第三章:电力系统三相短路实用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力系统分析》
2014年5月1日星期四
2.方法二 K点故障边界条件为:
I kb I kc 0 U k a 0
转换为对称分量:
I ka1 I ka 2 I ka0 0 U k a1 U k a 2 U k a 0 0
《电力系统分析》
2014年5月1日星期四
(六)系统参数变更时不对称短路处各电气量的 变化特点:
系统参数 X 1 , X 2 , X 0 及 由旋转电机的正序和负 序阻抗值的差异而引起。 在靠近旋转电机附近的 地点短路时,取值范围 约在0.1~1.45之间;在 远离旋转电机的地点短 路时,其值可以近似为1
2
x x U
0
1
k 1 k 1 ka 0 U kb 0 ka 0 U U ka 0 k 2 k 2
1 kb U kb 0 U ka 0 U 2
k 0
当
k
《电力系统分析》
U
kb
U kb 0 U ka 0 3U kb 0 e
2
I ka1
a a Z
2
2
a 1Z 0
2014年5月1日星期四
《电力系统分析》
(四)向量图:(假定阻抗为纯电抗) 参考向量:Uka|0|
Ikc(2) Ikb(1) Ikc(1) Ikb(2)
I ka1 I ka 2 , I ka 0 0
(二)求解方法
(1)解析法
《电力系统分析》
2014年5月1日星期四
I ka1 I ka 2
E a1 Z1 Z 2
U ka1 E a1 I ka1 Z1 U ka 2 I ka 2 Z 2 I ka1 Z 2
《电力系统分析》
2014年5月1日星期四
(二)复合序网
(三)短路点电气量
E a1 I ka1 I ka2 I ka0 Z1 Z 2 Z 0
U ka0 I ka0 Z 0 I ka1 Z 0 U ka2 I ka2 Z 2 I ka1 Z 2 U ka1 (U ka2 U ka0 ) I ka1 ( Z 2 Z 0 ) E a1 I ka1 Z1
《电力系统分析》
2014年5月1日星期四
U ka U ka1 U ka2 U ka0 0
2 I kb I ka0 a I ka1 a I ka2 2 I I a I a I ka2 ka 0 ka1 kc
Ukc(0) Ukc Ukc(2) Ukc(1)
Uka|0|
Uka(2)
Ika(0) Ika(1) Ika(2)
Uka(0)
Uka(1)
Ukb(1)
Ikc
Ukb Ukb(0)
Ukb(2)
电流相量图
《电力系统分析》
电压相量图Βιβλιοθήκη Baidu
2014年5月1日星期四
非故障相电压变化情况:
Ukc Ukc(0) Ukc(k0=0)
2
( a a) U ka1 (a a ) U ka 2
2 2
U ka1 U ka 2
《电力系统分析》
2014年5月1日星期四
1 I ka 0 ( I ka I kb I kc ) 0 3 1 1 2 I ka 2 ( I ka a I kb a I kc ) j I kb 3 3 1 1 2 I ka1 ( I ka a I kb a I kc ) j I kb 3 3
《电力系统分析》
2014年5月1日星期四
短路处各相电压电流为:
I ka I ka1 I ka2 I ka0 3 I ka1 3 I ka0 I kb I kc 0 U ka 0 U kb a 2 U ka1 a U ka2 U ka0 I ka1 a 2 a Z 2 a 2 1 Z 0 U kc a U ka1 a U ka 2 U ka0
2014年5月1日星期四
《电力系统分析》
当故障点远离发电机时,可认为 Z1 Z 2 (2)复合序网法 根据故障边界条件,将基本序网在故障端口处连接 所构成的网络称为复合序网。
I ka 0 0
I ka1 I ka 2 U ka1 U ka 2
由复合序网,可直接求出故 障点电压电流的序分量。
《电力系统分析》
2014年5月1日星期四
Z2
Z1
,
Z0
Z1
与系统变压器中 性点的接地方式 及短路点的位置 有关,有可能在 0~∞范围内取 值
为分析简便,电阻忽略不计,只考虑各元件的电抗。 假设: X 1 X 2 令
I ka1 I ka2 I ka0
k
U
当
kb
a
故障点非故障相电压升高,严重时要引起过电 压。为此,在中性点直接接地的系统中,必须 要保证一定数量的变压器中性点接地,以控制 的数值不要过大。
负序电压: 故障点的负序电压与负序电流大小各序相同。 零序电压:故障点的零序电压与零序电流成正 比,所以零序电流与零序电压的大小关系相同。
《电力系统分析》
2014年5月1日星期四
《电力系统分析》
2014年5月1日星期四
(三)故障点电流电压向量关系(向量图):
先确定参考相量:U ka1
U ka1 I ka1 Z 2 (假定阻抗为纯电抗)
可以直观的了 解三相电流、 电压的相对大 小和它们之间 的相位关系。
《电力系统分析》
2014年5月1日星期四
(四)两相经阻抗短路
I ka I ka 2 0 I kb a I ka1 a I ka 2 (a a ) I ka1 j 3 I ka1
2 2
I kc j 3 I ka1 I kb I kb I kc
E a1 3 E a1 3 (3) j 3 j j I ka Z1 Z 2 2 Z1 2
《电力系统分析》
2014年5月1日星期四
系统各序等值电路
《电力系统分析》
2014年5月1日星期四
5-1各种不对称短路时故障处的短路电流和电压
一、单相接地短路(A相)
a b c
K(1)
I ka
I kb
I kc
(一)故障边界条件: U 0, I kb I kc 0 ka
转换为对称分量(a为基准相),如下:
S ka1 U ka1 I ka1
S ka 2 U ka 2 I ka 2
《电力系统分析》
2014年5月1日星期四
U ka1 E a1 I ka1Z1 U ka 2 I ka 2 Z 2 U ka 0 I ka 0 Z 0 I ka 0 0 I ka1 I ka 2 U ka1 U ka 2
I ka1
Z1 Z 2 Z 0
(1) Z1 Z
(3)短路点故障相电压等于零。 (4)若 Z0 Z 2 两非故障相电压的幅值总相 Z 等,相位差 u的大小决定于 0 Z2 Z0 0 60 180 如果 有 u Z2
2 2 (a a) I ka1 (a a) I ka2 2 0 I ( a a) I ka1 ka 0
1 I ka1 I ka 2 I ka0 3 I ka U ka1 U ka 2 U ka0 0
《电力系统分析》
2014年5月1日星期四
复合序网如下:
E a1 Z1
I ka1
K1
U ka1
N1 K2
Z2
I ka 2
N2
U ka 2
Z0
I ka 0
K0
U ka 0
N0
3Z g
《电力系统分析》
2014年5月1日星期四
U ka0 I ka0 Z 0 I ka1 Z 0 U ka2 I ka2 Z 2 I ka1 Z 2 U ka1 (U ka2 U ka0 ) I ka1 ( Z1 Z 2 Z 0 3Z g )
1.方法一:
故障点边界条件:
I ka 0, I kb I kc U kb U kc I kb Z f
《电力系统分析》
转换为对称分量:
I ka 0 0, I ka1 I ka 2 U ka1 U ka 2 I ka1 Z f
2014年5月1日星期四
2014年5月1日星期四
j 30
U
ka 0
U
U
k
kc 0
kb
x x
U
1
kb 0
0
X 0 可变。 中,因为X 1定, k 0 时 X 0 0 k 时 X 0 中性点不直接接地
中性点不直接接地, 非故障相电压为 3 倍
《电力系统分析》
2014年5月1日星期四
I ka1 I ka 2
E a1 Z1 Z 2 Z f
(七)单相经阻抗接地短路
1.方法一:
a b c
Rg
K
(1 )
I ka
I kb
I kc
故障边界条件:
I kb 0、I kc 0、 U ka I ka Z g
序边界条件
I ka1 I ka2 I ka0 ,U ka1 U ka2 U ka0 3 I ka1 Z g
第五章 不对称故障的分析计算
5-1各种不对称断路时故障处的 短路电流和电压
5-2非故障处的短路电流和电压 5-3 非全相运行的分析计算
5-4 计算机计算程序原理框图
《电力系统分析》
2014年5月1日星期四
概述:
简单不对称故障: 仅在一处发生短路或断线的故障。可分为二类: (1)横向不对称故障:两相短路、单相接地短路、 两相接地短路;其特点为由系统网络中的某一点( 节点)和公共参考点(接地点)构成故障端口。 (2)纵向不对称故障:一相断线、二相断线;其特 点为由电力网络中的两个高电位点之间构成故障端 口。 分析方法: (1)解析法:联立求解三序网络方程和故障边界条 件方程; (2)借助于复合序网进行求解。
U ka U ka1 U ka 2 2U ka1 2 I ka1 Z 2
U kb a U ka1 aU ka 2
2
U kc aU ka1 a U ka 2
2
1 U ka1 U ka 2 1 U ka1 U ka 2
a b c
R g I ka Rg I kbR g I kc
K
《电力系统分析》
2014年5月1日星期四
二. 两相短路 (一)故障边界条件:
I ka 0, I kb I kc , U kb U kc
转换为对称分量(a为基准相):
U kb U ka 0 a 2 U ka1 aU ka 2 U kc U ka 0 aU ka1 a U ka 2
Ukb(k0=0)
Ukb (k0 )
.
Ukb(0)
《电力系统分析》
2014年5月1日星期四
(五)基本特点:
(1)短路点各序电流大小相等,方向相同。 (2)短路点正序电流大小与短路点原正序网络上 (1) Z 2 Z0 而发生三相短路 增加一个附加阻抗 Z 时的电流相等: E a1 E a1
2014年5月1日星期四
2.方法二 K点故障边界条件为:
I kb I kc 0 U k a 0
转换为对称分量:
I ka1 I ka 2 I ka0 0 U k a1 U k a 2 U k a 0 0
《电力系统分析》
2014年5月1日星期四
(六)系统参数变更时不对称短路处各电气量的 变化特点:
系统参数 X 1 , X 2 , X 0 及 由旋转电机的正序和负 序阻抗值的差异而引起。 在靠近旋转电机附近的 地点短路时,取值范围 约在0.1~1.45之间;在 远离旋转电机的地点短 路时,其值可以近似为1
2
x x U
0
1
k 1 k 1 ka 0 U kb 0 ka 0 U U ka 0 k 2 k 2
1 kb U kb 0 U ka 0 U 2
k 0
当
k
《电力系统分析》
U
kb
U kb 0 U ka 0 3U kb 0 e
2
I ka1
a a Z
2
2
a 1Z 0
2014年5月1日星期四
《电力系统分析》
(四)向量图:(假定阻抗为纯电抗) 参考向量:Uka|0|
Ikc(2) Ikb(1) Ikc(1) Ikb(2)
I ka1 I ka 2 , I ka 0 0
(二)求解方法
(1)解析法
《电力系统分析》
2014年5月1日星期四
I ka1 I ka 2
E a1 Z1 Z 2
U ka1 E a1 I ka1 Z1 U ka 2 I ka 2 Z 2 I ka1 Z 2
《电力系统分析》
2014年5月1日星期四
(二)复合序网
(三)短路点电气量
E a1 I ka1 I ka2 I ka0 Z1 Z 2 Z 0
U ka0 I ka0 Z 0 I ka1 Z 0 U ka2 I ka2 Z 2 I ka1 Z 2 U ka1 (U ka2 U ka0 ) I ka1 ( Z 2 Z 0 ) E a1 I ka1 Z1
《电力系统分析》
2014年5月1日星期四
U ka U ka1 U ka2 U ka0 0
2 I kb I ka0 a I ka1 a I ka2 2 I I a I a I ka2 ka 0 ka1 kc
Ukc(0) Ukc Ukc(2) Ukc(1)
Uka|0|
Uka(2)
Ika(0) Ika(1) Ika(2)
Uka(0)
Uka(1)
Ukb(1)
Ikc
Ukb Ukb(0)
Ukb(2)
电流相量图
《电力系统分析》
电压相量图Βιβλιοθήκη Baidu
2014年5月1日星期四
非故障相电压变化情况:
Ukc Ukc(0) Ukc(k0=0)
2
( a a) U ka1 (a a ) U ka 2
2 2
U ka1 U ka 2
《电力系统分析》
2014年5月1日星期四
1 I ka 0 ( I ka I kb I kc ) 0 3 1 1 2 I ka 2 ( I ka a I kb a I kc ) j I kb 3 3 1 1 2 I ka1 ( I ka a I kb a I kc ) j I kb 3 3
《电力系统分析》
2014年5月1日星期四
短路处各相电压电流为:
I ka I ka1 I ka2 I ka0 3 I ka1 3 I ka0 I kb I kc 0 U ka 0 U kb a 2 U ka1 a U ka2 U ka0 I ka1 a 2 a Z 2 a 2 1 Z 0 U kc a U ka1 a U ka 2 U ka0
2014年5月1日星期四
《电力系统分析》
当故障点远离发电机时,可认为 Z1 Z 2 (2)复合序网法 根据故障边界条件,将基本序网在故障端口处连接 所构成的网络称为复合序网。
I ka 0 0
I ka1 I ka 2 U ka1 U ka 2
由复合序网,可直接求出故 障点电压电流的序分量。
《电力系统分析》
2014年5月1日星期四
Z2
Z1
,
Z0
Z1
与系统变压器中 性点的接地方式 及短路点的位置 有关,有可能在 0~∞范围内取 值
为分析简便,电阻忽略不计,只考虑各元件的电抗。 假设: X 1 X 2 令
I ka1 I ka2 I ka0
k
U
当
kb
a
故障点非故障相电压升高,严重时要引起过电 压。为此,在中性点直接接地的系统中,必须 要保证一定数量的变压器中性点接地,以控制 的数值不要过大。
负序电压: 故障点的负序电压与负序电流大小各序相同。 零序电压:故障点的零序电压与零序电流成正 比,所以零序电流与零序电压的大小关系相同。
《电力系统分析》
2014年5月1日星期四
《电力系统分析》
2014年5月1日星期四
(三)故障点电流电压向量关系(向量图):
先确定参考相量:U ka1
U ka1 I ka1 Z 2 (假定阻抗为纯电抗)
可以直观的了 解三相电流、 电压的相对大 小和它们之间 的相位关系。
《电力系统分析》
2014年5月1日星期四
(四)两相经阻抗短路
I ka I ka 2 0 I kb a I ka1 a I ka 2 (a a ) I ka1 j 3 I ka1
2 2
I kc j 3 I ka1 I kb I kb I kc
E a1 3 E a1 3 (3) j 3 j j I ka Z1 Z 2 2 Z1 2
《电力系统分析》
2014年5月1日星期四
系统各序等值电路
《电力系统分析》
2014年5月1日星期四
5-1各种不对称短路时故障处的短路电流和电压
一、单相接地短路(A相)
a b c
K(1)
I ka
I kb
I kc
(一)故障边界条件: U 0, I kb I kc 0 ka
转换为对称分量(a为基准相),如下:
S ka1 U ka1 I ka1
S ka 2 U ka 2 I ka 2
《电力系统分析》
2014年5月1日星期四
U ka1 E a1 I ka1Z1 U ka 2 I ka 2 Z 2 U ka 0 I ka 0 Z 0 I ka 0 0 I ka1 I ka 2 U ka1 U ka 2
I ka1
Z1 Z 2 Z 0
(1) Z1 Z
(3)短路点故障相电压等于零。 (4)若 Z0 Z 2 两非故障相电压的幅值总相 Z 等,相位差 u的大小决定于 0 Z2 Z0 0 60 180 如果 有 u Z2
2 2 (a a) I ka1 (a a) I ka2 2 0 I ( a a) I ka1 ka 0
1 I ka1 I ka 2 I ka0 3 I ka U ka1 U ka 2 U ka0 0
《电力系统分析》
2014年5月1日星期四
复合序网如下:
E a1 Z1
I ka1
K1
U ka1
N1 K2
Z2
I ka 2
N2
U ka 2
Z0
I ka 0
K0
U ka 0
N0
3Z g
《电力系统分析》
2014年5月1日星期四
U ka0 I ka0 Z 0 I ka1 Z 0 U ka2 I ka2 Z 2 I ka1 Z 2 U ka1 (U ka2 U ka0 ) I ka1 ( Z1 Z 2 Z 0 3Z g )
1.方法一:
故障点边界条件:
I ka 0, I kb I kc U kb U kc I kb Z f
《电力系统分析》
转换为对称分量:
I ka 0 0, I ka1 I ka 2 U ka1 U ka 2 I ka1 Z f
2014年5月1日星期四
2014年5月1日星期四
j 30
U
ka 0
U
U
k
kc 0
kb
x x
U
1
kb 0
0
X 0 可变。 中,因为X 1定, k 0 时 X 0 0 k 时 X 0 中性点不直接接地
中性点不直接接地, 非故障相电压为 3 倍
《电力系统分析》
2014年5月1日星期四
I ka1 I ka 2
E a1 Z1 Z 2 Z f
(七)单相经阻抗接地短路
1.方法一:
a b c
Rg
K
(1 )
I ka
I kb
I kc
故障边界条件:
I kb 0、I kc 0、 U ka I ka Z g
序边界条件
I ka1 I ka2 I ka0 ,U ka1 U ka2 U ka0 3 I ka1 Z g
第五章 不对称故障的分析计算
5-1各种不对称断路时故障处的 短路电流和电压
5-2非故障处的短路电流和电压 5-3 非全相运行的分析计算
5-4 计算机计算程序原理框图
《电力系统分析》
2014年5月1日星期四
概述:
简单不对称故障: 仅在一处发生短路或断线的故障。可分为二类: (1)横向不对称故障:两相短路、单相接地短路、 两相接地短路;其特点为由系统网络中的某一点( 节点)和公共参考点(接地点)构成故障端口。 (2)纵向不对称故障:一相断线、二相断线;其特 点为由电力网络中的两个高电位点之间构成故障端 口。 分析方法: (1)解析法:联立求解三序网络方程和故障边界条 件方程; (2)借助于复合序网进行求解。
U ka U ka1 U ka 2 2U ka1 2 I ka1 Z 2
U kb a U ka1 aU ka 2
2
U kc aU ka1 a U ka 2
2
1 U ka1 U ka 2 1 U ka1 U ka 2
a b c
R g I ka Rg I kbR g I kc
K
《电力系统分析》
2014年5月1日星期四
二. 两相短路 (一)故障边界条件:
I ka 0, I kb I kc , U kb U kc
转换为对称分量(a为基准相):
U kb U ka 0 a 2 U ka1 aU ka 2 U kc U ka 0 aU ka1 a U ka 2
Ukb(k0=0)
Ukb (k0 )
.
Ukb(0)
《电力系统分析》
2014年5月1日星期四
(五)基本特点:
(1)短路点各序电流大小相等,方向相同。 (2)短路点正序电流大小与短路点原正序网络上 (1) Z 2 Z0 而发生三相短路 增加一个附加阻抗 Z 时的电流相等: E a1 E a1