九上一元二次方程ppt

合集下载

北师大版数学九年级上册 2.1 第2课时 一元二次方程的解及其估算 课件(共23张PPT)

北师大版数学九年级上册  2.1 第2课时 一元二次方程的解及其估算  课件(共23张PPT)

归纳总结
规律方法 上述求解是利用了“两边夹”的思想
用“两边夹”思想解一元二次方程的步骤: ①在未知数x的取值范围内排除一部分取值; ②根据题意所列的具体情况再次进行排除; ③对列出能反映未知数和方程的值的表格进行再次筛选; ④最终得出未知数的最小取值范围或具体数据.
当堂练习
1.请求出一元二次方程 x2 - 2x - 1=0的正数根(精确到0.1). 解:(1)列表.依次取x=0,1,2,3,…
x
0 0.5 1
1.5
2
2x2 - 13x + 11 11
5
0
-4 -7
(4)你知道地毯花边的宽x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
例3:在上一课中,梯子的底端滑动的距离x满足方程x2 +12 x - 15 = 0.
1m 10m
8m
xm
你能猜出滑动距离
x的大致范围吗?
下面是小亮的求解过程:
B·九年级上册
第二章 一元二次方程
2.1 认识一元二次方程 第2课时 一元二次方程的解及其估算
学习目标
1.理解方程的解的概念. 2.经历对一元二次方程解的探索过程并理解其意义.(重点) 3.会估算一元二次方程的解.(难点)
导入新课
一元二次方程有哪些特点?一元二次方程的一般形式是什么? 一元二次方程的特点: ① 只含有一个未知数; ②未知数的最高次项系数是2; ③整式方程.
a9 4
4.已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1, 求a+b+c的值.
解:由题意得 a12b1c0
即 abc0
思考: (1)若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0 (a≠0) 的一个根吗?

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程

x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究

九年级数学上册教学课件《二次函数与一元二次方程》

九年级数学上册教学课件《二次函数与一元二次方程》
解:
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.

苏教版九年级数学上册《一元二次方程》课件(共19张PPT)

苏教版九年级数学上册《一元二次方程》课件(共19张PPT)
谢谢观赏
You made my day!
我们,还在路上……
2x22x240
x2 20
2x21x9 2 40
5x21x02.20
2x22x240
能用一个一般形式表示一元二次方程吗?
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0)
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2bx的c形式0,我们把
ax2bxc0
(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
一次项系数
二次项系数
为什么要 限制a≠0
a
x
2
+
b
x
+
c
=
0
,b,c可 (a、b、c为常数且a ≠ 0)
以为零吗 a x 2 叫

二次项
b x叫一次项
c叫常数项
即学即用
指出下列方程的二次项、一次项和常数项及它们的系数:
x2 2
x(192x)24
整式方程, 然后整理看 是否符合另 外两个条件.
(5 ).x 2 3 ( x 1 )( x 2 )
(6 ).ax 2 b x c 0
(7 ).m x 2 0 ( m 为 不 等 于 0 的 常 数 )
把情境中的四个一元二次方程化简为右 边为0的形式
x2 20
2x21x9 2 40
5x21x02.20
解:根据勾股定理,得
x2(x1)2 52
x2 2
x(192x)24
5(1x)2 7.2
x2(x1)2 52 这四个方程是不是一元一次方程?有何特点?
?

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;

人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)

人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)
的关系进行简单计算。
情感态度与价值观:
1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意
识。
教学重难点
掌握一元二次方程根与系数的关系。
利用一元二次方程根与系数的关系进行简单
计算。
复习引入:
1.一元二次方程的一般式:ax2+bx+c=0(a≠0).
b2-6b+4=0,且
A.


B.




a≠b,则 + 的值是( A )



C.


D.



解:∵ a2-6a+4=0 和 b2-6b+4=0 两个等式的
形式相同,且 a≠b,∴ a,b 可以看成是方
程 x2-6x+4=0 的两个根,∴ a+b=6,ab=4,





+ =


+


=
+
巩固练习:
1.不解方程,求下列方程两个根的和与积.
(1) x2-3x=15;
(2) 3x2+2=1-4x;
(3) 5x2-1=4x2+x;
(4) 2x2-x+2=3x+1.
解:(1)方程化为 x2-3x-15=0,
x1+x2=-(-3)=3,x1x2=-15.
(2)方程化为 3x2+4x+1=0,
2.判断一元二次方程根的情况.
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.

沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)

沪科版数学九年级上册21.3二次函数与一元二次方程  课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

人教版九年级数学上册一元二次方程《一元二次方程》示范课教学课件

人教版九年级数学上册一元二次方程《一元二次方程》示范课教学课件
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离 为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
A
数学化
D
B
CE
如果设梯子底端滑动x m,那么滑动后梯子底端距墙 (x +6) m, 根据题意,可得方程:72+(x+6)2 =102,整理得 x2 +12x-15 =0.
问题3
第二十一章 一元二次方程
21.1 一元二次方程
学习目标
1 理解一元二次方程的概念. 2 了解一元二次方程的一般形式,会将一元二次方程化成一般
形式,并能确定项和系数。 3 了解一元二次方程根的概念 4 理解并灵活运用一元二次方程概念解决有关问题.
复习旧知
★1.什么是方程? 含有未知数的等式叫做方程
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
解:去括号,得 3x2-3x=5x+10. 移项、合并同类项,得 3x2-8x-10=0.
我们把具有这种形式的方程叫做一元二次方程。
新知讲解
一元二次方程的概念
像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数 的最高次数是2(二次)的方程叫做一元二次方程.
满足的条件: (1) 只含一个未知数; (2) 未知数的最高次数是2; (3) 整式方程.
一元二次方程的一般形式
二次项
解:(1)整理得 5x2-4x-1=0 其中二次项系数是5,一次项系数是-4x,常数项是-1
(2)整理得 3x2-7x+1=0 其中二次项系数是3,一次项系数是-7x,常数项是1

人教版九年级数学上册《解一元二次方程》课件(共8张PPT)

人教版九年级数学上册《解一元二次方程》课件(共8张PPT)


x=
用求根公式解一元二次方程的方法叫做公式法。
用公式法解一元二次方程的
求根公式 : X=
一般步骤:
1. 把方程化成一般形式。
(a≠0, b2-4ac≥0)
并写出a,b,c的值。
例1.用公式法解方程4x2+x-3=0
2.
求出b2-4ac的值。
解: a=4 b=1 c= -3
3. 代入求根公式 :
∴ b2-4ac=12-4×4×(-3)=49>0
X=
∴x=
= 1 4 9
24
(a≠0, b2-4ac≥0)
= 1 7
8

x1= - 1
3
x2= 4
4. 写出方程的解: x1=?, x2=?
求根公式 : X=
(a≠0, b2-4ac≥0)
(口答)填空:用公式法解方程
3x2+5x-2=0 解:a= 3 ,b= 5 ,c = -2.
用公式法解下列方程: 1. x2 +2x =5
小结
由配方法解一般的一元
二次方程 ax2+bx+c=0
(a≠0) 若 b2-4ac≥0 得
求根公式 : X=
用公式法解一元二次方程的 一般步骤:
1. 把方程化成一般形式。 并写出a,b,c的值。
2. 求出b2-4ac的值。 3. 代入求根公式
4. 写出方程的解: x1=?, x2=?
(1)当 b24ac0时,一元二次方程 a2x b x c0( a0 ) 有实数根.
用配方法解一元二次方程 2x2+4x+1=0
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。 2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。

苏科版九年级上册第1章一元二次方程课件

苏科版九年级上册第1章一元二次方程课件
数学
一元二次方程 (1)
温故知新

(1)一元二次方程的有关概念
只含有一个未知数,并且未知数的最高次数是2的方程,叫做 一元二次方程.
一元二次方程的一般情势: ax2 bx c 0a 0
一元二次方程的解(根):使方程成立的未知数的值,就是一 元二次方程的解,一元二次方程的解也叫做一元二次方程的根.
题目 2:把方程 x2+2(x﹣1)=3x 化成一般形式,正确的是( )
A.x2﹣x﹣2=0
B.x2+5x﹣2=0 C.x2﹣x﹣1=0
D.x2﹣2x﹣1=0
题目 3: 已知方程 x2+mx﹣3=0 的一个根是 1,则 m 的值为
.
(2)一元二次方程的解法 题目 5:用配方法将方程 x2﹣6x=1 转化为(x+a)2=b 的形式,则 a,b 的值分别为
例 2 阅读材料:为解方程(x2﹣1)2﹣3(x2﹣1)=0,我们可以将 x2﹣1 视为一个整 体,然后设 x2﹣1=y,将原方程化为 y2﹣3y=0,①解得 y1=0,y2=3. 当 y=0 时,x2﹣1=0,x2=1,∴x=±1 当 y=3 时,x2﹣1=3,x2=4,∴x=±2 ∴原方程的解为 x1=1,x2=﹣1,x3=2,x4=﹣2 解答问题: (1)在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数 学思想; (2)利用上述材料中的方法解方程:(x2+x)2﹣(x2+x)﹣2=0.
.
题目 10:下列一元二次方程中,两个实数根之和为 1 的是 ( A. x2 x 2 0 B. x2 x 2 0 C. x2 x 2 0
) D. x2 x 2 0
例 1 若关于 x 的一元二次方程(m+2)x|m|+2x﹣1=0 是一元二次方程,则 m= . 变式:关于 x 的一元二次方程(a+1)x2﹣2x+3=0 有实数根,则整数 a 的最大值是 .

人教版九年级上册 第二十一章 21.1 一元二次方程 课件(共25张PPT)

人教版九年级上册 第二十一章 21.1 一元二次方程 课件(共25张PPT)
m_≠__±__1__时,它是一元二次方程;当m_=_1____时,它是 一元一次方程。
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数

人教版数学九上解一元二次方程——公式法课件

人教版数学九上解一元二次方程——公式法课件
的情况与一元二次方程中二次项系数、一次项系数及常数
项有关吗?能否根据这个关系不解方程得出方程的解的情
况呢?
探究新知
【思考】不解方程,你能判断下列方程根的情况吗?
⑴ x2+2x-8 = 0
⑵ x2 = 4x-4
⑶ x2-3x = -3
答案:(1)有两个不相等的实数根;
(2)有两个相等的实数根;
(3)没有实数根.
方法点拨
(1)当 △ b 4ac>0时,一元二次方程有两个不
相等的实数根.
2
(2)当 △ b 4ac 0时,一元二次方程有两个相
2
等的实数根.
(3)当 △ b 2 4ac<0 时,一元二次方程没有实
数根.
探究新知
用公式法解一元二次方程的一般步骤
1. 将方程化成一般情势,并写出a,b,c 的值.
46


2a
25
10
46
46
1
1, x2

10
10
5
探究新知
(4)x2+17=8x
解:原方程可化为x 2 8 x 17 0
a 1, b 8, c 17
△ b 2 4ac (8) 2 4 1 17 4<0
方程无实数根.
探究新知
探究新知
(2)2x2-2 2 x+1=0;
【思考】这里的a、b、c的值分别是什么?
解: a 2, b 2 2, c 1
△ b 2 4ac ( 2 2 ) 2 4 2 1 0
则方程有两个相等的实数根:
x1 x2
b
2 2
2

人教版数学九年级上册解一元二次方程-配方法课件

人教版数学九年级上册解一元二次方程-配方法课件
九年级上册第21章
一、复习回顾
用直接开平方法解下列方程:
(1)x 2 121
解:(1)x 121
x 11
x1= -11,x2=-11
(2)
解:(2)
(14x) 2 49
14x 7
1
x
2
二、探索新知
填一填(根据 a 2ab b (a b) )
2
2
5 ( x __)
即 k2-4k+5>0
1、配方法:
像这样,把方程的左边配成含有x的完全平方情势,右边是非负数,
从而可以用直接开平方法来解方程的方法就做配方法。
2、用配方法解一元二次方程的步骤:
①移项
②化1
③配方
④开平方
⑤降次
⑥定解
注意:配方时,方程两边同时加上的是一次项系数一半的平方.
布置作业
解下列方程:
1 2 + 10 + 9 = 0;
这个最小值.
解:对原式进行配方,则原式=(a+1)2+17
∵(a+1)2≥0,
∴当a=-1时,原式有最小值为17.
状元成才路
5.用配方法说明:无论k取何实数,多项式k2-4k+5的值必定大于零.
解:k2-4k+5
=k2-4k+4+1
=(k-2)2+1
∵无论k取何实数,(k-2)2≥0
∴(k-2)2+1>0
3
x
3
b 2
( )
2
5213源自( x __)2
(5) x bx ___ ( x __)
2
b
2
2
二、探索新知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 + 6x = -4 ③
两边加 9 x2 + 6x +
9
9,即( = -4 + 9
6 2
)2 = 3 2 = 9
根据完全平方公式:9是一次
项系数6一半的平方,加9正
好与x2+6x能够配成一个完全
平方式: x2 + 6x + 9= ( x + 3 )2
(x + 3)2 = 5
加其他数不行.
一般地,当二次项系数为 1 时,二次式加上一次项 系数一半的平方,二次式就可以写成完全平方的形式.
结构特征:方程可化成(x + n)2 = p 的形式,
(当 p≥0 时)
平方根 的意义 降次
xn p
3.归纳配方法解方程的步骤
(1)用配方法解一元二次方程的基本思路是什么? 把方程配方为(x + n)2 = p 的形式,运用开平方法, 降次求解.
(2)配方法解一元二次方程的一 般步骤有哪些?
课堂练习:
1. 填上适当的数,使下列等式成立:
x2+12x+_3_6__= ( x+6 )2; x2-4x+___4_= ( x-___2__ )2;
x2+8x+_1_6__= ( x+___4___ )2.
例1 解下列方程
(1)x2 8x 1 0 (2)2x2 1 3x
(1).解 : x2 8x 1 x2 8x 42 1 42 (x 4)2 15
x2 + 6x + 9 = -4 + 9 (x + 3)2 = 5
x3 5
移项
两边加 9,左边 配成完全平方式 左边写成完全 平方形式
降次
x 3 5 ,或 x 3 5
解一次方程
x1 3 5, x2 3 5
以上解法中,为什么在方程x2+6x=16两边 加9?加其他数行吗?如果不可以,说明 理由.
因为它的左边含有x的完全平方式,右边 是非负数,所以可以直接降次解方程。
能否将方程 x2 + 6x + 4 = 0 转化为可以直接降次 的形式再求解呢?①?
x2 + 6x + 4 = 0
x2 + 6x + 9 = 5 ② (x + 3)2 = 5
二.探索求解方法
试一试:与方程 x2 + 6x + 9 = 5 ① 比较,
怎样解方程 x2 + 6x + 4 = 0 ② ?
解:
移项
怎样把方
x2 + 6x = -4 ③ 两边加 9
程①化成方程 ②的形式呢?
x2 + 6x + 9 = -4 + 9 左边写成平方形式
怎样保证变形 的正确性呢?
即 (x + 3)2 = 5
由此可得…
解方程的过程:
x2 + 6x + 4 = 0 x2 + 6x = -4
(3)3x2 6x 4 0 x 4 15
x 4 15
或x 4 15
x1 4 15 x2 4 15
例1 解下列方程
(1)x2 8x 1 0 (2)2x2 1 3x (3)3x2 6x 4 0
(2).解 : 2x2 3x 1
x2 3 x 1
2
2
x2 3 x (3)2 1 (3)2
上式不成立, 原方程无实数解.
范例研讨运用新知
例2: 你能用配方法解方程
2x2 x 6 0 吗?
解:二次项系数化为1得:x2 1 x 3 0
2
移项得: x2 1 x 3
2
配方得:x2 1 x (1)2 3 (1)2
24
4
即 (x 1)2 49 4 16
开平方得: x 1 7
24
24

(x 3)2 1 4 16
x3 1 44
x1
1,或x2
1 2
例1 解下列方程
(1)x2 8x 1 0 (2)2x2 1 3x (3)3x2 6x 4 0
(3).解 : 3x2 6x 4
x2 2x 4 3
x2 2x 12 4 12 3
(x 1)2 1 3
21.2 解一元二次方程
21.2.1 配方法(第2课时)
一.知识回顾,导入新知
问题1. 你会解哪些方程,如何解的?
二元、三元 一次方程组
一元二次方程
消元 一元一次方程
降次
思考:如何解一元二次方程.
用直接开平方法解一元二次方程方程
对于形如x2=a(a≥0)的方程,根据平方根的定义,
可解得 x1 a ,x2 a
(3) x2+8x-9=0.
解:可以把常数项移到方程的右边,得
x2+8x=9. 方程两边都加上42(一次项系数8的一半的平方),得
配方
通过配成完全平方形式 来解一元二次方程的方法, 叫做配方法.
可以看出,配方是为了降次,把一个一元 二次方程转化成两个一元一次方程来解.
具体步骤: (1)移项; (2)在方程两边都加上一次项系数一半的平方.
归纳配方法解方程的步骤:
问题3 通过解方程 x2 + 6x + 4=0 ,请归纳这类方程 是怎样解的?
解 : x2 12x 62 4 62 (x 6)2 32 x 6 4 2 x6 4 2 或x 6 4 2 x1 6 4 2 x2 6 4 2
(2) -x2+4x-3=0
解 : x 2 4 x 3 x 2 4 x 4 3 4 ( x 2)2 1 x 2 1 x 2 1 或x 2 1 x1 1 x2 3
44
∴原方程的解为: x1 2 ,
3 x2 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 化 1:把二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
用配方法解下列方程
(1) x2+12x =-9
这种解一元二次方程的方法叫做直接开平方法.
如果方程能化成x2 p或(mxn)2 p( p 0)的形式,
那么可得x p或mx n p.
完全平方公式:
a2 2ab b2 (ab)2; a2 2ab b2 (ab)2.
问题2 怎样解方程 x2 + 6x + 4 = 0 ①? 我们已经会解方程:(x + 3)2 = 5
1、填空:
(1)x2 10 x 52 ( x 5 )2
(2)x2 x (x )2
(3)4x2 4x 12 (2 x 1 )2 (4)x2 20 x 1 02 ( x 1 0 )2
注意:方程配方时, 等式两边同时加上的是一次项 系数一半的平方.
练习
相关文档
最新文档