2020年初三数学中考模拟试题(带答案)

合集下载

2020年湘教版九年级数学中考模拟试卷含答案

2020年湘教版九年级数学中考模拟试卷含答案

浙教版 2020 年九年级中考数学模拟试卷含分析答案题号一二三总分得分注意事项:1 .答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击改正第I 卷的文字说明评卷人得分一.选择题(共 12 小题, 12*3=36 )1 .的值是()A.1 B.﹣ 1 C.3 D.﹣ 32 .已知 x2﹣3x+1=0 ,则的值是()A.B. 2 C.D.33 .如图,在数轴上表示实数的可能是()A.点 P B.点 Q C.点 M D.点 N4.从甲、乙、丙、丁四人中选一人参加诗词大会竞赛,经过三轮初赛,他们的均匀成绩都是 86.5 分,方差分别是 S 甲2 =1.5 ,S 乙2=2.6 ,S 丙2=3.5 ,S 丁2=3.68 ,你以为派谁去参赛更适合()A.甲B.乙C.丙D.丁5 .一个几何体由大小同样的小正方体搭成,从上边看到的几何体的形状图以下图,其中小正方形中的数字表示在这个地点小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.6 .计算﹣ ? 的结果是()A.B.C.D.7 .某种长途电话的收费方式以下:接通电话的第一分钟收费 a 元,以后的每分钟收费 b元,假如某人打一次该长途电话被收费m 元,则此次长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8 .以下图,两个含有30 °角的完整同样的三角板 ABC 和 DEF 沿直线 l 滑动,以下说法错误的选项是()A.四边形 ACDF 是平行四边形B.当点 E 为 BC 中点时,四边形 ACDF 是矩形C.当点 B 与点 E 重合时,四边形ACDF 是菱形D .四边形 ACDF 不行能是正方形9 .若不等式组的解集为x>3,则a的取值是()A.a≤6B. a≥6C.a<6D.a≤010 .如图,点 A 、B 的坐标分别为( 0,2)、(2 ,0),⊙ C 的圆心坐标为(﹣ 1,0 ),半径为 1 ,若点 D 为⊙ O 上的一个动点,线段DB 与 y 轴交于点 E,则△ABE 面积的最小值为()A.1B.2C.2﹣D.4﹣11 .已知二次函数y=ax 2 +bx+c (a≠0)的图象以下图,以下结论:①抛物线的对称轴为 x= ﹣ 1;② abc=0 ;③方程 ax2 +bx+c+1=0有两个不相等的实数根;④不论x 取何值, ax2 +bx ≤a﹣b .此中,正确的个数为()A.4B.3C.2D.112 .如图,已知边长为 4 的正方形 ABCD ,E 是 BC 边上一动点(与 B、C 不重合),连结 AE,作 EF⊥ AE 交正方形的外角∠ DCG 的均分线于点 F,设 BE=x ,△ECF 的面积为 y ,以下图象中,能大概表示y 与 x 的函数关系的是()A.B.C.D.第Ⅱ卷(非选择题)请点击改正第Ⅱ卷的文字说明评卷人得分二.填空题(共 6 小题, 4*6=24 )13 .分解因式( xy ﹣1 )2﹣( x+y ﹣2xy )( 2﹣ x﹣ y) = .14 .如图是按以下步骤作图:( 1)在△ABC 中,分别以点 B,C 为圆心,大于BC 长为半径作弧,两弧订交于点 M ,N ;( 2)作直线 MN 交 AB 于点 D;( 3)连结 CD ,若∠ BCA=90 °AB=4,,则 CD 的长为.15 .对于 x 的一元二次方程 x 2﹣ 2kx+k 2﹣k=0 的两个实数根分别是 x1、x2,且 x12 +x 22 =4 ,则 x 12﹣x1x2 +x 22的值是.16 .如图,△AOB , AB∥x 轴, OB=2 ,点 B 在反比率函数 y= 上,将△AOB 绕点 B 逆时针旋转,当点 O 的对应点 O′落在x 轴的正半轴上时, AB 的对应边 A′B恰巧经过点O,则 k 的值为.17 .如图,动点 P 从( 0,2 )出发,沿所示的方向在矩形网格中运动,每当遇到矩形的边时反弹,反弹时反射角等于入射角,若第一次遇到矩形的边时坐标为P1(2,0),则 P2017的坐标为.18 .如图, MN 为⊙ O 的直径,四边形ABCD ,CEFG 均为正方形,若OM=2,则EF 的长为.评卷人得分三.解答题(共7 小题, 60 分)19 .( 6 分)解方程组:.20 .(8 分)有甲、乙、丙三种糖果混淆而成的什锦糖100 千克,此中各样糖果的单价和数目以下表所示,商家用加权均匀数来确立什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元 / 千克)152025千克(千克)304030(1 )该什锦糖的单价为元/千克.(2 )为了使什锦糖的单价每千克起码降低 2 元,商家计划在什锦糖中再加入甲、乙两种糖果共 100 千克,则最少需要加入甲种糖果多少千克?21 .( 8 分)某公司计划购置甲、乙两种学惯用品800 件,资助某贫穷山区希望小学,已知每件甲种学惯用品的价钱比每件乙种学惯用品的价钱贵10 元,用 400 元购置甲种学惯用品的件数恰巧与用320 元购置乙种学惯用品的件数同样.(1 )求甲、乙两种学惯用品的价钱各是多少元?(2 )若该希望小学需要乙种学惯用品的数目是甲种学惯用品数目的 3 倍,依据此比率购买这 800 件学惯用品所需的资本为多少元?22 .(8 分)如图①, AE 是⊙ O 的直径,点 C 是⊙ O 上的点,连结 AC 并延伸 AC 至点D ,使 CD=CA ,连结 ED 交⊙ O 于点 B.(1 )求证:点 C 是劣弧的中点;(2 )如图②,连结EC,若 AE=2AC=4 ,求暗影部分的面积.23 .( 10 分)问题研究(1 )如图①,已知正方形ABCD 的边长为 4 .点 M 和 N 分别是边 BC、 CD 上两点,且 BM=CN ,连结 AM 和 BN ,交于点 P.猜想 AM 与 BN 的地点关系,并证明你的结论.(2 )如图②,已知正方形ABCD 的边长为 4.点 M 和 N 分别从点 B、C 同时出发,以同样的速度沿 BC、CD 方向向终点 C 和 D 运动.连结 AM 和 BN ,交于点 P,求△APB 周长的最大值;问题解决(3 )如图③, AC 为边长为 2的菱形ABCD的对角线,∠ABC=60 °M.和点 N 分别从点 B、C 同时出发,以同样的速度沿 BC、CA 向终点 C 和 A 运动.连结 AM 和 BN ,交于点 P.求△APB 周长的最大值.24 .(10 分)如图, BC 是路边坡角为 30 °,长为10 米的一道斜坡,在坡顶灯杆CD 的顶端 D 处有一探射灯,射出的边沿光芒DA 和 DB 与水平路面 AB 所成的夹角∠DAN 和∠DBN 分别是 37 °和60 °(图中的点A 、B、C、D、M 、N 均在同一平面内, CM ∥AN ).(1 )求灯杆 CD 的高度;(2 )求 AB 的长度(结果精准到0.1 米).(参照数据:=1.73 .sin37 °≈0.60 ,cos37 °≈0.80 , tan37 °≈0.75 )25 .( 10 分)已知,矩形 OABC 在平面直角坐标系的地点以下图,点B的坐标为(8,10 ),抛物线 y=ax 2+bx+c经过点O,点C,与AB交于点D,将矩形OABC沿CD折叠,点 B 的对应点 E 恰巧落在 OA 上.(1 )求抛物线 y=ax 2 +bx+c 的表达式;(2 )若点 P 在抛物线上,点 Q 在抛物线的对称轴上,能否存在这样的点P、Q ,使得以点 P、Q 、C、E 为极点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明原因.参照答案与试题分析一.选择题(共12 小题)1.的值是()A.1B.﹣ 1C.3D.﹣ 3【剖析】直接利用立方根的定义化简得出答案.【解答】解:= ﹣1.应选: B.【评论】本题主要考察了立方根,正确掌握立方根的定义是解题重点.2 .已知 x2﹣3x+1=0 ,则的值是()A.B.2C.D.3【剖析】先依据 x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0 ,∴x2=3x ﹣ 1 ,∴原式==.应选: A.【评论】本题考察的是分式的化简求值,熟知分式混淆运算的法例是解答本题的重点.3 .如图,在数轴上表示实数的可能是()A.点 P B.点 Q C.点 M D.点 N【剖析】依据数的平方估出介于哪两个整数之间,从而找到其对应的点.【解答】解:∵<<,∴2<<3,点 Q 在这两个数之间,应选: B.【评论】本题考察了无理数的估量以及数轴上的点和数之间的对应关系,解题的重点是求出介于哪两个整数之间.4.从甲、乙、丙、丁四人中选一人参加诗词大会竞赛,经过三轮初赛,他们的均匀成绩都是 86.5 分,方差分别是 S 甲2 =1.5 ,S 乙2=2.6 ,S 丙2=3.5 ,S 丁2=3.68 ,你以为派谁去参赛更适合()A.甲B.乙C.丙D.丁【剖析】依据方差是反应一组数据的颠簸大小的一个量.方差越大,则均匀值的失散程度越大,稳固性也越小;反之,则它与其均匀值的失散程度越小,稳固性越好可得答案.【解答】解:∵1.5 <2.6 <3.5 <3.68 ,∴甲的成绩最稳固,∴派甲去参赛更好,应选: A.【评论】本题主要考察了方差,重点是掌握方差越小,稳固性越大.5 .一个几何体由大小同样的小正方体搭成,从上边看到的几何体的形状图以下图,其中小正方形中的数字表示在这个地点小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.【剖析】由已知条件可知,从正面看有 3 列,每列小正方数形数目分别为4,3,2;从左面看有 3 列,每列小正方形数目分别为 1, 4,3 .据此可画出图形.【解答】解:由俯视图及其小正方体的散布状况知,该几何体的主视图为:该几何体的左视图为:应选: B.【评论】本题主要考察了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数同样,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数同样,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6 .计算﹣?的结果是()A.B.C.D.【剖析】先进行二次根式的乘法法例运算,而后化简后归并即可.【解答】解:原式 =3﹣=3﹣=.应选: C.【评论】本题考察了二次根式的混淆运算:先把各二次根式化简为最简二次根式,而后进行二次根式的乘除运算,再归并即可.7 .某种长途电话的收费方式以下:接通电话的第一分钟收费 a 元,以后的每分钟收费 b元,假如某人打一次该长途电话被收费m 元,则此次长途电话的时间是()A.分钟B.分钟C.分钟D.分钟【剖析】打电话的时间 = (m ﹣超出 a 元的钱数 +b )÷b ,把有关数值代入即可.【解答】解:此次长途电话的时间是分钟,应选: C.【评论】考察列代数式;获得打电话所用两个时间段的和的关系式是解决本题的重点.8 .以下图,两个含有30 °角的完整同样的三角板 ABC 和 DEF 沿直线 l 滑动,以下说法错误的选项是()A.四边形 ACDF 是平行四边形B.当点 E 为 BC 中点时,四边形 ACDF 是矩形C.当点 B 与点 E 重合时,四边形ACDF 是菱形D .四边形 ACDF 不行能是正方形【剖析】依据平行四边形、矩形、菱形、正方形的判断方法一一判断即可.【解答】解: A 、正确.∵∠ACB= ∠ EFD=30 °,∴AC ∥DF,∵AC=DF ,∴四边形 AFDC 是平行四边形.故正确.B、错误.当 E 是 BC 中点时,没法证明∠ACD=90 °,故错误.C、正确. B、E 重合时,易证 FA=FD ,∵四边形 AFDC 是平行四边形,∴四边形 AFDC 是菱形,D 、正确.当四边相等时,∠AFD=60 °,∠FAC=120AFDC°,∴不四可边能形是正方形.应选: B.【评论】本题考察平行四边形的判断、矩形的判断、菱形的判断.正方形的判断等知识,解题的重点是娴熟掌握特别四边形的判断方法,属于中考常考题型.9 .若不等式组的解集为 x>3 ,则 a 的取值是()A.a≤6B. a≥6C.a<6D.a≤0【剖析】分别求出每一个不等式的解集,依据口诀:同大取大,联合不等式组的解集即可确立 a 的范围.【解答】解:解不等式 2x+a <3 (x+1 )得: x>a﹣3,解不等式>,得:x>3,∵不等式组的解集为 x> 3,∴a﹣3 ≤3,解得: a≤6,应选: A.【评论】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键10 .如图,点 A 、B 的坐标分别为( 0,2)、(2 ,0),⊙ C 的圆心坐标为(﹣ 1,0 ),半径为 1 ,若点 D 为⊙ O 上的一个动点,线段DB 与 y 轴交于点 E,则△ABE 面积的最小值为()A.1B.2C.2﹣D.4﹣【剖析】因为 OA 的长为定值,若△ ABE 的面积最小,则BE 的长最短,此时 AD 与⊙ O 相切;可连结 CD ,在 Rt△ADC 中,由勾股定理求得AD 的长,由△AEO ∽△ACD ,求出 OE 的长即可解决问题;【解答】解:若△ABE 的面积最小,则 AD 与⊙ C 相切,连结 CD ,则 CD ⊥AD ;Rt △ACD 中, CD=1 , AC=OC+OA=3;由勾股定理,得: AD=2;∵∠AOE= ∠ADC ,∠OAE= ∠DAC ,∴△AOE∽△ADC ,∴=,∴=,OE=,∴BE=2 ﹣,∴△ABE 的面积的最小值 = ?BE?AO=2 ﹣,应选: C.【评论】本题主要考察了切线的性质、相像三角形的性质、三角形面积的求法等知识;可以正确的判断出△ BE 面积最小时 AD 与⊙ C 的地点关系是解答本题的重点.11 .已知二次函数y=ax 2 +bx+c (a≠0)的图象以下图,以下结论:①抛物线的对称轴为x= ﹣ 1;② abc=0 ;③方程ax2 +bx+c+1=0 有两个不相等的实数根;④不论x 取何值, ax2 +bx ≤a﹣b .此中,正确的个数为()A.4 B. 3 C.2 D.1【剖析】由抛物线的张口方向判断 a 的符号,由抛物线与y 轴的交点判断 c 的符号,然后依据对称轴及抛物线与x 轴交点状况进行推理,从而对所得结论进行判断.【解答】解:∵抛物线与 x 轴的交点坐标为(﹣ 2 ,0 ),( 0,0 ),∴对称轴为 x== ﹣1,故①正确;∵抛物线张口向下, a<0 ,抛物线与原点订交, c=0 ,∴abc=0 ,故②正确;∵c=0 ,∴b 2﹣ 4a(c+1 )=b 2﹣ 4a > 0,故③正确;当 x= ﹣ 1 时,抛物线有最大值,∴不论 x 取何值, ax2 +bx+c ≤a﹣b+c ,即 ax2+bx ≤a﹣b ,故④正确.正确的为①②③④,应选: A.【评论】本题主要考察二次函数图象与系数的关系,掌握二次函数y=ax 号由抛物线张口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 定是解题的重点.2 +bx+c系数符轴交点的个数确12 .如图,已知边长为 4 的正方形 ABCD ,E 是 BC 边上一动点(与 B、C 不重合),连结 AE,作 EF⊥ AE 交正方形的外角∠ DCG 的均分线于点 F,设 BE=x ,△ECF 的面积为 y ,以下图象中,能大概表示y 与 x 的函数关系的是()A.B.C. D .【剖析】过 F 作FG⊥ BC 于G,求出FG=CG ,求出△BAE∽△GEF,得出= ,求出FG=x ,代入 y=×CE×FG求出分析式,依据分析式确立图象即可.【解答】解:过 F 作 FG⊥BC 于 G,∵四边形 ABCD 是正方形,∴∠ DCG=90 °,∵CF 均分∠DCG,∴∠FCG=∠ DCG=45°,∵∠ G=90 °,∴∠GCF= ∠ CFG=45 °,∴FG=CG ,∵四边形 ABCD 是正方形, EF⊥AE,∴∠B= ∠G= ∠ AEF=90 °,∴∠BAE+ ∠ AEB=90 °,AEB+∠ ∠ FEG=90 °,∴∠BAE= ∠FEG,∵∠B= ∠ G=90 °,∴△BAE∽△GEF,∴=,∵BE=x ,∴EG=BC ﹣ BE+CG=4 ﹣x+FG ,∴=,解得: FG=x ,∴y=×CE×FG=×(4﹣x)?x,即: y=2x ﹣x2,应选: C.【评论】本题考察了动点问题的函数图象、正方形性质、角均分线定义、三角形面积的计算、相像三角形的性质和判断的应用等知识,能用x 的代数式把 CE 和 FG 的值表示出来是解决问题的重点.二.填空题(共 6 小题)13 .分解因式( xy ﹣1 )2﹣( x+y ﹣2xy )( 2﹣ x﹣ y) =(y﹣1)2(x﹣1)2.【剖析】式中 x+y ;xy 多次出现,可引入两个新字母,突出式子特色,设 x+y=a ,xy=b ,将 a、b 代入原式,进行因式分解,而后再将x+y 、xy 代入进行因式分解.【解答】解:令 x+y=a , xy=b ,则( xy ﹣1 )2﹣( x+y ﹣2xy )( 2 ﹣x﹣y)=(b ﹣1 )2﹣( a﹣ 2b )( 2 ﹣a)=b 2﹣ 2b+1+a2﹣2a﹣2ab+4b=(a2﹣ 2ab+b 2) +2b ﹣ 2a+1=(b ﹣a)2 +2 (b ﹣a)+1=(b ﹣a+1 )2;即原式 = (xy﹣ x ﹣y+1 )2=[x (y ﹣1)﹣( y﹣1 )] 2=[ (y﹣ 1 )(x﹣1 )] 2= (y ﹣1)2 (x﹣1 )2.故答案为:( y ﹣1 )2( x﹣ 1 )2.【评论】本题考察了多项式的因式分解,因式分解要依据所给多项式的特色,选择适合的方法,对所给多项式进行变形,套用公式,最后看结果能否切合要求.14 .如图是按以下步骤作图:(1)在△ABC 中,分别以点B,C 为圆心,大于BC 长为半径作弧,两弧订交于点M ,N ;(2)作直线 MN 交 AB 于点 D;(3)连结 CD,若∠ BCA=90 °AB=4,,则 CD 的长为 2.【剖析】利用基本作图可判断MN垂直均分BC,依据线段垂直均分线的性质获得DB=DC ,再证明 DA=DC ,从而获得 CD= AB=2 .【解答】解:由作法得 MN 垂直均分 BC,∴DB=DC ,∴∠B= ∠BCD,∵∠B+ ∠ A=90 °,BCD+∠ ∠ ACD=90 °,∴∠ACD= ∠A,∴DA=DC ,∴CD= AB=×4=2.故答案为 2.【评论】本题考察了作图﹣基本作图:娴熟掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线).15 .对于 x 的一元二次方程 x 2﹣ 2kx+k 2﹣k=0 的两个实数根分别是x1、x2,且 x12 +x 22=4 ,则 x 12﹣x1x2 +x 22的值是 4 .【剖析】依据根与系数的关系联合x1+x 2=x 1 ?x2可得出对于 k 的一元二次方程,解之即可得出 k 的值,再依据方程有实数根联合根的鉴别式即可得出对于k 的一元二次不等式,解之即可得出k 的取值范围,从而可确立k 的值.【解答】解:∵x2﹣2kx+k 2﹣k=0 的两个实数根分别是x1、x2,∴x1+x 2=2k ,x 1?x2 =k 2﹣k ,∵x12 +x 22=4 ,∴=4 ,(2k )2﹣2(k 2﹣k ) =4 ,2020年湘教版九年级数学中考模拟试卷含答案2k 2 +2k ﹣ 4=0 ,k 2+k ﹣2=0 ,k= ﹣2 或 1,∵△= (﹣ 2k )2﹣4×1×(k2﹣k )≥0 ,k≥0,∴k=1 ,∴x1?x2 =k 2﹣k=0 ,∴x12﹣x1 x2+x 22 =4 ﹣0=4 .故答案为: 4 .【评论】本题考察了根的鉴别式以及根与系数的关系,娴熟掌握“当一元二次方程有实数根时,根的鉴别式△≥0 ”是解题的重点.16 .如图,△AOB , AB∥x 轴, OB=2 ,点 B 在反比率函数 y=上,将△AOB绕点B逆时针旋转,当点 O 的对应点 O′落在x 轴的正半轴上时, AB 的对应边 A′B恰巧经过点O,则 k 的值为.【剖析】先求得△BOO′是等边三角形,即可求得B的坐标,而后依据待定系数法即可求得双曲线的分析式;【解答】解:( 1 )∵AB ∥x 轴,∴∠ABO= ∠ BOO′,∵∠ABO= ∠ A′ BO′,2020年湘教版九年级数学中考模拟试卷含答案∴∠ BOO′ =∠ OBO′,∴OO′ =O′ B,∵ OB=BO′,∴△ BOO′是等边三角形,∴∠ BOO′ =60 °,∵OB=2 ,∴B(1,);∵双曲线 y=经过点B,∴k=1 ×=,故答案为.【评论】本题考察了反比率函数图象上点的坐标特色,旋转的性质,等边三角形的判断和性质,待定系数法求反比率函数的分析式等,求得△BOO′是等边三角形是解题的键.17 .如图,动点 P 从( 0,2 )出发,沿所示的方向在矩形网格中运动,每当遇到矩形的边时反弹,反弹时反射角等于入射角,若第一次遇到矩形的边时坐标为P1(2,0),则 P2017的坐标为(2,0).【剖析】依据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组挨次循环,用 2017 除以 6,依据商和余数的状况确立所对应的点的坐标即可.【解答】解:如图,经过 6 次反弹后动点回到出发点( 0 ,2),∵2017 ÷ 6=336 1 ,∴当点 P 第 2017 次遇到矩形的边时为第336 个循环组的第 1 次反弹,点 P 的坐标为( 2,0).故答案为:( 2 ,0 ).【评论】本题考察了对点的坐标的规律变化的认识,作出图形,察看出每 6 次反弹为一个循环组挨次循环是解题的重点.18 .如图, MN 为⊙ O 的直径,四边形ABCD ,CEFG 均为正方形,若OM=2,则EF的长为2.【剖析】连结 OD 、 OF,作 OH ⊥AD 于 H ,如图,利用垂径定理获得 AH=DH ,再证明 OC= AD ,设正方形 ABCD 的边长为 x,利用勾股定理 x2 +x 2 = (2 )2,解得x=4 (x= ﹣4 舍去),而后设正方形CEFG 的边长为 a,在 Rt △OFG 中利用勾股定理获得 a2 + (2+a )2= ( 2)2,于是解对于a的方程即可.【解答】解:连结 OD 、OF ,作 OH ⊥AD 于 H ,如图,则 AH=DH,∵四边形 ABCD 为正方形,∴四边形 OCDH 为矩形,∴OC=AD ,设正方形 ABCD 的边长为 x,在 Rt△OCD 中,∵OD=2,OC=x,CD=x ,∴ x2+x 2= ( 2)2,解得x=4(x=﹣4舍去),设正方形 CEFG 的边长为 a,则 FG=a , OG=2+a ,在 Rt△OFG 中, a2 + (2+a )2= ( 2)2,解得a=2,即 EF=2 .故答案为 2.【评论】本题考察了垂径定理:垂直于弦的直径均分这条弦,而且均分弦所对的两条弧.也考察了正方形的性质和勾股定理.三.解答题(共7 小题)19 .解方程组:.【剖析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+ ②得: 8x=24 ,解得: x=3 ,把 x=3 代入②得: y= ﹣ 5,则方程组的解为.【评论】本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20 .有甲、乙、丙三种糖果混淆而成的什锦糖100 千克,此中各样糖果的单价和数目如下表所示,商家用加权均匀数来确立什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元 / 千克)152025千克(千克)30 40 30(1 )该什锦糖的单价为20 元/ 千克.(2 )为了使什锦糖的单价每千克起码降低 2 元,商家计划在什锦糖中再加入甲、乙两种糖果共 100 千克,则最少需要加入甲种糖果多少千克?【剖析】(1 )依据单价 = 三种糖果的总价÷三种糖果的总质量,由此即可得出结论;(2 )设需加入甲种糖果x 千克,则加入乙种糖果( 100 ﹣x)千克,依据单价 = 总价÷数量联合单价不超出18 元 / 千克,即可得出对于x 的一元一次不等式,解之即可得出x 的取值范围,取其内的最小值即可.【解答】解:( 1 )( 15 ×30+20 ×40+25 ×30 )÷(30+40+30)=20(元/千克).故答案为: 20 .(2 )设需加入甲种糖果x 千克,则加入乙种糖果(100 ﹣x)千克,依据题意得:≤20 ﹣2,解得: x ≥80 .答:最少需要加入甲种糖果80 千克.【评论】本题考察了一元一次不等式的应用以及加权均匀数,解题的重点是:(1)依据单价 = 三种糖果的总价÷三种糖果的总质量列式计算;( 2 )依据单价 = 总价÷数目结合单价不超出 18 元/ 千克,列出对于 x 的一元一次不等式.21 .某公司计划购置甲、乙两种学惯用品800 件,资助某贫穷山区希望小学,已知每件甲种学惯用品的价钱比每件乙种学惯用品的价钱贵10 元,用 400 元购置甲种学惯用品的件数恰巧与用320 元购置乙种学惯用品的件数同样.(1 )求甲、乙两种学惯用品的价钱各是多少元?(2 )若该希望小学需要乙种学惯用品的数目是甲种学惯用品数目的 3 倍,依据此比率购买这 800 件学惯用品所需的资本为多少元?【剖析】(1 )设甲种学惯用品的价钱是x 元,则乙种学惯用品的价钱是(x﹣ 10 )元,依据数目 = 总价÷单价结适用 400 元购置甲种学惯用品的件数恰巧与用320 元购置乙种学惯用品的件数同样,即可得出对于x 的分式方程,解之经查验后即可得出结论;(2 )依据总价 = 单价×数目列式计算,即可得出结论.【解答】解:( 1 )设甲种学惯用品的价钱是x 元,则乙种学惯用品的价钱是(x ﹣10 )元,依据题意得:=,解得: x=50 ,经查验, x=50 是原分式方程的解,∴x﹣10=40 .答:甲种学惯用品的价钱是50 元,乙种学惯用品的价钱是40 元.(2 )50 ××800+40××800=34000(元).答:依据此比率购置这800 件学惯用品所需的资本为34000 元.【评论】本题考察了分式方程的应用,解题的重点是:(1)依据数目= 总价÷单价,列出对于 x 的分式方程;( 2 )依据总价 = 单价×数目列式计算.22 .如图①, AE 是⊙ O 的直径,点 C 是⊙ O 上的点,连结AC 并延伸 AC 至点 D ,使CD=CA ,连结 ED 交⊙ O 于点 B.(1 )求证:点 C 是劣弧的中点;(2 )如图②,连结EC,若 AE=2AC=4 ,求暗影部分的面积.【剖析】(1 )连结 CE,由 AE 是⊙ O 的直径,获得CE⊥ AD ,依据等腰三角形的性质获得∠AEC= ∠DEC,于是获得结论;(2 )连结BC, OB,OC ,由已知条件获得△ AED 是等边三角形,获得∠A=60 °,推出AE∥BC,∠ BOC=60 °,于是获得结论.【解答】解:( 1 )连结 CE,∵AE 是⊙ O 的直径,∴CE⊥ AD ,∵AC=CD ,∴AE=ED ,∴∠AEC= ∠DEC,∴;∴点 C 是劣弧的中点;(2)连结 BC,OB,OC,∵AE=2AC=4 ,∴∠ AEC=30 °AE=AD,,∴∠ AED=60 °,∴△AED 是等边三角形,∴∠ A=60 °,∵=,∴= = ,∴AE∥BC,∠ BOC=60 °,∴S△OBC=S △EBC,∴S 暗影=S 扇形 = =π.【评论】本题考察了等边三角形的判断和性质,圆周角定理,平行线的判断,扇形的面积的计算,正确的作出协助线是解题的重点.23.问题研究(1 )如图①,已知正方形ABCD 的边长为 4 .点 M 和 N 分别是边 BC、 CD 上两点,且 BM=CN ,连结 AM 和 BN ,交于点 P.猜想 AM 与 BN 的地点关系,并证明你的结论.(2 )如图②,已知正方形ABCD 的边长为 4.点 M 和 N 分别从点 B、C 同时出发,以同样的速度沿 BC、CD 方向向终点 C 和 D 运动.连结 AM 和 BN ,交于点 P,求△APB 周长的最大值;问题解决(3 )如图③, AC 为边长为 2的菱形ABCD的对角线,∠ABC=60 °M.和点 N 分别从点 B、C 同时出发,以同样的速度沿 BC、CA 向终点 C 和 A 运动.连结 AM 和 BN ,交于点 P.求△APB 周长的最大值.【剖析】(1 )结论: AM ⊥BN .只需证明△ABM ≌△BCN 即可解决问题;(2 )如图②中,以 AB 为斜边向外作等腰直角三角形△ AEB,∠ AEB=90 °,EF作⊥ PA 于E,作 EG⊥PB 于 G,连结 EP.第一证明 PA+PB=2EF ,求出 EF 的最大值即可解决问题;(3 )如图③中,延伸 DA 到 K,使得 AK=AB ,则△ABK 是等边三角形,连结PK,取PH=PB .第一证明 PA+PB=PK ,求出 PK 的最大值即可解决问题;【解答】解:( 1 )结论: AM ⊥ BN .原因:如图①中,∵四边形 ABCD 是正方形,∴AB=BC ,∠ABM= ∠ BCN=90 °,∵BM=CN ,∴△ABM ≌△BCN ,∴∠BAM= ∠CBN ,∵∠CBN+ ∠ ABN=90 °,∴∠ABN+ ∠ BAM=90 °,∴∠ APB=90 °,∴AM ⊥BN .(2 )如图②中,以 AB 为斜边向外作等腰直角三角形△ AEB,∠ AEB=90 °,EF作⊥ PA 于E,作 EG⊥PB 于 G,连结 EP.∵∠EFP=∠FPG= ∠ G=90 °,∴四边形 EFPG 是矩形,∴∠FEG=∠ AEB=90 °,∴∠AEF= ∠BEG,∵EA=EB ,∠EFA=∠ G=90 °,∴△AEF≌△BEG,∴EF=EG,AF=BG ,∴四边形 EFPG 是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF 的最大值 =AE=2,∴△APB 周长的最大值 =4+4.(3 )如图③中,延伸 DA 到 K,使得 AK=AB ,则△ABK 是等边三角形,连结PK,取PH=PB .∵AB=BC ,∠ABM= ∠BCN , BM=CN ,∴△ABM ≌△BCN ,∴∠BAM= ∠CBN ,∴∠APN= ∠BAM+ ∠ABP= ∠CBN+ ∠ ABN=60 °,∴∠ APB=120 °,∵∠ AKB=60 °,∴∠AKB+ ∠ APB=180 °,∴A 、K、B、P 四点共圆,∴∠BPH= ∠ KAB=60 °,∵PH=PB ,∴△PBH 是等边三角形,∴∠KBA= ∠HBP ,BH=BP ,∴∠KBH= ∠ABP ,∵BK=BA ,∴△KBH≌△ABP,∴HK=AP ,∴PA+PB=KH+PH=PK,∴PK 的值最大时,△ APB 的周长最大,∴当 PK 是△ABK 外接圆的直径时, PK 的值最大,最大值为 4 ,∴△PAB 的周长最大值 =2+4 .【评论】本题考察四边形综合题、正方形的性质、等边三角形的性质、等腰直角三角形的性质、全等三角形的判断和性质,四点共圆等知识,解题的重点是学会增添常用辅助线,结构全等三角形解决问题,学会用转变的思想思虑问题,属于中考压轴题.24 .如图, BC 是路边坡角为 30 °,长为10 米的一道斜坡,在坡顶灯杆CD 的顶端 D 处有一探射灯,射出的边沿光芒DA 和 DB 与水平路面 AB 所成的夹角∠ DAN 和∠DBN 分别是 37 °和60 °(图中的点A 、B、C、D 、M 、N 均在同一平面内, CM ∥AN ).(1 )求灯杆 CD 的高度;(2 )求 AB 的长度(结果精准到0.1 米).(参照数据:=1.73 .sin37 °≈0.60 ,cos37 °≈0.80 , tan37 °≈0.75 )【剖析】(1 )延伸 DC 交 AN 于 H.只需证明 BC=CD 即可;(2 )在 Rt△BCH 中,求出 BH 、CH ,在 Rt △ADH 中求出 AH 即可解决问题;【解答】解:( 1)延伸 DC 交 AN 于 H.∵∠ DBH=60 °,∠DHB=90 °,∴∠ BDH=30 °,∵∠ CBH=30 °,∴∠CBD= ∠ BDC=30 °,∴BC=CD=10 (米).(2 )在 Rt△BCH 中, CH= BC=5 ,BH=5 ≈8.65 ,∴DH=15 ,在 Rt△ADH 中, AH= ==20,∴AB=AH ﹣BH=20 ﹣ 8.65 ≈11.4 (米).【评论】本题考察解直角三角形的应用﹣坡度坡角问题,解题的重点是学会增添常用辅助线,结构直角三角形解决问题,属于中考常考题型.25 .已知,矩形 OABC 在平面直角坐标系的地点以下图,点 B 的坐标为( 8,10 ),抛物线 y=ax 2+bx+c经过点O,点C,与AB交于点D,将矩形OABC沿CD折叠,点 B 的对应点 E 恰巧落在 OA 上.(1 )求抛物线 y=ax 2 +bx+c的表达式;(2 )若点 P 在抛物线上,点Q 在抛物线的对称轴上,能否存在这样的点P、Q ,使得以点 P、Q 、C、E 为极点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明原因.【剖析】(1)依据翻折的性质,可得DE,CE 的长,依据勾股定理,可得AD 的长,根据待定系数法,可得答案;(2 )①依据平行四边形的对角线相互均分,可得x Q=x P,依据自变量与函数式的对应关系,可得答案;②依据平行四边形对边的横坐标的距离相等可得|x Q﹣ x P|,依据自变量与函数式的对应关系,可得答案.【解答】解:( 1 )由矩形 OCBA ,B 点坐标为( 8 ,10 ),得 C( 8 ,0), AB=8 ,AC=BC=10 .设 AD 的长为 x,BD=8 ﹣x ,由翻折的性质,得DE=DB=8 ﹣x , CE=BC=10 ,由勾股定理,得OE===6 ,AE=AO ﹣ OE=10 ﹣6=4 ,在 Rt△ADE 中,由勾股定理,得AD 2+AE 2 =DE 2,即 42 +x 2= (8﹣x )2,解得 x=3 ,即 D( 3, 10 ), C(8 ,0),将 D 、C、O 点坐标代入函数分析式,得,解得,抛物线的分析式为y= ﹣x 2+x;(2)C 点坐标为( 8,0), E(0,6)①当 CE 为平行四边形的对角线时,对角线的交点坐标为(4, 3 ),∵Q 在对称轴上,∴点 P 的横坐标等于 Q 的横坐标 4 ,当 x=4 时, y= ,点 P 为抛物线的极点∴ P(4 ,);。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年初三数学中考模拟试卷(含答案)

2020年初三数学中考模拟试卷(含答案)

A. 17D.-7A .37. 已知 ⎨⎧ x = -1 ⎩ y = 2 ⎩ nx - y = 12020 年中考数学模拟卷一、选择题(每小题 3 分,共 30 分)1. 7 的相反数是()7 B.7C. - 12. 改革开放以来,我国国内生产总值由 1978 年的 3645 亿元增长到 2014 年的 636100 亿元。

将636100 万用科学记数法表示应为( )A. 0.6361⨯106B. 6.361⨯105C. 6.361⨯104D. 63.61⨯1043.在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .4.现有四条线段,长度依次是 2,3,4,5,从中任选三条,能组成三角形的概率是()1 2 1 B .C .D .42 3 45.下列命题中,是真命题的是()A .等腰三角形都相似B .等边三角形都相似C .锐角三角形都相似D .直角三角形都相似6.如果表示 a ,b 两个实数的点在数轴上的位置如图所示,那么化简| a - b | + (a + b )2 的结果等于( )A .-2bB .2bC .-2aD .2a⎧3x + 2 y = m是二元一次方程组 ⎨ 的解,则 m ﹣n 的值是()A 、1B 、2C 、3D 、4 △8.如图, ABC 中,CD ⊥AB 于 D ,①∠1=∠A ;② CD:AD=DB:CD ;③∠B+∠2=90°;④BC :AC :AB=3:4:5;⑤ACBD=ADCD .一定能确定△ABC 为直角三角形的条件的 个数是( )A .1B .2C .3D .4第8题图第9题图第10题图9.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤10.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC·tanB =()A.2B.3C.4D.5二、填空题(每小题4分,共24分)11.不等式2x-4≥0的解集是__________________.12.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是______13.如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:_________________,使得加上这个条件后能够推出AD∥BC且AB=CD.14.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为_______________15.如图,△ABC中,BD和CE是两条高,如果∠A=45°,则DEBC=.16.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N=;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=(用含有n的式子表示)A E MA'DB N C第13题图第14题图第15题图第16题图三、解答题(本题共66分)117.(6分)(1)计算:8+()-1-4cos45︒(2)因式分解:a3-4a2b+4ab2218.(6分)解方程:1-1x-2 =x x19.(6分)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB绕点O按逆时针方向旋转90°△得到OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径弧AA’的长度.(结果保留π)20.(8分)小明,小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,体委权衡再三,决定用抽签的方式决定让谁参加。

2020年中考模拟试卷数学试卷及答案共5套精品版

2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

2020年浙教版九年级数学中考模拟试卷含解析

2020年浙教版九年级数学中考模拟试卷含解析

浙教版 2020 年九年级数学中考模拟试卷含解析一.选择题(共10 小题,满分 30 分,每小题 3 分)1.下列实数,0,,0.1,﹣0.010010001,,其中无理数共有()A.2 个B.3 个C.4 个D.5 个2.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为()A.2B.3C.4D.53.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2B.3C.4D.54.下列运算正确的是()A .5ab ﹣ ab=4B. a6÷a2=a 4C.+ =D.( a2 b )3 =a 5 b 35.如图,直线a, b 被直线 c 所截,那么∠ 1 的同位角是()A .∠2B.∠3C.∠4D .∠56.有四张背面完全相同的扑克牌,牌面数字分别是2 ,3 ,4,5 ,将四张牌背面朝上放置并搅匀后,从中任意摸出一张,不放回,再任意摸出一张,摸到的两张牌的牌面数字都是奇数的概率是()A.B.C.D.7.如图,在⊙ O 中,已知 OA ⊥ BC,∠ AOB=58 °,则ADC∠的度数为()A. 29°B. 58°C. 87°D. 32°8.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2 倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是()A .B.C. D .9.一次函数y=kx+k 与反比例函数y= 在同一平面直角坐标系中的图象大致是()A.B.C.D.10 .如图,在平面直角坐标系中,点A(1 ,1 ), B(﹣ 1,1), C(﹣ 1,﹣ 2 ), D (1,﹣2 ),按 A→ B→ C→ D→ A排列,则第2018 个点所在的坐标是()A.(1,1)B.(﹣ 1,1) C.(﹣ 1,﹣2)D.( 1,﹣2)二.填空题(共6 小题,满分 18 分,每小题 3 分)11 .我们定义:关于 x 的函数 y=ax 2+bx 与 y=bx 2 +ax (其中 a≠b)叫做互为交换函数.如y=3x 2+4x 与 y=4x 2+3x 是互为交换函数.如果函数 y=2x 2+bx 与它的交换函数图象顶点关于 x 轴对称,那么 b=.12 .在同一时刻太阳光线与水平线的夹角是一定的.如图,有一垂直于地面的物体AB .在某一时刻太阳光线与水平线的夹角为30 °时,物体AB 的影长 BC 为 4 米;在另一个时刻太阳光线与水平线的夹角为45 °时,则物体AB 的影长 BD 为米.(结果保留根号)13 .已知关于x 的方程x+ =a+的解是x 1=a , x 2 =,应用此结论可以得到方程x+=[x]+的非整数解为([x]表示不大于x的最大整数).14 .如图,在菱形ABCD 中,对角线AC、BD 相交于点 O ,AC=12 ,BD=16 , E 为 AD 中点,点 P 在 x 轴上移动,小明同学写出了两个使△ POE 为等腰三角形的P 点坐标(﹣ 5,0)和( 5 ,0).请你写出其余所有符合这个条件的P 点坐标.15 .实数 a,b 在数轴上对应点的位置如图所示,化简|a|+的结果是.16 .如图,在边长为 2 的正方形 ABCD 中, P 是 BC 边上一动点(点P 不与 B、 C 重合),将△ABP 沿直线 AP 翻折,点 B 落在点 E 处;在 CD 上有一点 M ,使得将△CMP 沿直线 MP 翻折后,点 C 落在直线 PE 上的点 F 处,直线 PE 交 CD 于点 N ,连接 MA 、NA ,则以下结论:①△CMP ∽△BPA;②四边形 AMCB 的面积最大值为2.5 ;③△ADN ≌△AEN ;④线段 AM 的最小值为 2.5 ;⑤当 P 为 BC 中点时, AE 为线段 NP 的中垂线.正确的有(只填序号)三.解答题(共9 小题,满分 102 分)17 .( 9 分)解不等式组:18 .( 9 分)如图, E, C 是线段 BF 上的两点, BE=FC, AB∥DE,∠A= ∠D,AC=6 ,求DF 的长.19 .( 10 分)先化简,再求值:,其中.20 .(10 分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1 )写出扇形图中a=%,并补全条形图;(2 )在这次抽测中,测试成绩的众数和中位数分别是个、个.(3 )该区体育中考选报引体向上的男生共有1800 人,如果体育中考引体向上达 6 个以上(含 6 个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?21 .( 12 分)一玩具工厂用于生产的全部劳力为450 个工时,原料为400 个单位.生产一个小熊要使用15 个工时、 20 个单位的原料,售价为80 元;生产一个小猫要使用10 个工时、 5 个单位的原料,售价为45 元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到 2200 元?22 .( 12 分)函数 y=是反比例函数.(1 )求 m 的值;(2 )指出该函数图象所在的象限,在每个象限内,y 随 x 的增大如何变化?(3 )判断点(,2)是否在这个函数的图象上.23 .( 12 分)如图,在直角坐标系中,先描出点A(1,3),点 B(4,1)(1 )用尺规在 x 轴上找一点 C,使 AC+BC 的值最小(保留作图痕迹);(2 )用尺规在 x 轴上找一点 P,使 PA=PB (保留作图痕迹).24 .( 14 分)抛物线 y=ax 2+bx+3 ( a≠0 )经过点 A(﹣ 1 ,0), B(,0),且与y轴相交于点 C.(1 )求这条抛物线的表达式;(2 )求∠ACB 的度数;(3 )设点 D 是所求抛物线第一象限上一点,且在对称轴的右侧,点E 在线段 AC 上,且DE⊥ AC,当△DCE 与△AOC 相似时,求点 D 的坐标.25 .( 14 分)如图 1,在等腰 Rt△ABC 中,∠BAC=90 °,E点在 AC 上(且不与点 A 、 C重合),在△ABC 的外部作等腰 Rt △CED,使∠CED=90 °,连AD接,分别以 AB,AD 为邻边作平行四边形 ABFD ,连接 AF.(1 )求证:△AEF 是等腰直角三角形;(2 )如图 2 ,将△CED 绕点 C 逆时针旋转,当点 E 在线段 BC 上时,连接 AE,求证:AF= AE;(3 )如图 3,将△CED 绕点 C 继续逆时针旋转,当平行四边形 ABFD 为菱形,且△CED 在△ABC 的下方时,若 AB=2,CE=2,求线段AE的长.2020年浙教版九年级数学中考模拟试卷含解析参考答案与试题解析一.选择题(共10 小题,满分 30 分,每小题 3 分)1.下列实数,0,,0.1,﹣0.010010001,,其中无理数共有()A.2 个B.3 个C.4 个D.5 个【分析】根据无理数的定义解答即可.【解答】解:实数,0,,0.1,﹣0.010010001,中无理数有,﹣0.010010001,这3个,故选: B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,等;开 2 π方开不尽的数;以及像 0.1010010001,等有这样无线不循环的数.2.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为()A.2 B.3 C.4 D.5【分析】根据轴对称图形的概念求解.【解答】解:线段、角、正方形、平行四边形、圆,其中是轴对称图形的有:线段、角、正方形、圆,共四个.故选: C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5【分析】若要保持俯视图和左视图不变,可以往第2 排右侧正方体上添加 1 个,往第 3 排中间正方体上添加 2 个、右侧两个正方体上再添加1 个,据此可得.【解答】解:若要保持俯视图和左视图不变,可以往第 2 排右侧正方体上添加 1 个,往第 3 排中间正方体上添加 2 个、右侧两个正方体上再添加1 个,即一共添加 4 个小正方体,故选: C.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.4.下列运算正确的是()A .5ab ﹣ ab=4B.a6÷a2 =a 4C.+ =D .( a2b )3 =a 5b 3【分析】根据合并同类项法则、同底数幂的除法、分式的加法及积的乘方与幂的乘方逐一计算可得.【解答】解: A 、 5ab ﹣ab=4ab ,此选项错误;B、 a6÷a2=a 4,此选项正确;C、+ =,选项错误;D 、( a2b )3=a 6b 3,此选项错误;故选: B.【点评】本题主要考查整式和分式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、分式的加法及积的乘方与幂的乘方.5.如图,直线a, b 被直线 c 所截,那么∠ 1 的同位角是()A .∠2 B.∠3 C.∠4 D .∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1 的同位角是∠ 4,故选: C.【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.6.有四张背面完全相同的扑克牌,牌面数字分别是2 ,3 ,4,5 ,将四张牌背面朝上放置并搅匀后,从中任意摸出一张,不放回,再任意摸出一张,摸到的两张牌的牌面数字都是奇数的概率是()A.B.C.D.【分析】根据题意先画出树状图,得出所有等可能的结果数和摸到的两张牌的牌面数字都是奇数的可能结果数,再根据概率公式求解即可求得答案.【解答】解:根据题意画图如下:∵共有 12 种等可能的结果数,摸到的两张牌的牌面数字都是奇数的有2 种情况,∴摸到的两张牌的牌面数字都是奇数的概率是=;故选: D.【点评】此题考查了概率公式的应用.用到的知识点为:概率 = 所求情况数与总情况数之比.7.如图,在⊙ O 中,已知 OA ⊥ BC,∠ AOB=58 °,则ADC∠的度数为()A. 29 °B. 58 °C. 87 °D. 32 °【分析】根据垂径定理得到=,根据圆周角定理解答即可.【解答】解:∵OA ⊥ BC,∴=,∴∠ADC=∠ AOB=29°,故选: A.【点评】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2 倍,设男孩有 x 人,女孩有 y 人,则下列方程组正确的是()A.B.C.D.【分析】利用每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色游泳帽比红色的多 1 倍,进而分别得出等式即可.【解答】解:设男孩 x 人,女孩有 y 人,根据题意得出:,解得:,故选: C.【点评】此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.9.一次函数 y=kx+k与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.【解答】解: A 、由反比例函数的图象在二、四象限可知k< 0,由一次函数的图象与y 轴交点在 y 轴的正半轴可知k>0 ,两结论相矛盾,故本选项错误;B、由反比例函数的图象在一、三象限可知k >0 ,由一次函数的图象过一、二、三象限可知k> 0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知k>0 ,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故本选项错误;D 、由反比例函数的图象在二、四象限知 k <0,由一次函数图象与y 轴的交点在正半轴知k >0 ,两结论相矛盾,故本选项错误;故选: B.【点评】本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.10 .如图,在平面直角坐标系中,点A(1 ,1 ), B(﹣ 1,1), C(﹣ 1,﹣ 2 ), D (1,﹣2 ),按 A→ B→ C→ D→ A排列,则第2018 个点所在的坐标是()A.(1,1)B.(﹣ 1,1) C.(﹣ 1,﹣2)D.( 1,﹣2)【分析】根据每四个点为一周期循环,由 2018 ÷ 4=504 2知第 2018 个点所在的坐标与第2 个点所在的坐标相同,据此可得.【解答】解:由题意知每四个点为一周期循环,∵2018 ÷ 4=5042 ,∴第 2018 个点所在的坐标与第2 个点所在的坐标相同,即第 2018 个点所在的坐标是(﹣ 1 ,1),故选: B.【点评】本题主要考查点的坐标的变化规律,解题的关键是根据题意得出每四个点为一周期循环.二.填空题(共6 小题,满分 18 分,每小题 3 分)11 .我们定义:关于 x 的函数 y=ax 2+bx 与 y=bx 2 +ax (其中 a≠b)叫做互为交换函数.如y=3x2+4x 与y=4x 2+3x 是互为交换函数.如果函数y=2x 2+bx 与它的交换函数图象顶点关于 x 轴对称,那么 b=﹣2.【分析】根据题意可以得到交换函数,由顶点关于x 轴对称,从而得到关于 b 的方程,可以解答本题.【解答】解:∵由题意函数y=2x 2 +bx 的交换函数为y=bx 2 +2x ,∵函数 y=2x 2+bx 与它的交换函数图象顶点关于x 轴对称,两个函数的对称轴相同,∴﹣=﹣,解得 b= ﹣ 2 或 2 ,∵互为交换函数 a≠b ,故答案为:﹣ 2 .【点评】本题考查了二次函数的性质.理解交换函数的意义是解题的关键.12 .在同一时刻太阳光线与水平线的夹角是一定的.如图,有一垂直于地面的物体AB .在某一时刻太阳光线与水平线的夹角为30 °时,物体AB 的影长 BC 为 4 米;在另一个时刻太阳光线与水平线的夹角为45 °时,则物体AB 的影长 BD 为米.(结果保留根号)【分析】根据锐角三角函数可以求得AB 的长,从而可以求得BD 的长,本题得以解决.【解答】解:由题意可得,∠B= 90 °,BC=4 ,∠ C=30 °,∴ tan30°=∴AB=,∵∠ B=90 °,∠∴AB=BD ,∴BD=,故答案为:.,ADB=45°,【点评】本题考查解直角三角形的应用、平行投影,解题的关键是明确题意,找出所求问题需要的条件.13 .已知关于x 的方程x+ =a+的解是x 1=a , x 2 =,应用此结论可以得到方程x+=[x]+的非整数解为x=([x]表示不大于x的最大整数).【分析】利用新定义判断出[x]=3 ,再根据关于x 的方程x+ =a+ 的解是x1 =a ,x2= 即可确定出方程的解.【解答】解:根据题意 x=,即 x[x]=11 ,可以知道 x 在 1 ~2,2 ~3 之间都不可能,在3~4 之间,则[x]=3 ,∵x 为非整数解,∴x=.故答案为: x=.【点评】此题考查了解分式方程,解题的关键是确定[x]=3 .14 .如图,在菱形ABCD 中,对角线AC、BD 相交于点 O ,AC=12 ,BD=16 , E 为 AD 中点,点 P 在 x 轴上移动,小明同学写出了两个使△ POE 为等腰三角形的P 点坐标(﹣ 5,0)和( 5 ,0).请你写出其余所有符合这个条件的P 点坐标(8,0)或(,0).【分析】由在菱形 ABCD 中, AC=12 , BD=16 ,E 为 AD 中点,根据菱形的性质与直角三角形的性质,易求得 OE 的长,然后分别从①当OP=OE 时,②当 OE=PE 时,③当 OP=EP 时去分析求解即可求得答案.【解答】解:∵四边形 ABCD 是菱形,∴AC⊥ BD ,OA= AC= ∴在 Rt △AOD 中, AD= ∵E 为 AD 中点,∴OE= AD=×10=5,×12=6 ,OD==10 ,BD= ×16=8 ,①当 OP=OE 时, P 点坐标(﹣ 5,0 )和( 5, 0);②当 OE=PE 时,此时点 P 与 D 点重合,即 P 点坐标为( 8 ,0);③如图,当 OP=EP 时,过点 E 作 EK⊥BD 于 K,作 OE 的垂直平分线 PF,交 OE 于点 F,交 x 轴于点 P,∴EK∥OA ,∴EK:OA=ED :AD=1 :2,∴EK= OA=3 ,∴OK==4 ,∵∠PFO= ∠ EKO=90 °,POF=∠ ∠EOK,∴△POF∽△EOK,∴OP: OE=OF : OK,即 OP:5= :4,解得: OP= ,∴P 点坐标为(,0).∴其余所有符合这个条件的 P 点坐标为:( 8 ,0)或(,0).故答案为:( 8 , 0)或(,0).【点评】此题考查了菱形的性质、勾股定理、直角三角形的性质以及等腰三角形的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.15 .实数 a,b 在数轴上对应点的位置如图所示,化简|a|+的结果是b ﹣2a.【分析】直接利用数轴得出a< 0 ,a﹣b <0 ,进而化简得出答案.【解答】解:由数轴可得: a<0 ,a﹣ b< 0,则原式 = ﹣a﹣( a﹣b )=b ﹣ 2a .故答案为: b ﹣2a .【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.16 .如图,在边长为 2 的正方形 ABCD 中, P 是 BC 边上一动点(点P 不与 B、 C 重合),将△ABP 沿直线 AP 翻折,点 B 落在点 E 处;在 CD 上有一点 M ,使得将△CMP 沿直线 MP 翻折后,点 C 落在直线 PE 上的点 F 处,直线 PE 交 CD 于点 N ,连接 MA 、NA ,则以下结论:①△CMP ∽△BPA;②四边形 AMCB 的面积最大值为2.5 ;③△ADN ≌△AEN ;④线段 AM 的最小值为 2.5 ;⑤当 P 为 BC 中点时,AE 为线段 NP 的中垂线.正确的有①②③④(只填序号)【分析】①正确.只要证明∠ CPM= ∠PAB,∠C= ∠ B=90 °,即可;②正确,设 PB=x ,构建二次函数,利用二次函数性质解决问题即可;③正确.根据 HL 即可证明;AM 最小,④正确,作 MG ⊥AB 于 G,因为 AM==,所以AG最小时构建二次函数,求得AG 的最小值为,AM的最小值为.⑤错误,设 ND=NE=y,在Rt△PCN中,利用勾股定理求出y 即可解决问题.【解答】解:①由翻折可知,∠ APE= ∠APB ,∠MPC= ∠MPN ,∴∠APE+ ∠MPF=∠CPN+∠ BPE=90°,∴∠CPM+ ∠ APB=90 °,∵∠APB+ ∠ PAB=90 °,∴∠CPM= ∠PAB,∵∠C= ∠ B=90 °,∴△CMP ∽△BPA.故①正确;②设 PB=x ,则 CP=2 ﹣ x,∵△CMP ∽△BPA,∴=,∴CM=x( 2﹣ x ),∴S 四边形AMCB = [2+x(2 ﹣x)] ×2= ﹣x2+x+2= ﹣(x ﹣1)2 +2.5 ,∴x=1 时,四边形 AMCB 面积最大值为2.5,故②正确;③在 Rt△ADN 和 Rt △AEN 中,,∴△ADN ≌△AEN .故③正确;④作 MG ⊥AB 于 G,∵AM==,∴AG最小时AM最小,∵AG=AB ﹣BG=AB ﹣CM=2 ﹣x( 2﹣ x) =(x﹣1)2+,∴x=1 时, AG 最小值 =,∴AM 的最小值 ==,故④正确.⑤当 PB=PC=PE=1时,由折叠知, ND=NE ,设 ND=NE=y,在 Rt △PCN 中,( y+1 )2 = (2 ﹣y)2 +1 2解得 y=,∴NE=,∴NE≠EP,故⑤错误,【点评】此题是四边形综合题主要考查了正方形的性质、相似三角形的判定和性质、全等三角形的性质、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会添加常用辅助线,属于中考压轴题.三.解答题(共9 小题,满分 102 分)17 .( 9 分)解不等式组:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 3 (x﹣1)< 2x ,得: x<3 ,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9 <x<3 .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18 .( 9 分)如图, E, C 是线段 BF 上的两点, BE=FC, AB∥DE,∠A= ∠D,AC=6 ,求DF 的长.【分析】根据“ AAS”可判断△ABC ≌△DEF 即可解决问题;【解答】解:∵BE=CF ,∴BC=EF,∵AB∥DE,∴∠B= ∠DEF,在△ABC 和△DEF 中,,∴△ABC ≌△DEF,∴AC=DF ,∵AC=6 ,∴DF=6 .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“ SSS”、“ SAS”、“ASA”、“AAS”;全等三角形的对应边相等.19 .( 10 分)先化简,再求值:,其中.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=?=?=,当 a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20 .(10 分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1 )写出扇形图中a= 25 %,并补全条形图;(2 )在这次抽测中,测试成绩的众数和中位数分别是5个、5个.(3 )该区体育中考选报引体向上的男生共有1800 人,如果体育中考引体向上达 6 个以上(含 6 个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【分析】(1 )用 1 减去其他天数所占的百分比即可得到a 的值,用 360 °乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2 )根据众数与中位数的定义求解即可;(3 )先求出样本中得满分的学生所占的百分比,再乘以1800 即可.【解答】解:( 1 )扇形统计图中a=1 ﹣30% ﹣15% ﹣10% ﹣20%=25% ,设引体向上 6 个的学生有 x 人,由题意得=,解得 x=50 .条形统计图补充如下:(2 )由条形图可知,引体向上 5 个的学生有 60 人,人数最多,所以众数是5;共 200 名同学,排序后第100 名与第 101 名同学的成绩都是 5 个,故中位数为( 5+5 )÷2=5(3 )×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810 名.故答案为: 25 ;5,5.【点评】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.21 .( 12分)一玩具工厂用于生产的全部劳力为450 个工时,原料为400 个单位.生产一个小熊要使用15 个工时、 20 个单位的原料,售价为80 元;生产一个小猫要使用10 个工时、 5 个单位的原料,售价为45 元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到 2200 元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x 和 y,可列出关于 x 和 y 的两个不等式,由总售价为 2200 元还可以列出关于x 和 y 的一个等式,三个式子结合就可以求出x 和 y 看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x 和 y,总售价为 z,则 z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x 和 y 应满足 15x+10y ≤450 ,20x+5y ≤400化简 3x+2y ≤90 (1)及 4x+y ≤80 (2 )当总售价 z=2200时,由①得16x+9y=440(3)(2 ) ?9得 36x+9y ≤720 ( 4)(4 )﹣( 3)得 20x ≤720 ﹣440=280 ,即 x≤14 ( A)得( 5)(3)﹣( 5)得,即 x≥14 ( B)综合( A)、( B)可得 x=14 ,代入( 3)求得 y=24当 x=14 ,y=24 时,有 3x+2y=90 ,4x+y=80 满足工时和原料的约束条件,此时恰有总售价z=80 ×14+45 ×24=2200 (元)答:只需安排生产小熊 14 个、小猫 24 个,就可达到总售价为 2200 元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.22 .( 12 分)函数 y=是反比例函数.(1 )求 m 的值;(2 )指出该函数图象所在的象限,在每个象限内,y 随 x 的增大如何变化?(3 )判断点(,2)是否在这个函数的图象上.【分析】(1 )根据反比例函数的定义可得,解得m=0.(2 )利用反比例函数的性质即可解决问题;(3 )利用待定系数法即可解决问题;【解答】解:( 1 )由题意:,解得m=0.(2 )∵反比例函数的解析式为y= ﹣,∴函数图象在二四象限,在每个象限内,y 随 x 的增大而增大.(3 )当 x=时,y=﹣2≠2,∴点(,2)不在这个函数的图象上.【点评】本题考查反比例函数图象上的点的特征,反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23 .( 12 分)如图,在直角坐标系中,先描出点A(1,3),点 B(4,1)(1 )用尺规在 x 轴上找一点 C,使 AC+BC 的值最小(保留作图痕迹);(2 )用尺规在 x 轴上找一点 P,使 PA=PB (保留作图痕迹).【分析】(1 )作出其中一点关于x 轴的对称点,对称点与另一点的连线与所要找的点.(2 )垂直平分线上任意一点,到线段两端点的距离相等.作出线段AB x 轴的交点就是所要找的点.【解答】解:( 1 )如图所示,点C 即为所求;x 轴的交点就是的垂直平分线,与(2 )如图所示,点P 即为所求.【点评】本题主要考查了最短路线问题以及距离相等问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.24 .( 14 分)抛物线 y=ax 2+bx+3 ( a≠0 )经过点 A(﹣ 1 ,0), B(,0),且与y轴相交于点 C.(1 )求这条抛物线的表达式;(2 )求∠ACB 的度数;(3 )设点 D 是所求抛物线第一象限上一点,且在对称轴的右侧,点E 在线段 AC 上,且DE⊥ AC,当△DCE 与△AOC 相似时,求点 D 的坐标.【分析】( 1 )先求得点 C(0,3 )的坐标,然后设抛物线的解析式为 y=a (x+1 )( x﹣),最后,将点 C 的坐标代入求得 a 的值即可;(2)过点 B 作 BM ⊥AC,垂足为 M ,过点 M 作 MN ⊥OA ,垂足为 N .先求得 AC 的解析式,然后再求得BM 的解析式,从而可求得点M 的坐标,依据两点间的距离公式可求得MC=BM ,最后,依据等腰直角三角形的性质可得到∠ACB 的度数;(3 )如图 2 所示:延长 CD ,交 x 轴与点 E.依据题意可得到∠ ECD> 45 °,然后依据相似三角形的性质可得到∠ CAO= ∠ECD,则 CE=AE ,设点 E 的坐标为( a,0),依据两点间的距离公式可得到( a+1 )2=3 2 +a 2,从而可得到点 E 的坐标,然后再求得CE 的解析式,最后求得 CE 与抛物线的交点坐标即可.【解答】解:( 1 )当 x=0 ,y=3 ,∴C(0,3).设抛物线的解析式为y=a (x+1 )( x﹣).将 C(0 , 3)代入得:﹣a=3 ,解得: a= ﹣2,∴抛物线的解析式为 y= ﹣2x 2+x+3 .(2)过点 B 作 BM ⊥AC,垂足为 M ,过点 M 作 MN ⊥OA ,垂足为 N .∵OC=3 , AO=1 ,B 的坐标代入得:﹣×+b=0 ,解得b= .∴tan ∠CAO=3 .∴直线 AC 的解析式为 y=3x+3 .∵AC⊥BM ,∴BM 的一次项系数为﹣.设 BM 的解析式为 y= ﹣x+b ,将点∴BM 的解析式为 y= ﹣x+.将 y=3x+3 与 y= ﹣ x+ 联立解得: x= ﹣, y= .∴MC=BM ═=.∴△MCB 为等腰直角三角形.∴∠ ACB=45 °.(3 )如图 2 所示:延长 CD ,交 x 轴与点 F.∵∠ ACB=45 °,D点是第一象限抛物线上一点,∴∠ECD> 45 °.又∵△DCE 与△AOC 相似,∠AOC= ∠ DEC=90 °,∴∠CAO= ∠ECD.∴CF=AF .设点 F 的坐标为( a,0 ),则( a+1 )2=3 2 +a 2,解得 a=4 .∴F( 4, 0).设 CF 的解析式为 y=kx+3 ,将 F(4,0 )代入得: 4k+3=0 ,解得: k=﹣.∴CF 的解析式为 y= ﹣ x+3 .将 y= ﹣x+3 与 y= ﹣ 2x 2 +x+3联立:解得:x=0(舍去)或x=.将 x=代入y=﹣x+3 得: y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF 是解题的关键.25 .( 14 分)如图 1,在等腰 Rt△ABC 中,∠BAC=90 °,E点在 AC 上(且不与点 A 、 C 重合),在△ABC 的外部作等腰 Rt △CED,使∠CED=90 °,连AD接,分别以 AB,AD 为邻边作平行四边形ABFD ,连接 AF.(1 )求证:△AEF 是等腰直角三角形;(2 )如图 2 ,将△CED 绕点 C 逆时针旋转,当点 E 在线段 BC 上时,连接 AE,求证:AF= AE;(3 )如图 3,将△CED 绕点 C 继续逆时针旋转,当平行四边形ABFD 为菱形,且△CED 在△ABC 的下方时,若 AB=2 ,CE=2 ,求线段 AE 的长.【分析】(1 )依据 AE=EF,∠DEC= ∠ AEF=90 °,即可证明AEF△是等腰直角三角形;(2 )连接 EF, DF 交 BC 于 K,先证明△EKF≌△EDA,再证明△AEF 是等腰直角三角形即可得出结论;(3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH= ,Rt△ACH 中,AH=3,即可得到 AE=AH+EH=4.是平行四边形,【解答】解:( 1 )如图 1,∵四边形 ABFD∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF,。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2020年河南省九年级数学中考模拟试题(含答案)

2020年河南省九年级数学中考模拟试题(含答案)

2020河南省九年级数学中考模拟试题含答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.下列各数中,最小的数是 A .3 B .32 C .2p D .23-2.据报道,中国工商银行2015年实现净利润2 777亿元.数据2 777亿用科学计数法表示为A .2.777×1010B .2.777×1011C .2.777×1012D .0.2777×10133.下列计算正确的是 A .822-=B .2(3)-=6C .3a 4-2a 2=a 2D .32()a -=a 54.如图所示的几何体的俯视图是5.某班50名同学的年龄统计如下:年龄(岁) 12 13 14 15 学生数(人)123206该班同学年龄的众数和中位数分别是A .6 ,13B .13,13.5C .13,14D .14,14A B CD(第4题)6.如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为 A . 6 B .9 C .12 D .157.如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定...正确的是A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D .弧AC = 弧BC8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是A .1B .45C .34D . 129.如图,CB 平分∠ECD ,AB ∥CD ,AB 与EC 交于点A . 若∠B =40°,则∠EAB 的度数为A .50°B . 60°C . 70°D .80°10.如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,PD ⊥AB 交AB 于点D .设运动时间为x (s ),△ADP 的面积为y (cm 2),则y 与x(第6题)OABCDD (第7题)PAB CDABCD(第10 题)(第9题)EAC DB二、填空题( 每小题3分,共15分) 11.计算:327-︱-2︱= .12.如图,矩形ABCD 中,A B =2 cm ,BC =6cm ,把△ABC 沿对角线AC 折叠,得到△AB’C ,且B’C 与AD 相交于点E ,则AE 的长为 cm .13.如图,Rt △ABC 中,∠B =90°, AB = 6,BC = 8,且,将Rt △ABC 绕点C 按顺时针方向旋转90°,得到Rt △A’B’C ,则边AB 扫过的面积(图中阴影部分)是 . 14.已知y =-14x 2-3x +4(-10≤x ≤0)的图象上有一动点P ,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为 . 15.如图,在Rt △ABC 中,∠B =90°,BC =2 AB = 8,点D ,E 分别是边BC ,AC 的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,当△EDC 旋转到A ,D ,E 三点共线时,线段BD 的长为 . 三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:1()2a a ++÷3(2)2a a -++, 请从-1,0,1中选取一个合适的数作为a 的值代入求值.(第12 题)A BCB'B'AD CBE(第13 题)(第15 题)ABCED17.(9分)如图,点A ,B ,C 分别是⊙O 上的点,∠B = 60°,AC = 3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC .(1)求证:AP 是⊙O 的切线;(2)求PD 的长.18.(9分)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A ,B ,C ,D 四类,其中A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示 “不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次调查中,一共抽查了 名学生; (2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 ; (4)如果这所学校共有初中学生1500名,请你估算该校初中学生对二战历史“非常了解”和“比较了解”的学生共有多少名?.(第17 题)ADP C BO20903021图图15%30%ABCD人数1008060402019.(9分)如图所示,某教学活动小组选定测量小山上方某信号塔PQ 的高度,他们在A处测得信号塔顶端P 的仰角为45°,信号塔低端Q 的仰角为31°,沿水平地面向前走100米到处,测得信号塔顶端P 的仰角为68°.求信号塔PQ 的高度.(结果精确到0.1米.参考数据:sin68°≈ 0.93,cos68° ≈ 0.37,tan68°sin31°≈ 0.52,cos31°≈0.86)20.(9分)如图,已知矩形OABC 中,OA =3,AB=4,双曲线y =kx(x > 0)与矩形两边AB ,BC 分别交于D ,E ,且BD =2AD .(1)求k 的值和点E 的坐标;(2)点P 是线段OC 上的一个动点,是否存在点P ,使∠点P 的坐标;若不存在,请说明理由.21.(10分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,它们的优惠方案分别为:甲店,一次性购物中超过200元后的价格部分打七折;乙店,一次性购物中超过500y元.(1)求甲商店购物时y 1与x 之间的函数关系; (2)两种购物方式对应的函数图象如图所示,求交点C 的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.22.(10分)问题背景:已知在△ABC 中,边AB 上的动点D 由A 向B 运动(与A ,B 不重合),同时点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值.(1)初步尝试 如图(1),若△ABC 是等边三角形,DH ⊥AC ,且点D 、E 的运动速度相等,小王同学发现可以过点D 作DG ∥BC 交AC 于点G ,先证GH =AH ,再证GF =CF , 从而求得AC HF的值为 .(2)类比探究如图(2),若△ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点D ,E 的运动速度31,求AC HF的值.(3)延伸拓展如图(3)若在△ABC 中,AB =AC ,∠ADH =∠BAC =36°,记BC AC=m ,且点D 、E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出果,不必写解答过程).图(3)HFEDCBA 图(2)HFEDC B A图(1)GH F A BC ED23.(11分)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.lyx POCB A九年级数学模拟二参考答案及评分标准一、选择题二、填空题 三、解答题16.解:原式=2212a a a +++÷2432a a -++=2(1)2a a ++·2(1)(1)a a a ++-=11a a +-.………………………………5分∵当a 取±1时,原式无意义, ………………………………6分 ∴当a =0时,∴原式=0101+-=-1 ………………………………8分 17.(1)证明:连接OA .∵∠B =60°,∴∠AOC =2∠B=120°.又∵在△AOC 中,OA =OC , ∴∠ACP =∠CAO =12(180°-∠AOC )=30°. ∴∠AOP =2∠ACP =60°. ∴AP =AC ,∴∠P =∠ACP =30°. ∴∠OAP =180°-∠AOP -∠P =90°, 即OA ⊥AP .∴AP 是⊙O 的切线.………………………………5分 (2)连接AD .∵CD 是⊙O 的直径,∴∠CAD =90°. 在Rt △ACD 中,∵AC =3,∠ACP =30°, ∴AD =AC ·tan ∠ACP =3 由(1)知∠P =∠ACP =30°,ADPC BO∴∠PAC =180°-∠P -∠ACP =120°. ∴∠PAD =∠PAC -∠CAD =30°.∴∠P =∠PAD =30°.∴PD =AD =3.………………………………9分18.解:(1)一共抽查了 200 名学生; ………………………………2分(2)补全条形统计图如图所示: ………………………………4分 (3)D 类部分所对应扇形的圆心角的度数为36°;(注:若填36,不扣分)……6分 (4)30901500900200+?. ………………………………9分19.解:延长PQ 交直线AB 于点M ,则∠PMA =90°,设PM 的长为x 米,根据题意, 得∠PAM =45°,∠PBM =68°,∠QAM =31°,AB =100,∴在Rt △PAM 中,AM =PM =x .BM =AM -AB =x -100, ………………2分在Rt △PBM 中,∵tan ∠PBM =PMBM, 即tan68°=100xx -.解得x ≈ 167.57.∴AM =PM ≈ 167.57.………………………………5分 在Rt △QAM 中,∵tan ∠QAM =QMAM, ∴QM =AM ·tan ∠QAM =167.57×tan31°≈100.54. ………………8分 ∴PQ =PM -QM =167.57-100.54≈67.0(米).因此,信号塔PQ 的高度约为67.0米. ………………………………9分602090301图类型人数10080604020QP20.解:(1)∵四边形OABC为矩形,且OA=3,AB=4,∴OC= AB=4,AB∥OC,即AB∥x轴.∵点D在AB上,且BD=2 AD,BD+AD= AB=4,∴AD=433AB=.∴点D的坐标为(43,3).∵点D在双曲线y=kx上,∴k=3×43=4.………3分又∵点E在BC上,∴点E的横坐标为4.把x=4代入y=4x中,得y=1.∴点E的坐标为(4,1).………5分(2)假设存在满足题意的点P的坐标为(m,0).则OP=m,CP=4-m.由(1)知点E(4,1),∴CE=1.∵∠APE=90°∴∠APO+∠EPC=90°.∵∠APO+∠OAP=90°,∴∠OAP=∠EPC.又∵∠AOP=∠PEC=90°,∴△AOP∽△PCE.∴OA OPCP CE=,即341mm=-.解得m=1或m=3.经检验,m=1或m=3为原方程的两个根.∴存在这样的点P,其坐标为(1,0)或(3,0).………9分21.解:(1)根据题意,得当0 ≤x ≤ 200时,y1=x;当x > 200时,y1=200+0.7(x-200)=0.7 x+60.综上所知,甲商店购物时y1与x之间的函数关系式为y1=﹛x(0 ≤x ≤ 200);0.7 x+60(x > 200).………………………………4分(2)由图象可知,交点C的横坐标大于500,当x﹥500时,设乙商店购物时应付金额为y2元,则y2=500+0.5(x-500)=0.5 x+250.由(1)知,当x﹥500时,y1=0.7 x+60.由于点C是y1与y2的交点,∴令0.7 x+60=0.5 x+250.yxPEDCA BOyx OCBA500200解得x=950,此时y1=y2=725.即交点C的坐标为(950,725).………………………………8分(3)结合图像和(2)可知:当0 ≤x ≤ 200或x=950时,选择甲、乙两家商店购物费用相同;当200<x<950时,选择甲商店购物更优惠;当x﹥950时,选择乙商店购物更优惠.………………………………10分22.解:(1)2………………………………2分(2)如图(1)过点D作DG∥BC交AC于点G,则∠ADG=∠ABC=90°.∵∠BAC=∠ADH=30°,∴AH=DH,∠GHD=∠BAC+∠ADH=60°,∠HDG=∠ADG-∠ADH=60°,∴△DGH为等边三角形.∴GD=GH =DH =AH,AD=GD·tan60°=3GD.由题意可知,AD=3CE.∴GD=CE.∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF.∴△GDF≌△CEF.∴GF=CF.GH+GF=AH+CF,即HF=AH+CF,∴HF=12AC=2,即2ACHF=.………………………………8分(3)ACHF=1mm+.………………………………10分提示:如图(2),过点D作DG∥BC交AC于点G,易得AD=AG,AD=EC,∠A GD=∠ACB.在△ABC中,∵∠BAC=∠ADH=36°,AB=AC,∴AH=DH,∠ACB=∠B=72°,∠GHD=∠HAD+∠ADH=72°.∴∠AGD=∠GHD=72°.∵∠GHD=∠B=∠HGD=∠ACB,∴△ABC∽△DGH.∴BC GHmAC DH==,GHFEDC BA图(1)GHFEDCBA图(2)∴GH =mD H =mA H .由△ADG ∽△ABC 可得GDBC BCm AD AB AC ===. ∵DG ∥BC ,∴FG GDGDm FC ECAD===.∴FG =mFC . ∴GH +FG =m (AH +FC )=m (AC -HF ), 即HF =m (AC -HF ).∴AC HF =1m m+. 23.(1)抛物线的解析式为y =x 2+2x -3.……………分 (2)如图,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q . ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°. ∵∠PMB =90°, ∴∠PBM +∠BPM =90°. ∴∠BPM =∠NBQ .又∵∠BMP =∠BNQ =90°,PB =NB , △BPM ≌△NBQ .∴PM =BQ .∵抛物线y =x 2+2x -3与x 轴交于点A (1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0).∴BQ =2.∴PM =BQ =2. ∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2.将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3. 解得x 1=-12,x 2=-12(舍去).∴此时点P 的坐标为(-12,-2).………………………………7分 (3)存在.如图,连接AC .可设点P 的坐标为(x ,y )(-3﹤x ﹤0), 则y =x 2+2x -3.∵点A (1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3.即点C (0,-3). ∴OC =3.由(2)可知 S 四边形PBAC =S △BPM +S 四边形PMOC +S △AOCQ N Ml y xPOCBA=12BM·PM+12(PM+OC)·OM+12OA·OC=12(x+3)(-y)+12(-y+3)(-x)+12×1×3=-32y-32x+32.将y=x2+2x-3代入可得S四边形PBAC=-32(x2+2x-3)-32x+32=-32(x+32)2+758.∵-32﹤0,-3﹤x﹤0,∴当x=-32时,S四边形PBAC有最大值758.此时,y=x2+2x-3=-154.∴当点P的坐标为(-32,-154)时,四边形PBAC的面积最大,最大值为758.………………………………11分。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

2020年浙江省杭州市萧山区中学中考数学模拟试卷选择题(共10小题,满分30分,每小题3分)一.1.函数y=(x+1)°-2的最小值是()A.1B.-1C.2D.-22.从1978年12月18日党的^一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为(A.12.24X104B. 1.224X105C.0.1224X106D. 1.224X1063.若2'〃=5,4"=3,则4in m的值是()A•会C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表7K了寓言中的龟、兔的路程S和时间,的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、-1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,己知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC_b),设/BAE=a,ZDCE=^.下列各式:①a+8,②a",③&-a,④360。

-a-p, ZAEC 的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y= - 2x 向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y= - 2 (x+1) ?+1B. y= -2 (x- 1) 2+1C. y= - 2 (x- 1) 2 - 1D. y= - 2 (x+1) 2 - 18.现在把一张正方形纸片按如图方式剪去一个半径为40柄厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,插F.41,寸*1.73)A. 6470 D. 739.如图,^ABCD 的对角线AC 、BD 交于点O, DE 平分ZAD C 交AB 于点E, ZBCD=60° , AD =*43,连接 OE.下列结论:①S°abcd =AD・BD ;②DB 平分ZCDE ; @AO=DE ; @S a ADE =5S m )fe ,其中正确的个数有()A. 9AB. 10 人C. 3个D. 4个如果一共碰杯55次,则参加酒会的人数为(c. II A D. 12 A二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2 (x+1) 2+3的图象上有三个不同的点A (xi ,4)、B (羽+电,n )、C (电,4),则〃的值为.12,某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是13.如图,已知函数y=x+2的图象与函数尸直•(切0)的图象交于A、B两点,连接80并延长交X函数y=—Ck^O)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.x14.如图1为两个边长为1的正方形组成的2X1格点图,点A,B,C,£>都在格点上,AB,CD交于点P,则tanZBPD=,如果是"个边长为1的正方形组成的“X1格点图,如图2,那15.如图,动点。

2020年江苏省九年级数学中考模拟试题及答案

2020年江苏省九年级数学中考模拟试题及答案

A B C D2020江苏省九年级数学中考模拟试题(全卷共140分,考试时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在答题卷的相应位置上.) 1. 4的平方根是( )A. 2-B. 2C. 2±D. 16 2. 下列计算正确的是( )A .(a 3)2= a 6B .a 2+ a 4= 2a 2C .a 3a 2= a 6D .(3a )2= a 63. 下列说法中正确的是( ) A .“打开电视,正在播放《新闻联播》”是必然事件 B .一组数据的波动越大,方差越小 C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查4. 如果三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是( ) A .3 B .4 C .5 D .95. 下列图形中,既是轴对称图形,又是中心对称图形的是( )6. 将2.05 × 310-用小数表示为( )A .0.000205B .0.00205C .0.0205D .-0.002057. 平面直角坐标系中,若平移二次函数()() 673y x x =---的图像,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 ( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位BACA ′B ′C ′(第15题)8.如图,在一张矩形纸片ABCD 中,AD = 4cm ,点E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 延长线恰好经过点D ,则CD 的长为( ) A . 2cmB .23cmC .4 cmD . 43cm(第8题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 要使22x -有意义,则x 的取值范围是_▲______. 10.因式分解:2x 2– 8 = ▲ . 11. 若m 2-2m =1,则2017+2m 2-4m 的值是___▲___.(第12题)12.把一根直尺与一块直角三角板如图放置,若∠1 = 55°,则∠2 = ▲ °. 13. 在Rt △ABC 中,∠ACB = 90°,CD 是斜边AB 上的中线 , CD = 4,AC = 6,则CB = ▲ . 14.如果关于x 的方程x 2-6x + m = 0有两个相等的实数根,那么m = ▲ . 15.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为▲ . 16.设函数2y x =与1y x =-的图像的交点坐标为(a ,b ),则11a b-的值为 ▲ . 17.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是3cm ,底面周长是8πcm ,则扇形的半径为 ▲ cm .18.如图,已知Y ABCD 的顶点A 、C 分别在直线x =2和x =5上,O 是坐标原点,则对角线OB 长的最小值为 ▲ .AB C Oxy(第18题)x =2 x =5三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:2017131(1)()273--+π-+. (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭20.(本题10分)(1)解方程:221x x -=; (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪+>+⎩ 21.(本题7分)若中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了▲ 名学生;a = ▲ %;C 级对应的圆心角为▲ 度. (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.(本题7分)2016年G20杭州峰会期间,某志愿者小组有五名翻译,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)23.(本题8分)已知:如图,Y ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E . (1)求证:△AOD ≌ △EOC ;AEDO(第23题)B OA C D(2)连接AC ,DE ,当∠B =∠AEB = ▲ °时,四边形ACED 是正方形?请说明理由.24. (本题8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成任务,共需支付运费4800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?25. (本题8分)如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时,它与地面所成的角∠ ABO = 60°;当梯子底端向右滑动1 m (即BD = 1m )到达CD 位置时,它与地面所成的角∠ CDO = 51°18′,求梯子的长.(参考数据:sin 51°18′ ≈ 0.780,cos 51°18′ ≈ 0.625,tan 51°18′ ≈ 1.248)(第25题)26. (本题满分8分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD .(1) 弦长AB 等于 ▲ (结果保留根号); (2) 当∠D =20°时,求∠BOD 的度数;(3) 当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.OAC(第26题)BD27.(本题10分)如图1,菱形ABCD 中,∠A =60º.点P 从A 出发,以2cm/s 的速度,沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终 止,设点P 运动的时间为t 秒.△APQ 的面积S (cm 2)与t (s )之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.C(图1) (图2)MxyONMxyON28.(本题10分)已知抛物线l :y = ax 2+ bx + c (a ,b ,c 均不为0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)如图,抛物线y = x 2-2x -3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y = x 2-2x -3的顶点为M ,与y 轴交点为N ,将它的衍生直线MN 先绕点N 旋转到与x 轴平行,再沿y 轴向上平移1个单位得直线n ,P 是直线n 上的动点,是否存在点P ,使△POM 为直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(备用图)九年级数学试题答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在表格的相应位置上.)题号 1 2 3 4 5 6 7 8 选项 CADCCBCB二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.1x ≥ 10.)2)(2(2-+x x 11.2019 12.145° 13.27 14.9 15. 12 16.12-17. 5 18. 7三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:20170131(1)()273--+π-+分 = 0. --------------- 5分 (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭ 原式=()()111x x x x x+-⋅- ----------------------4分 =1x + ------------5分20.(本题10分)(1)解方程:221x x-=;(2)解不等式组:1,2263 2.xxx x⎧+≥⎪⎨⎪+>+⎩解不等式21xx≥+,得2-≥x.………2分解不等式2362+>+xx,得4<x.……4分∴不等式组的解集42<≤-x.…5分21.(本题7分)(1)50,24%,72º(每个1分)……………………………3分(2)补全条形统计图如图.……………………………5分(3)∵4200016050⨯=∴若该校共有2000名学生,估计该校D级学生有160名.……………………7分22.(本题7分)将一名只会翻译法语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:…………………4分∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,……………5分∴该组能够翻译上述两种语言的概率为:147=2010.…………………7分23.(本题8分)(1)∵四边形ABCD是平行四边形,∴AD∥BC.·············1分102212x x-+=……. 2分2(1=2x-)……3分(x-1)= 2±……4分∴1212,12x x==-……5分(第23题)B OA C D∴∠D =∠OCE ,∠DAO =∠E .又∵OC =OD , ············· 2分 ∴△AOD ≌△EOC .············· 3分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形. --------------- 4分∵△AOD ≌△EOC ,∴OA =OE .又∵OC =OD ,∴四边形ACED 是平行四边形. ······ 5分∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°. ---------------6分 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠COE =∠BAE ∴Y ACED 是菱形.--------------- 7分∵AB =A E ,AB =CD ,∴AE =CD .∴菱形ACED 是正方形. ------- 8分24.(本题8分)(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需2x 趟,依题意得:121212x x+= --------------- 1分 解得:18x =--------------- 3分经检验18x =是原方程的解---------------4分 ∴236x =---------------5分答:甲车单独运完此堆垃圾需18趟,乙车需36趟.(2)设甲车每趟需运费a 元,则乙车每趟需运费(200)a -元,依题意得:1212(200)4800a a +-=--------------- 6分解得:300a =--------------- 7分 ∴200100a -=∴单独租用甲车的费用=300×18=5400(元);单独租用乙车的费用=100×36=3600(元) 5400>3600∴单独租用乙车合算. ------------------------- 8分 25.(本题8分)设梯子的长为x m .在Rt △ABO 中,co s∠ABO =OB AB, ∴OB =AB cos∠ABO =x cos 60°=12x .--------------2分在R t△CDO 中,cos∠CDO = OD CD,∴OD =CD cos∠CDO = x cos51°18′ ≈ 0.625x --------4分∵BD =OD ﹣OB ,∴0.625x ﹣12x = 1,-------------- 6分解得x = 8.--------------7分.ABEO故梯子的长是8米.--------------8分.26.(本题8分)(1)23.-------------------------1分 (2)∵∠BOD 是△BOC 的外角,∠BCO 是△ACD 的外角, ∴∠BOD =∠B +∠BCO ,∠BCO =∠A +∠D .∴∠BOD =∠B +∠A +∠D .------------------------- 2分又∵∠BOD =2∠A ,∠B =30°,∠D =20°,------------------------- 3分 ∴2∠A =∠B +∠A +∠D =∠A +50°,∴∠A =50°------------------------- 4分∴∠BOD =2∠A =100°.------------------------- 5分 (3)∵∠BCO =∠A +∠D ,∴∠BCO >∠A ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA =∠BCO =90°.---------- 6分 此时∠BOC =60°,∠BOD =120°,∴∠DAC =60°. ∴△DAC ∽△BOC .------------------------- 7分 ∵∠BCO =90°,即OC ⊥A B ,∴AC =12AB =3.------------------------- 8分 27.(本题10分)(1)∵点Q 始终在AD 上作匀速运动,∴它运动的速度可设为a cm/s . 当点P 在AB 上运动时,AP =2t ,过点P 作PH ⊥AD 于H ,则PH =AP ·sin60º=3t , 此时,S =12·at ·3t =32a t 2,S 是关于t 的二次函数.当点P 在BC 上运动时,P 到AD 的距离等于定长32AB ,此时,△APQ 的面积S 与t 之间的函数关系是一次函数由图2可知∶t =3时,S = 932,∴ 932 = 32a ·9,∴a =1,即Q 点运动速度为1 cm /s .------------------------------------------------2分(2)∴当点P 运动到B 点时,t =3,∴AB =6.---------------------------------------3分当点P 在BC 上运动到C 时,点Q 恰好运动到D 点;当点P 由C 运动到D 时,点Q 始终在D 点,∴图2中的图像FG 对应的是点Q 在D 点、点P 在CD 上运动时S 与t 之间的函数关系,此时,PD =18-2t ,------------------------------------------------------------4分点P 到AD 的距离PH =PD ·sin60º=3(9-t ),------------------------------ ---------- 5分OAB C D此时S =12×6×3(9-t ),∴FG 的函数关系式为S =3 3 (9―t ),即S =―33t +27 3 (6≤t <9). ------------------------------ ---------- --------- ---------- --6分(3)当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ ,此时,△APQ 的面积S =32t 2,根据题意,得32t 2=16S 菱形ABCD =16×6·6sin60º,解得t =6(秒).-- 8分 当点P 在BC 上运动时,PQ 将菱形ABCD 分成四边形AB PQ 和四边形PCDQ ,此时,有 S 四边形ABPQ =56S 菱形ABCD ,即 12(2t ―6+t )×6×32 = 56×6×6×32,解得t =163(秒)--9分 ∴存在t =6和t =163,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.--------- 10分.28.(本题10分)(1)y =﹣x 2﹣3,y =﹣x ﹣3.------------------------------ ---------- 2分(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点, ∴将y =﹣2x 2+1和y =﹣2x +1联立,得,22121y x y x ⎧=-+⎨=-+⎩ 解得0111x x y y ==⎧⎧⎨⎨==-⎩⎩或,------------------------------ ---------- 3分 ∵衍生抛物线y =﹣2x 2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y =a (x ﹣1)2﹣1,∵y=a (x ﹣1)2﹣1过(0,1),∴1=a (0﹣1)2﹣1,解得 a =2,------------------------------ ---------- 4分 ∴原抛物线为y =2x 2﹣4x +1.------------------------------ ---------5分(3)∵N (0,﹣3),∴MN 绕点N 旋转到与x 轴平行后,解析式为y =﹣3,∴再沿y 轴向上平移1个单位得的直线n 解析式为y =﹣2.------------------------------ ---- 6分设点P 坐标为(x ,﹣2),∵O (0,0),M (1,﹣4),∴OM 2=(x M ﹣x O )2+(y O ﹣y M )2=1+16=17,OP 2=(|x P ﹣x O |)2+(y O ﹣y P )2=x 2+4,MP 2=(|x P ﹣x M |)2+(y P ﹣y M )2=(x ﹣1)2+4=x 2﹣2x +5.①当OM 2=OP 2+MP 2时,有17=x 2+4+x 2﹣2x +5,解得x=1+172或x=1-172,即P(1+172,﹣2)或P(1-172,﹣2).--------- 7分②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).------------------------------ ---------- 8分③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).------------------------------ ---------- 9分综上所述,当P 1+17,﹣21-172)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.------------------------------ ----------10分。

初三数学中考模拟试卷,附详细答案【解析版】(2020年8月整理).pdf

初三数学中考模拟试卷,附详细答案【解析版】(2020年8月整理).pdf

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2B.a的绝对值是2C.a的倒数等于2D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4B.众数是2C.平均数是2D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2B.k≠0C.k<2且k≠0D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1B.2C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8B.0<CE≤5C.0<CE<3或5<CE≤8D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3B.4C.5D.616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q(1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53.5°方求:建筑物B到公路ON的距离.向上.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为人,其中选C的人数占调查人数的百分比为.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.25.(13分)(2015•邢台一模)如图,足球上守门员在O处开出一高球.球从离地面1米的A处飞出(A在y轴上),把球看成点.其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式y=a(x﹣6)2+h.(1)①当此球开出后.飞行的最高点距离地面4米时.求y与x满足的关系式.②在①的情况下,足球落地点C距守门员多少米?(取4≈7)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距O 带你6米的B处的球员甲要抢到第二个落点D处的求.他应再向前跑多少米?(取2=5)(2)球员乙升高为1.75米.在距O点11米的H处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H正上方时低于球员乙的身高.同时落地点在距O点15米之内.求h的取值范围.26.(14分)(2015•南宁校级一模)已知矩形ABCD中,AB=10cm,AD=4cm,作如下折叠操作.如图1和图2所示,在边AB上取点M,在边AD或边DC上取点P.连接MP.将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则∠MA′C的度数为;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上,①求证:△MA′P是等腰三角形;②直接写出线段DP的长.(3)若点M固定为AB中点,点P由A开始,沿A﹣D﹣C方向.在AD,DC边上运动.设点P的运动速度为1cm/s,运动时间为ts,按操作要求折叠.①求:当MA′与线段DC有交点时,t的取值范围;②直接写出当点A′到边AB的距离最大时,t的值;发现:若点M在线段AB上移动,点P仍为线段AD或DC上的任意点.随着点M位置的不同.按操作要求折叠后.点A的落点A′的位置会出现以下三种不同的情况:不会落在线段DC上,只有一次落在线段DC上,会有两次落在线段DC上.请直接写出点A′由两次落在线段DC上时,AM的取值范围是.初三数学中考模拟试卷参考答案与试题解析一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2B.a的绝对值是2C.a的倒数等于2D.a的绝对值大于2考点:实数与数轴;实数的性质.分析:根据数轴确定a的取值范围,选择正确的选项.解答:解:由数轴可知,a<﹣2,a的相反数>2,所以A不正确,a的绝对值>2,所以B不正确,a的倒数不等于2,所以C不正确,D正确.故选:D.点评:本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.2.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项正确;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选:B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.4.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.5.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4B.众数是2C.平均数是2D.方差是7考点:方差;算术平均数;中位数;众数.分析:分别求出这组数据的平均数、众数、中位数、方差,再对每一项分析即可.解答:解:A、把1,﹣2,4,2,5从小到大排列为:﹣2,1,2,4,5,最中间的数是2,则中位数是2,故本选项错误;B、1,﹣2,4,2,5都各出现了1次,则众数是1,﹣2,4,2,5,故本选项错误;C、平均数=×(1﹣2+4+2+5)=2,故本选项正确;D、方差S2=[(1﹣2)2+(﹣2﹣2)2+(4﹣2)2+(2﹣2)2+(5﹣2)2]=8,故本选项错误;故选C.点评:本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2B.k≠0C.k<2且k≠0D.k>2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和根的判别式△的意义得到k≠0且△>0,即(﹣4)2﹣4×k×2>0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,∴k≠0且△>0,即(﹣4)2﹣4×k×2>0,解得k<2且k≠0.∴k的取值范围为k<2且k≠0.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.18考点:位似变换.分析:利用位似图形的定义得出四边形EFGH与四边形ABCD是位似图形,再利用位似图形的性质得出答案.解答:解:∵E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形EFGH与四边形ABCD是位似图形,且位似比为:1:2,∴四边形EFGH与四边形ABCD的面积比为:1:4,∵四边形EFGH的面积是3,∴四边形ABCD的面积是12.故选:C.点评:此题主要考查了位似变换,根据题意得出位似比是解题关键.8.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°考点:旋转的性质.分析:如图,首先由旋转变换的性质得到∠PAQ=∠BAC;由平行线的性质得到解答:解:如图,由旋转变换的性质得:∠PAQ=∠D=40°,即可解决问题.∠PAQ=∠BAC;∵AP∥BD,∴∠PAQ=∠D=40°,∴∠BAC=40°.故选B.点评:该题主要考查了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵活运用旋转变换的性质来分析、判断、推理或解答是解题的关键.9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.分析:由数字3与4相对,数字1与5相对,数字2与6相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1与5相对,数字2与6相对,∴任意掷这个玩具,上表面与底面之和为偶数的概率为:.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.解答:解:根据作法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴AD≠BD,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选:C.点评:此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°考点:多边形内角与外角;等边三角形的性质.分析:根据图1先求出正三角形ABC内大钝角的度数是120°,则两锐角的和等于60°,正五边形的内角和是540°,求出每一个内角的度数,然后解答即可.解答:解:如图,图1先求出正三角形ABC内大钝角的度数是180°﹣30°×2=120°,180°﹣120°=60°,60°÷2=30°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.点评:本题主要考查了多边形的内角与外角的性质,仔细观察图形是解题的关键,难度中等.12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1B.2C.D.无法确定考点:反比例函数图象上点的坐标特征.分析:过点D作DE⊥x轴于点E,由点D为斜边OA的中点可知DE是△AOB的中位线,设A(x,),则D(,),再求出k的值即可.解答:解:过点D作DE⊥x轴于点E,∵点D为斜边OA的中点,点A在反比例函数y=上,∴DE是△AOB的中位线,设A(x,),则D(,),∴k=•=1.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8B.0<CE≤5C.0<CE<3或5<CE≤8D.3<CE≤5考点:直线与圆的位置关系;平行四边形的性质.分析:过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的两种情况.解答:解:过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB==,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是0<CE<3或5<CE≤8,故选C.点评:本题考查了直线和圆的位置关系,勾股定理,平行四边形的性质的应用,能求出符合条件的所有情况是解此题的关键,此题综合性比较强,有一定的难度.14.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)考点:二次函数图象与几何变换.分析:根据抛物线m的解析式求得点P、C的坐标,然后由点P′在y轴上,点C′在x轴上得到平移规律,由此可以确定点P′、C′的坐标.解答:解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3B.4C.5D.6考点:估算无理数的大小.专题:新定义.分析:根据[a]表示不超过a的最大整数计算,可得答案.解答:解:900→第一次[]=30→第二次[]=5→第三次[]=2→第四次[]=1,即对数字900进行了4次操作后变为1.故选:B.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6D.4考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:在y轴的正半轴上截取OF=OE=3,连接EF,证得F是E关于直线y=x的对称点,连接BF交OA于P,此时△BEP周长最小,最小值为BF+EB,根据勾股定理求得BF,因为BE=1,所以△BEP周长最小值为BF+EB=5+1=6.解答:解:在y轴的正半轴上截取OF=OE=3,连接EF,∵A点为直线y=x上一点,∴OA垂直平分EF,∴E、F是直线y=x的对称点,连接BF交OA于P,根据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB;∵OF=3,OB=4,∴BF==5,∵EB=4﹣3=1,△BEP周长最小值为BF+EB=5+1=6.故选C.点评:本题考查了轴对称的判定和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出P点是解题的关键.二、填空题(共4小题,每小题3分,满分12分)17.计算:=.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为:2.点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为0.考点:一元二次方程的解.分析:把x=1代入已知方程,可得:a+b﹣1=0,然后适当整理变形即可.解答:解:∵x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,∴a+b﹣1=0,∴a+b=1,∴1﹣a﹣b=1﹣(a+b)=1﹣1=0.故答案是:0.点评:本题考查了一元二次方程的解的定义.把根代入方程得到的代数式巧妙变形来解题是一种不错的解题方法.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=360°﹣2α.(用含α的式子表示)考点:圆周角定理.分析:在优弧AB上取点D,连接AD、BD,根据圆内接四边形的性质求出∠D的度数,再解答:解:在优弧AB上取点D,连接AD、BD,根据圆周角定理求出∠AOB的度数.∵∠ACB=α,∴∠D=180°﹣α,根据圆周角定理,∠AOB=2(180°﹣α)=360°﹣2α.故答案为:360°﹣2α.点评:本题考查的是圆周角定理及圆内接四边形的性质,解答此题的关键是熟知以下概念:圆周角定理:同弧所对的圆周角等于它所对圆心角的一半;圆内接四边形的性质:圆内接四边形对角互补.20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q(1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是①②③④(填写序号).考点:动点问题的函数图象.分析:(1)当x=0时,y的值即是AB的长度;(2)图乙函数图象的最低点的y值是AH的值;(3)在直角△ACH中,由勾股定理来求AC的长度;(3)当点P运动到点H时,此时BP(H)=1,AH=,在Rt△ABH中,可得出∠B=60°,则判定△ABP是等边三角形,故BP=AB=2,即x=2(5)分两种情况进行讨论,①∠APB为钝角,②∠BAP为钝角,分别确定x的范围即可.解答:解:(1)当x=0时,y的值即是AB的长度,故AB=2,故①正确;(2)图乙函数图象的最低点的y值是AH的值,故AH=,故②正确;(3)如图乙所示:BC=6,BH=1,则CH=5.又AH=,∴直角△ACH中,由勾股定理得:AC===2,故③正确;(4)在Rt△ABH中,AH=,BH=1,tan∠B=,则∠B=60°.又△ABP是等腰三角形,∴△ABP是等边三角形,∴BP=AB=2,即x=2.故④正确;(5)①当∠APB为钝角时,此时可得0<x<1;②当∠BAP为钝角时,过点A作AP⊥AB,则BP==4,即当4<x≤6时,∠BAP为钝角.综上可得0<x<1或4<x≤6时△ABP为钝角三角形,故⑤错误.故答案为:①②③④.点评:此题考查了动点问题的函数图象,有一定难度,解答本题的关键是结合图象及函数图象得出AB、AH的长度,第三问推知△ABP是等边三角形是解题的难点.三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM 和ON ,其中OM 为东西走向,ON 为南北走向,A 、B 是两条公路所围区域内的两个标志性建筑.已知A 、B 关于∠MON 的平分线OQ 对称.OA=1000米,测得建筑物A 在公路交叉口O 的北偏东53.5°方向上. 求:建筑物B 到公路ON 的距离.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)考点:解直角三角形的应用-方向角问题.分析:连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°,解Rt △AOC ,求出AC=OA •cos53.5°=600米,再根据AAS 证明△AOC ≌△BOD ,得出AC=BD=600米,即建筑物B 到公路ON 的距离为600米. 解答:解:如图,连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°, 在Rt △AOC 中,∵∠ACO=90°,∴AC=OA •cos53.5°=1000×0.6=600(米), OC=OA •sin53.5°=1000×0.8=800(米).∵A 、B 关于∠MON 的平分线OQ 对称,∴∠QOM=∠QON=45°,∴OQ 垂直平分AB ,∴OB=OA ,∴∠AOQ=∠BOQ ,∴∠AOC=∠BOD . 在△AOC 与△BOD 中,,∴△AOC ≌△BOD (AAS ),∴AC=BD=600米. 即建筑物B 到公路ON 的距离为600米.点评:本题考查了解直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判定与性质,准确作出辅助线证明△AOC ≌△BOD 是解题的关键.23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为60人,其中选C的人数占调查人数的百分比为10%.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有440人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?考点:一次函数的应用;用样本估计总体;扇形统计图;条形统计图;概率公式.分析:(1)根据A的人数除以占的百分比求出调查总人数;求出C占的百分比即可;(2)求出B占的百分比,乘以800得到结果;找出总人数中B的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)可以近似看做一次函数,设为y=kx+b,把两点坐标代入求出k与b的值,即可确定出函数解析式;(4)设可维持x人一天的生命需要,根据题意列出方程,求出方程的解即可得到结果.解答:解:(1)根据题意得:21÷35%=60(人),选C的人数占调查人数的百分比为×100%=10%;(2)根据题意得:选“比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B的概率为=;(3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y(毫升)与时间t(分)满足关系式y=kt+b,依题意得:,解得:,∴y=6t,经检验其余各点也在函数图象上,∴水龙头滴水量y(毫升)与时间t(分)满足关系式为y=6t;(4)设可维持x人一天的生命需要,依题意得:800×10%×2×60×6=2400x,解得:x=24.则可维持24人一天的生命需要.故答案为:(1)60;10%;(2)440;.点评:此题考查了一次函数的应用,扇形统计图,条形统计图,以及用样本估计总体,熟练掌握运算法则是解本题的关键.24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.考点:一次函数综合题.分析:(1)由y=kx﹣4可知C(0,﹣4),即OC=4,根据tan∠OBC=,得出OB=3,即可求得B的坐标为(3,0);(2)根据题意可知直线为y=x﹣4,根据三角形的面积求得A的纵坐标,把A的纵坐标代入直线的解析式即可求得A的坐标;(3)分两种情况分别讨论即可求得.。

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。

2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。

最新2020年九年级数学中考模拟试题带解析

最新2020年九年级数学中考模拟试题带解析

2020年九年级中考模拟考试数 学 试 题第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分) 在每小题给出的四个选项中,只有一个选项符合题意.1.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低( ).A .4℃B .-4℃C .4℃或者-4℃D .34℃ 2. 下列计算正确的是( ).A .2a a a +=B .33(2)6a a = C.3332a a a ⨯=D .32a a a ÷=3. 为你点赞,你是最棒的!下列四种QQ 表情图片都可以用来为你点赞!其中是轴对称图形的是( )A .B. C. D.4.如图1,这个立体图形中小正方体的个数是( ) A .9个 B .10个 C .11个 D .12个5. 如图2,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =118°,则∠BCE =( )A .28oB .38oC .62oD .72o6.2015年开春以来,某楼盘为了促销,对商品房连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为a元/平方米,原价为b 元/每平方米,则可列方程为( )A .a (1-x )+a (1-x )2=bB .b (1-x )+b (1-x )2=aC .a (1-x )2=bD .b (1-x )2=a 7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( )A .若这5次成绩的中位数为8,则x=8B .若这5次成绩的众数是8,则x=8C .若这5次成绩的方差为8,则x=8D .若这5次的平均成绩是8,则 x=8 8. 如图3,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式可能是( ).A .y=x +2B .y=x 2+2 C .y=x +2 D . y=1x +29.如图4,扇形AOB 中,圆心角∠AOB=15°,半径OA=2,过点A 作AC ⊥OB ,垂足为C ,则图中阴影部分的面积为( )A. 13π B. 16π C. 1132π-D. 1162π- 10.如图5,已知抛物线2y x m =-+(m >0)的图象分别图1A EB CD图2 图3C O 图4交x 轴于A 、B 两点,交y 轴于点C ,点D 是y 轴上一点,线段BC 的延长线交线段AD 于点P .若BP=36,△DPC 与△COB 的面积相等,则点C 的坐标为( ).A .(0,6)B .(0,3)C .(0,2)D .(0,1第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6各小题,每小题3分,共18分)把答案直接填在题中横线上.11.根据国家统计局消息,2014年全国网上零售额达到27898亿元,比上年增加9047亿元,增长49.7%.请将2014年全国网上零售额用科学计数法表示为 亿元.12.一个等腰三角形有两边长分别是3和7,则该三角形的周长为 .13.计算:27-2tan60° +( 13 )0= .14.湖南卫视推出的电视节目《我是歌手第三季》于3月27日落下帷幕,歌手韩红夺得歌王称号.在这个节目中,7位歌手每场比赛的成绩排位顺序是由现场500位大众评委投票决定的,每场比赛每位大众评委有3张票(必须使用)以投给不同的3位歌手.在某一场比赛中,假设全部票都有效,也不会产生并列冠军,那么要夺得冠军至少要获得_________张票.15.如图6,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 的位似比为1∶2,则线段AC 的中点P 变换后对应的点的坐标为 .16.如图7,在平面直角坐标系xOy 的第一象限内依次作等边三角形△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…点A 1、A 2、A 3…在x 轴的正半轴上,点B 1、B 2、B 3…在射线OM 上,若∠B 1OA 1=30°,OA 1=1,则点B 2015的坐标是 .三、解答题:(本大题共8小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.图6 xyB3B2OA1A2B1A3A4M图7x yPABCOD图5AD B17.(本小题满分7分)先化简,再求值:21(x-÷44422-+-xxx,其中x=2.18.(本小题满分8分)“五一”节快到了,某公园计划在园内一个三角形区域栽花.如图8,已知∠CAB=21.3°,∠CBD=63.5°,AB=60米.(1)如果栽花的成本是每平方米25元,那么将△ABC内栽满花需要多少元?(2)在准备栽花时,有人建议从B处修一条道路到AC边方便游客行走,求道路最短多少米?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)19. (本小题满分8分)由甲、乙两运输队承包运输15000立方米沙石的任务,要求在10天之内(包含10天)完成.已知两队共有20辆汽车,甲队每辆车每天能够运输100立方米的沙石,乙队每辆车每天能够运输80立方米的沙石,前3天两队一共运输了5520立方米.(1)求甲乙两队各有多少辆汽车?(2)3天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?20.(本小题满分8分)2015年2月27日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛——中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.(1)根据图,请计算该年有支中超球队参赛;(2)补全图一中的条形统计图;(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A队49分,B队49分,C队48分,D队45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?21.(本小题满分9分)如图10,在平面直角坐标系xOy中,将直线y=x向右平移2个单位后与双曲线y=ax(x>0)有唯一公共点A,交另一双曲线y=kx(x>0)于B.(1)求直线AB的解析式和a的值;(2)若x轴平分△AOB的面积,求k的值.图4图1022.(本小题满分9分)已知:如图11,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC=8cm ,BD=6cm .(1)点E 是AB 边上一动点(不与A 、B 重合),过点E 作EF //BD ,交AD 于点F .求证:△BOE ≌△DOF ;(2)若点E 在直线AB 上移动,EF //BD ,交直线AD 于点F ,判断△BOE 与△DOF 是否还全等?(直接回答,不必证明)(3)在(1)的条件下,AE 为何值时,△OEF 的面积最大?23. (本小题满分11分)已知:如图12,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,AB=AC .连结AD ,交⊙O 于H ;直线HF 交BC 的延长线于G .(1)求证:圆心O 在AD 上;(2)求证:CD=CG ;(3)若AH :AF=3:4,CG=10,求HF 的长.C图11G图1224.(本小题满分12分)如图13,已知抛物线y=ax2+bx+c与x轴的一个交点为A(-1,0),与y轴的交点为C(0,3),对称轴为x=1,与x轴相交于点N,抛物线顶点为D.(1)求抛物线的解析式;(2)已知点P为抛物线对称轴上的一个动点,当△ACP周长最小时,求点P的坐标;(3)在(2)的条件下,连接AP交y轴于点E,将△BCD沿BC翻折得到△BCD′.在抛物线上是否存在点M,使△BCM的面积等于四边形CPED′面积的3倍?若存在,求出点M的坐标,若不存在,说明理由.。

【2020精品】江苏省苏州九年级数学中考模拟检测含答案

【2020精品】江苏省苏州九年级数学中考模拟检测含答案

2020江苏省苏州市中考数学中考模拟试题含答案一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上)1、的倒数是(▲)A .B .2C .﹣2D .﹣2、下列图形中,既是轴对称图形又是中心对称图形的是(▲)A .B .C .D .3、地球的平均半径约为6371000米,该数字用科学记数法可表示为(▲)A .0.6371×107B .6.371×106C .6.371×107D .6.371×1034、下列运算正确的是(▲)A .523)a a =(B .523a a a =+C .1)(23-=÷-a a a a D .153=÷a a 5、若一个多边形的内角和与它的外角和相等,则这个多边形是(▲)A .三角形B .四边形C .五边形D .六边形6一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖)同学A B C D E 方差平均成绩得分8179808280那么被遮盖的两个数据依次是(▲)A .78,2B .78,C .80,2D .80,7、对于二次函数2)1(2+-=x y 的图象,下列说法正确的是(▲)A .开口向下B .对称轴是x =﹣1C .顶点坐标是(1,2)D .与x 轴有两个交点8、已知一次函数b x y +-=与反比例函数x y 1=的图象有2个公共点,则b 的取值范围是(▲)A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣29、如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是(▲)第9题图A .B .C .D .10、如图,在等腰Rt △ABC 中,AC=BC=2,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是(▲)A .πB .πC .2D .2第10题图二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11、代数式1-x 在实数范围内有意义,则x 的取值范围是▲.12、已知关于x 的方程032=+-m x x 的一个根是1,则m=▲.13、在实数范围内分解因式:1642-m =▲.14、分式方程:351+=x x 的解是▲.15、如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB=▲度.(15)(17)(18)16、若一个圆锥的底面圆半径为3cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是▲cm .17、如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是▲.18、如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为▲.F G E H D C B A三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19、(本题满分5分)计算:201700)1(45sin 2-1214.3--+-+)(π.20、(本题满分4分)解方程:0152=--x x .21、(本题满分7分)已知:14)96)(2()3(22--+-+÷-=x x x x x A .(1)化简A ;(2)若x 满足不等式组⎪⎩⎪⎨⎧<-<-343112x x x ,且x 为整数时,求A 的值.22、(本题满分6分)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A 、D 、G 在同一直线上,且AD=3,DE=1,连接AC 、CG 、AE ,并延长AE 交CG 于点H .(1)求证:∠DA E=∠D CG ;(2)求线段HE 的长.23、(本题满分8分)今年某市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.24、(本题满分8分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.25、(本题满分8分)如图,在平面直角坐标xoy 中,正比例函数kx y =的图象与反比例函数xm y =的图象都经过点A (2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB 、AC ,求点C 的坐标及△ABC 的面积.26、(本题满分10分)如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将沿CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC .(1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交于点F (F 与B 、C 不重合),则GE •GF 为一定值。

浙江省金华市2020年中考数学仿真模拟考试题(参考答案)

浙江省金华市2020年中考数学仿真模拟考试题(参考答案)

浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。

2020中考模拟考数学科试卷(含答案)

2020中考模拟考数学科试卷(含答案)

CDA'E'中考模拟考 数 学 试 卷(时间:100分钟 满分:150分)(说明:本卷共五大题,第一题答案涂在答案卡上,第二题至第五题答案写在答案卷上) 一、 选择题(本大题共8小题,每小题4分,共32分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在答案卡. 1、3-的相反数是( ) A 、3 B 、3-C 、3±D 、13-2、某个多面体的平面展开图如图所示,那么这个多面体 是( ) A 、三棱柱B 、四棱柱C 、三棱锥D 、四棱锥3、木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD ),这样做的根据是( ) A 、矩形的对称性 B 、矩形的四个角都是直角 C 、三角形的稳定性 D 、两点之间线段最短 4、下列运算中正确的是( )A .326x x x =gB .2x x x +=C .426()x x =D .22(2)4x x -=-5、学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( ) A 、2和2 B 、4和2 C 、2和3 D 、3和2 6、某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例,如图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( ) 6题A 、R I 3=B 、R I 2=C 、RI 6= D 、RI 6-= 7、一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( ) A 、180元B 、200元C 、240元D 、250元8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠AC3题 BDl 1 170° l2后B E B A ''与在同一条直线上,则∠CBD 的度数( )A 、大于90°B 、等于90°C 、小于90°D 、不能确定.二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上.9、我国最长的河流——长江全长约为6300千米,用科学 记数法可表示为 千米. 10、如图,l 1∥l 2,则∠1=________度.11、分解因式:24x -= . 10题12、关于x 的一元二次方程x 2+bx +c =0的两个实数 根分别为1和2,则b =______;c =______. 13、如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,如果EF =2,那么菱形ABCD 的周长是 . 三、解答题(本大题共5小题,每小题7分,共35分)14、计算:01(123sin 30---+--°15、当3x =时,求代数式244326x x xx x --÷++的值.16、认真观察图1的两个图中阴影部分构成的图案,回答下列问题:DBC 13题OEDCBA(1)这两个图案都既是中心对称图形又是 图形.(2)请在图2中设计出你心中最美丽的图案,使它也具备上述两个特征.17、如图的二次函数图象(部分)刻画了某公司年初以来累积利润s (万元)与时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)写出二次函数对称轴与顶点坐标;(2)求累积利润s (万元)与时间t (月)之间的函数关系式.18、在⊙O 中,弦AB 与CD 相交于点E ,AC = BD .(1)求证:△AEC ≌△DEB ;(2)点B 与点C 关于直线OE 对称吗?直接回答不用说明理由.书画电脑35%音乐 体育电脑 体育 音乐 书画 兴趣小组19题图1 19题图2四、解答题(本大题共3小题,每小题9分,共27分) 19、育英中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图 (不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中“电脑”部分所对应的圆心角为 度; (2)在图2中,将“体育”部分的图形补充完整; (3)被调查的学生爱好“书画”的概率为 ;(4)估计育英中学现有的学生中,有 人爱好“书画”.20、某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元. (1)试写出总费用y (元)与销售套数x (套)之间的函数关系式;(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?D4D3D2D1P4P3P2P1CBA21、如图,正△ABC的边长为1,将线段AC绕点A顺时针旋转120°至AP1形成扇形D1;将线段BP1绕点B顺时针旋转120°至BP2形成扇形D2;将线段CP2绕点C顺时针旋转120°至CP3形成扇形D3;将线段AP3绕点A顺时针旋转120°至AP4形成扇形D4,……设l n为扇形D n的弧长(n=1,2,3,……),回答下列问题:(1)按要求填表:21题李强王明C O(2)根据上表所反映的规律,试计算n 为何值时,扇形D n 的弧长为2008π.五、解答题(本大题共3小题,每小题12分,共36分)22、如图所示,点B 表示篮球场的一盏照明灯.若王明到灯柱OA 的距离CO 为4.6米,照明灯B 到灯柱OA 的距离为1.6米,王明目测照明灯B 的仰角为57°,他的目高DC 为1.6米.(1)试求照明灯B 到地面的距离(结果精确到0.1米).(2)若头戴尖帽的李强的身高EF (帽尖到地面的距离)为1.86米,到灯柱OA 的距离OE 为3.51米,求在照明灯B 照射下李强的影子长.(参考数据:tan57 1.540≈°,sin570.839≈°,cos570.545≈°)DOEACB22题23、如图,在△ABC 中,∠C=900,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点E ,交BC 于点D.(1)求证:BA BE BC BD =g g ;(2)如果CE=BE 且DE=DC ,求证:CE 是⊙O 的切线.23题24、如图,直线l :24y x =-+交y 轴于A 点,交x 轴于B 点,四边形OACD 为正方形,点P 从D 点开始沿x 轴向点O 以每秒2个单位的速度移动,点Q 从点B 开始沿BA 向点A 以5个单位的速度移动,如果P ,Q 分别从D ,B 同时出发.(1)设△PAQ 的面积等于S,运动时间为t 秒,当02t <<时,求S 与t 之间的函数关系; (2)当点Q 移到AB 的中点E 时,P 点停止移动.直线l 向右平移m 个单位,得到直线1l .如图,直线1l 交y 轴于A 1点,交x 轴于B 1点,Q 1为A 1 B 1的中点. △PAQ 1的面积S 1是否与m 的值有关?请说明你的理由.24题参考答案一、选择题 1、A 2、A 3、C 4、B 5、D 6、C 7、B 8、B二、填空题9、 6.3×10310、20 11、(2)(2)x x +- 12、 -3 ; 213、 8三、解答题 14、解:原式=111322-+- =3 (7分) 15、解:原式(4)2(3)3(4)x x x x x -+=+--g 2x =- (5分)当3x =时,原式= 3)-= 6- (7分)16、(1) 轴对称 . (2分) (2)略. (7分)17、解:(1)二次函数对称轴为2t =,顶点坐标为(2,-2); (2分) (2)解法一:∵二次函数的顶点坐标为(2,-2),∴设二次函数的解析式为2(2)2s a t =--, (4分) 由图可知当0t =,0s =,∴20(02)2a =--,∴12a =, (6分) ∴21(2)22s t =--,即2122s t t =-. (7分)(解析式没有化为一般形式的不扣分)解法二:∵二次函数过原点,∴设二次函数的解析式为2s at bt =+, (3分) 由图可知当4t =,时0s =;当2t =,时2s =-.∴0164242a b a b =+⎧⎨-=+⎩, ∴122a b ⎧=⎪⎨⎪=-⎩ (6分) ∴二次函数的解析式为2122s t t =-18、(1)证明:在⊙O 中, ACD DBA =∠∠ ∵BD CA =,AEC DEB =∠∠,∴AEC DEB △≌△. (5分)(2)点B 与点C 关于直线OE 对称.(7分) 四、解答题19、解:(1)126; (2分) (2)画图,如图所示; (4分) (3)110; (6分) (4)287. (9分) 20、解:(1) 解:y =50000+200x (3分)(2) 解法1:设软件公司至少要售出x 套软件才能确保不亏本,则有: 700 x ≥50000+200x (6分) 解得:x ≥100 (8分)答:软件公司至少要售出100套软件才能确保不亏本. (9分) 解法2:每套成本是50000x+200 (4分)若每套成本和销售价相等则:700=50000x+200 (6分)解得:1=100x∴ x =100 (8分)答:软件公司至少要售100套软件才能确保不亏本. (9分) 解法3:每套成本是50000x+200 (4分)由题意得:700≥50000x+200 (6分)解得:1≥100x∴ x ≥100 (8分)答:软件公司至少要售100套软件才能确保不亏本. (9分) 注:第(1)小题的解析式可以不写x 的取值范围. 21、解:解:(1)234363283πππππ,,()或,; (4分) (2)D n n =23π。

2020年湖北省九年级数学中考模拟试卷(含答案)

2020年湖北省九年级数学中考模拟试卷(含答案)

2020湖北省九年级数学中考模拟试题含答案一、选择题(每题3分,共30分)1、在实数-2,0,-1.5,1中,最小的数是()A.-2B.0 C.-1.5 D.12、下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3、今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105 B.1.81×106 C.1.81×107 D.181×1044、下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6 C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n25、下列几何体的三视图相同的是()A.圆柱 B.球 C.圆锥 D.长方体6、下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学的数学成绩是92,95,95,98,110,则他们的平均分是98,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法7、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8、如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大扇形OCD,用剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10 cm B.15 cm C.10 3 cm D.20 2 cm第7题图 第8题图 第9题图 9、已知二次函数的图象如图,则下列结论中正确的有( ) ①a +b +c >0;②a-b +c <0;③b>0;④b=2a ;⑤abc<0. A .5个 B .4个 C .3个 D .2个10、如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A .B .C .D .二、填空题(每题3分,共18分)11、分解因式:2a 2+4a +2= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级中考模拟考试数学试题一、选择题(每小题4分,共40分)1.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.晴B.浮尘C.大雨D.大雪2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×1063.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y24.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40°B.50°C.60°D.140°5.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.B.C.D.7.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°8.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.9.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4B.6C.8D.不能确定10.如图,△ABC中,∠ACB=90°,AB=10,tan A=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二.填空题(每小题4分,共24分)11.3的算术平方根是.12.分解因式:x3﹣2x2+x=.13.如图,等边△OAB的边长为2,则点B的坐标为.14.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.15.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第个.16.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.三.解答题(共9小题)17.解不等式组:,并把解集在数轴上表示出来.18.先化简,再求值:(2﹣)÷,其中x=2.19.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC∽△DEB.20.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.21.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.22.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.23.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cos C=时,求⊙O的半径.24.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB 为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是.(2)抛物线y=对应的准蝶形必经过B(m,m),则m=,对应的碟宽AB是.(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(x p,y p),使得∠APB为锐角,若有,请求出y p的取值范围.若没有,请说明理由.25.已知⊙O的半径为5,弦AB的长度为m,点C是弦AB所对优弧上的一动点.(1)如图①,若m=5,则∠C的度数为°;(2)如图②,若m=6.①求∠C的正切值;②若△ABC为等腰三角形,求△ABC面积.参考答案与试题解析一、选择题(每小题4分,共40分)1.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.晴B.浮尘C.大雨D.大雪【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将280000用科学记数法表示为2.8×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y2【分析】根据合并同类项法则、积的乘方与幂的乘方、单项式的乘除法逐一计算可得.【解答】解:A、x2﹣3x2=﹣2x2,此选项错误;B、(﹣3x2)2=9x4,此选项错误;C、x2y•2x3=2x5y,此选项错误;D、6x3y2÷(3x)=2x2y2,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、积的乘方与幂的乘方、单项式的乘除法法则.4.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40°B.50°C.60°D.140°【分析】根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.【解答】解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选:A.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.5.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)【分析】分别把x=0,y=0代入解析式y=x﹣2即可求得对应的y,x的值.【解答】解:当x=0时,y=﹣2;当y=0时,x=2,因此一次函数y=x﹣2的图象经过点(0,﹣2)、(2,0).故选:D.【点评】此题考查一次函数图象上点的坐标特征,在这条直线上的各点的坐标一定适合这条直线的解析式.6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.B.C.D.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【解答】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选:D.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.7.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°【分析】直接利用绝对值的性质以及偶次方的性质得出sin A=,tan B=1,进而得出∠A=30°,∠B=45°,即可得出答案.【解答】解:∵|sin A﹣|+(1﹣tan B)2=0,∴|sin A﹣|=0,(1﹣tan B)2=0,∴sin A=,tan B=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.【点评】此题主要考查了特殊角的三角函数值以及偶次方的性质,正确得出sin A=,tan B=1是解题关键.8.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.【分析】列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为,故选:D.【点评】本题考查了列表法与树状图法的知识,解决本题时采用了两个独立事件同时发生的概率等于两个独立事件单独发生的概率的积,难度不大.9.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4B.6C.8D.不能确定【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF 为BC 的一半,且EF 平行于BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC 的面积,而△PBC 面积=△CPQ 面积+△PBQ 面积,即为△PDC 面积+△PAB 面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF =BC ,∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =2,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =S 1+S 2=8.故选:C .【点评】此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.10.如图,△ABC 中,∠ACB =90°,AB =10,tan A =.点P 是斜边AB 上一个动点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A.B.C.D.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,∵tan A=,AP=x,∴PQ=x,∴y=×AP×PQ=×x×x=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=10,tan A=,∴BP=10﹣x,PQ=2BP=20﹣2x,∴y=•AP•PQ=×x×(20﹣2x)=﹣x2+10x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.并且当Q点在C时,x=8,y=16.故选:B.【点评】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.二.填空题(每小题4分,共24分)11.3的算术平方根是.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.分解因式:x3﹣2x2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.13.如图,等边△OAB的边长为2,则点B的坐标为(1,).【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【解答】解:过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,∴OD=AD=OA==1,在Rt△BDO中,由勾股定理得:BD==,∴点B的坐标为(1,),故答案为:(1,).【点评】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键.14.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.15.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第5个.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=3,所以另一段长为18﹣3=15,因为15÷3=5,所以是第5张.故答案为:5【点评】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.16.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【解答】解:∵在Rt△ABC中,AB=AC=,∴∠B=∠C=45°,BC=,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC∴DE=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=,则第n个内接正方形的边长为:2×,∴则第2014个内接正方形的边长为2×=2×=.故答案为:.【点评】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三.解答题(共9小题)17.解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3(x﹣2)≥x﹣4,得:x≥1,解不等式>x﹣1,得:x<4,则不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键18.先化简,再求值:(2﹣)÷,其中x=2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(2﹣)÷====,当x=2时,原式=.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC∽△DEB.【分析】依据△ABC是等边三角形,即可得到∠B=∠C=60°,再根据∠CAD=∠BDE,即可判定△ADC∽△DEB.【解答】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴△ADC∽△DEB.【点评】此题考查了相似三角形的判定与性质、等边三角形的性质等知识.解题时注意:有两组角对应相等的两个三角形相似.20.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180,答:此圆锥侧面展开图的圆心角是180°.【点评】考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.21.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【分析】(1)设11、12两月平均每月降价的百分率是x,那么4月份的房价为14000(1﹣x),12月份的房价为14000(1﹣x)2,然后根据12月份的11340元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出今年2月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.【解答】解:(1)设11、12两月平均每月降价的百分率是x,则11月份的成交价是:14000(1﹣x),12月份的成交价是:14000(1﹣x)2∴14000(1﹣x)2=11340,∴(1﹣x)2=0.81,∴x1=0.1=10%,x2=1.9(不合题意,舍去).答:11、12两月平均每月降价的百分率是10%;(2)会跌破10000元/m2.如果按此降价的百分率继续回落,估计今年2月份该市的商品房成交均价为:11340(1﹣x)2=11340×0.81=9185.4<10000.由此可知今年2月份该市的商品房成交均价会跌破10000元/m2.【点评】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【分析】(1)用不剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为:1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cos C=时,求⊙O的半径.【分析】(1)连结OM,易证OM∥BC,由于AE是BC边上的高线,从而可知AM⊥OM,所以AM是⊙O的切线.(2)由于AB=AC,从而可知EC=BE=3,由cos C==,可知:AC=EC=,易证△AOM∽△ABE,所以,再证明cos∠AOM=cos C=,所以AO=,从而可求出OM =【解答】解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2 又OM=OB∴∠2=∠3∴OM∥BC∵AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线(2)∵AB=AC∴∠ABC=∠C,AE⊥BC,∴E是BC中点∴EC=BE=3∵cos C==∴AC=EC=∵OM∥BC,∠AOM=∠ABE∴△AOM∽△ABE∴又∵∠ABC=∠C∴∠AOM=∠C在Rt△AOM中cos∠AOM=cos C=,∴∴AO=AB=+OB=而AB=AC=∴=∴OM=∴⊙O的半径是【点评】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.24.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB 为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是MN⊥AB,MN=AB.(2)抛物线y=对应的准蝶形必经过B(m,m),则m=2,对应的碟宽AB是4.(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(x p,y p),使得∠APB为锐角,若有,请求出y p的取值范围.若没有,请说明理由.【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(3)①根据题意得出抛物线必过(3,0),进而代入求出答案;②根据y=x2﹣3的对称轴上P(0,3),P(0,﹣3)时,∠APB为直角,进而得出答案.【解答】解:(1)MN与AB的关系是:MN⊥AB,MN=AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=AB,故答案为:MN⊥AB,MN=AB;(2)∵抛物线y=对应的准蝶形必经过B(m,m),∴m=m2,解得:m=2或m=0(不合题意舍去),当m=2则,2=x2,解得:x=±2,则AB=2+2=4;故答案为:2,4;(3)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=6.∴抛物线必过(3,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴抛物线的解析式是:y=x2﹣3;②由①知,如图2,y=x2﹣3的对称轴上P(0,3),P(0,﹣3)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,y p的取值范围是y p<﹣3或y p>3.【点评】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.25.已知⊙O的半径为5,弦AB的长度为m,点C是弦AB所对优弧上的一动点.(1)如图①,若m=5,则∠C的度数为30°;(2)如图②,若m=6.①求∠C的正切值;②若△ABC为等腰三角形,求△ABC面积.【分析】(1)连接OA,OB,判断出△AOB是等边三角形,即可得出结论;(2)①先求出AD=10,再用勾股定理求出BD=8,进而求出tan∠ADB,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【解答】解(1)如图1,连接OB,OA,∴OB=OC=5,∵AB=m=5,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°,故答案为30;(2)①如图2,连接AO并延长交⊙O于D,连接BD,∵AD为⊙O的直径,∴AD=10,∠ABD=90°,在Rt△ABD中,AB=m=6,根据勾股定理得,BD=8,∴tan∠ADB==,∵∠C=∠ADB,∴∠C的正切值为;②Ⅰ、当AC=BC时,如图3,连接CO并延长交AB于E,∵AC=BC,AO=BO,∴CE为AB的垂直平分线,∴AE=BE=3,在Rt△AEO中,OA=5,根据勾股定理得,OE=4,∴CE=OE+OC=9,=AB×CE=×6×9=27;∴S△ABCⅡ、当AC=AB=6时,如图4,连接OA交BC于F,∵AC=AB,OC=OB,∴AO是BC的垂直平分线,过点O作OG⊥AB于G,∴∠AOG=∠AOB,AG=AB=3,∴∠ACF=∠AOG,在Rt△AOG中,sin∠AOG==,∴sin∠ACF=,在Rt△ACF中,sin∠ACF=,∴AF=AC=,∴CF=,∴S=AF×BC=××=;△ABC=.Ⅲ、当BA=BC=6时,如图5,由对称性知,S△ABC【点评】此题是圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.。

相关文档
最新文档