2019年江苏高考数学模拟试卷(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
β⊂m α⊂n n
m //高考数学精品复习资料
2019.5
20xx 年江苏高考数学模拟试卷(一)
第1卷(必做题,共160分)
一、填空题:本大题共14小题,每小题5分,共70分.
1.设复数z 满足()i i z i 23+-=+(i 为虚数单位),则z 的实部是 . 2.若全集U {}23|||2,{|log (1)1}x x A x x =<=-<,则A =U ð .
3
若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为 分.
4.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现
向上的点数之和为4的概率是 .
5.运行如图所示程序框图后,输出的结果是 . 6.设m ,n 是两条不同的直线,α,β是两个不同的平面, 给出下列命题:
(1)若, , , ,则 ; (2)若, , , ,则 ; (3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为
.
7.已知圆C 经过直线022=+-y x 与坐标轴的两个交点,又经过抛物线x y 82
=的焦点,则圆C 的一般方程为 .
8.已知集合2
{|(1),}A x x a a x a =+≤+∈R ,a ∃∈R ,使得集合A 中所有整数的元素和为28, 则a 的范围是
____ ____.
9.如图,ABC ∆是边长为P 是以C 为圆心,
1为半径的圆上的任意一点,则BP AP ∙的最小值 .
10.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线
交C 于点D ,且FD BF 2=,则C 的离心率为 . (第9题图) 11.已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常
数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v = .
12.已知△ABC 中,设,,,,,a b c A B C ∠∠∠分别为的对边长,AB 边上的高与AB 边的长相等,则2
b a
c a b ab
++的
最大值为 .
13.将一个长宽分别是,(0)a b b a <<的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若
这个长方体的外接球的体积存在最小值,则
a
b
的取值范围是 . 14.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .
二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)已知函数21()(1)sin sin()sin()tan 44
f x x m x x
x ππ
=+
++-, (1) 当m =0时,求()f x 在区间(0,)2
π
上的取值范围;
(2) 当tan 2α=时, 3
()5
f α
=,求m 的值.
16.(本小题满分14分)已知正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.
(1) 求证:11B D AE ⊥; (2) 求证://AC 平面1B DE .
P
B
A
C
(第5题图)
βα//βα//β⊥m α
//n n m ⊥
17.(本题满分14分)如图,有一位于A处的雷达观测站发现其北偏东45°,与A相距
海里的B处有一
货船正以匀速直线行驶,20分钟后又测得该船只位于观测站A北偏东45θ
︒+(其中
1
tan,045
5
θθ
=︒<<︒)
且与观测站A
相距海里的C处.
(1)求该船的行驶速度v(海里/小时);
(2)在离观测站A的正南方20海里的E处有一暗礁(不考虑暗礁的面积),如货船不改变航向继续前行,该货船是否有触礁的危险?试说明理由.18.(本小题满分16分)已知双曲线
22
1.
62
x y
-=
(1)点P在以双曲线的顶点为焦点,焦点为顶点的椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由;
(2)平行于CD的直线l交椭圆E于M、N两点,求CMN
∆面积的最大值,并求此时直线l的方程.
B A
19.(本小题满分16分)设12,x x 是()()32
1,,032
a b f x x x x a b R a -=
++∈>的两个极值点,()f x 的导函数是()y f x '=
(1)如果1224x x <<< ,求证:()23f '->; (2)如果1212,2x x x <-= ,求b 的取值范围; (3)如果2a ≥ ,且()2112
2,,x x x x x -=∈时,
函数()()()22g x f x x x '=+-的最小值为()h a ,求()h a 的最大值.
20.(本小题满分16分)如果无穷数列{a n }满足下列条件:①
a n +a n +2
2
≤a n +1;② 存在实数M ,使得a n ≤M ,其中n ∈N *,那么我们称数列{a n }为Ω数列.
(1) 设数列{b n }的通项为b n =5n -2n ,且是Ω数列,求M 的取值范围; (2) 设{c n }是各项为正数的等比数列,S n 是其前n 项和,c 3=14,S 3=7
4
,
证明:数列{S n }是Ω数列;
(3) 设数列{d n }是各项均为正整数的Ω数列,求证:d n ≤d n +1.