工艺控制难度增大,控制参数较多,参数间的相互影响关系复杂,对成型工艺的控 制精度要求提高; (4)对注塑机的注射量和注射压力的精度要求有所提高; (5)制品注入气体的表面与未注入气体的表面会产生不同的光泽; (6)对操作人员和工艺师的素质要求较高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整的气辅注塑系统,应由A 高压氮气源设备、 B高压氮气传输管道及C 气辅压力控制器三部分组成。
A 高压氮气源设备包含氮气机或氮气发生器,隔膜式压缩机。
气辅设备系统方案
B、高压氮气管网说明: 根据标准的注塑成型车间设计,推荐用户选用标准耐高压管网来输送高压氮气,同时将具 备生产条件的注塑机周边都安装高压氮气出口,从而保证有多台注塑机具备气辅工艺使用条 件;
• 缩短成型时间,提高生产效率,减轻制品重量; • 延长模具使用寿命,降低模具制造成本; • 降低锁模力,射胶力合注塑机耗电量;
气辅设备系统方案
气辅设备简要说明:
由于气辅注塑的技术特点,高压气体必须在塑料成型过程中注入产品内 部,因此必须使用惰性气体才能避免塑料发生氧化反应,而氮气是工业领 域中最经济安全的惰性气体。
气辅压力控制器
B
注塑成 型机
氮气机
A
压缩机
气辅机 C
谢 谢! Thanks!
气辅成型技术
• 气体辅助注塑成型是一种新型的塑料加工技术, 该技术充分利用了气体能均匀,有效地传递压力的 特点,使气辅GIT技术具有一系列传统注塑成型无 法比拟的优越性。
气辅工艺原理
气体辅助注塑技术优势
• 消除产品表面缩痕和表面凝斑,改善产品表面质量,使制 品表面光滑、饱满、美观;
• 降低产品出模后残余内应力,减轻翘曲变形,提高新产品 强度;
气体辅助注塑成型技术简介
Gas Assisted Injection Moulding
• 气辅成型技术
气辅成型是通过在气辅模具型腔中预先通入由氮气流峰的流动状态,从而使熔体对模具表面有更好的复制效果; 同时气辅GIT技术也可以通过在熔体内部建立保压通道,解决厚 壁胶位外观容易出现缩痕的问题。
C、气辅压力控制器说明: 根据气辅产品特点,选择使用相应的单路、双路或四路气辅压力控制设备配合气辅模具
进行生产。 喷嘴进气类气辅模具进行气辅工艺时,使用相应的单路压力控制设备即可配合气辅模具
进行生产。
工业化量产,使用氮气发生器自产氮气方案 流程示意图
低压氮气发生器
自 备 空 气 源
隔膜压缩机控制系统
相关文档
最新文档