化学 十字相乘法

合集下载

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解

(完整版)初中化学十字相乘法因式分解
初中化学十字相乘法因式分解是化学学科中的一种常用的化学
式化简方法。

该方法适用于由多个化合物组成的复杂化合物的化学
式化简。

十字相乘法因式分解的基本原理是根据化学式中的原子元素的
数量和化合价,寻找可相乘的因子,从而达到分解化学式的目的。

下面将以化合物C6H12O6为例,详细介绍十字相乘法因式分
解的步骤:
1. 首先,找到化合物中各个原子元素的化合价。

在C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2。

2. 根据化合物元素的化合价,找到可相乘的因子。


C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2,可以得到因子4、1和2。

3. 将化合物中各个原子元素的数量进行配平,使得因子的乘积
等于化合物中各个原子元素的数量。

在C6H12O6中,碳的原子数
量为6,氢的原子数量为12,氧的原子数量为6。

可得到化合物的
化学式化简为(CH2O)6。

以上就是初中化学十字相乘法因式分解的基本步骤和操作方法。

通过这种方法,可以将复杂化合物的化学式简化为更为简洁和清晰
的形式,便于研究和理解。

十字相乘法

十字相乘法

十字相乘法因式分解十字相乘法是二次三项式因式分解的重要方法.一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++.这个方法的要领可以概括成16个字“头尾分解,交叉相乘,求和凑中,试验筛选”. 若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解. 注意:十字相乘法只适用于二次三项式的因式分解,有些多项式为了能用十字相乘法分解,一般需经过下面两个步骤:⑴将多项式按某一个字母降幂排列,将这个多项式看成是关于这个字母的二次三项式. ⑵若系数为分数,设法提出一个为分数的公因数,使括号内的多项式成为整系数,再利用十字相乘法分解.【例1】分解因式256x x ++1123256(2)(3)x x x x ∴++=++【例2】分解因式210173x x -+2531-- 210173(23)(51)x x x x ∴-+=-- 【例3】分解因式2216312m mn n --11621- 2216312(2)(16)m mn n m n m n ∴--=-+【例4】分解因式()2233kx k x k +-+-1k 13k -()2233(1)(3)kx k x k x kx k ∴+-+-=++-十字相乘法因式分解练习100题(1) 22321845m mn n --(2) 22784830x xy y +-(3) 245428y y --+(4) 2295835x xy y -++ (5) 284236x x --+ (6) 22108272a ab b +-(7) 22186939m mn n --(8) 2232526m mn n ---(9) 22169318x xy y +-(10) 239272a a +-(11) 22186954x xy y --(12) 2288012a a -- (13) 28307x x -+ (14) 22161612m mn n +- (15) 214644x x +- (16) 22334542m mn n +- (17) 22555832a ab b --(18) 22323x x -- (19) 222575126x x --(20) 2242740a ab b --(21) 2232428m mn n +-(22) 22348192x x --(23) 22411514x x ++(24) 2201060x x --(25) 2248448a a --(26) 22965233x xy y --(27) 2812x x --(28) 214143204x x ++(29) 2107214n n -+- (30) 22101545m mn n +- (31) 2551424n n +- (32) 22275427m mn n --- (33) 2309824x x -+ (34) 22268872m mn n -+- (35) 22204642x xy y --(36) 21314x x +- (37) 23215050x x -++(38) 232860b b --+(39) 2218633x x -+(40) 260464b b ++(41) 219698144x x --(42) 22122214a ab b --+(43) 2232328a ab b -+-(44) 2163670x x --+(45) 26040195x x --(46) 21538361x x --+(47) 22123420a ab b ++ (48) 2830x x -++(49) 22183934x xy y --+(50) 22396112a ab b ++ (51) 224512970x xy y +-(52) 22919712a ab b ++ (53) 221510988x xy y -++(54) 2221527m mn n --- (55) 22209157m mn n ---(56) 2262727m mn n -+-(57) 222011575x xy y ++(58) 2229480b b -++(59) 2238434a ab b +-(60) 2192300x -(61) 2701715x x --(62) 296990x x ++(63) 22182296a ab b --+(64) 2244315x xy y -+(65) 22997655x xy y --(66) 242135132x x +- (67) 251015x x --+ (68) 22122210x xy y ---(69) 22681072a ab b +- (70) 22138966m mn n -+-(71) 222868x x -- (72) 2218184x xy y -+(73) 2260733x x ++(74) 22381957a ab b +-(75) 244939x x --(76) 23635100n n +-(77) 22084612x x +-(78) 2480256x x ---(79) 227714445x xy y +-(80) 224495a ab b --(81) 243406x x -+(82) 22186939x xy y --(83) 2284448m mn n ++ (84) 2155550a a -+ (85) 220150130x x -+- (86) 212121304x x -+-(87) 265487a a ++ (88) 236222a a --- (89) 2210448m mn n --+(90) 223411642a ab b -+- (91) 242220n n +-(92) 226636a ab b --+(93) 22145230m mn n ++(94) 2905214b b +-(95) 228015670x xy y ++(96) 2169036x x +-(97) 26135x x +-(98) 2135512y y -+(99) 2210176a ab b -++(100) 22787130x x --+十字相乘法因式分解练习100题答案(1)(23)(1615)m n m n-+ (2)6(135)()x y x y-+ (3)2(14)(21)y y-+-(4)(95)(7)x y x y-+-(5)2(6)(43)x x-+-(6)2(54)(9)a b a b-+ (7)3(313)(2)m n m n-+ (8)2(23)(8)m n m n -++ (9)(163)(6)x y x y-+(10)(34)(1318)a a-+ (11)3(29)(32)x y x y-+(12)4(71)(3)a a+-(13)(41)(27)x x--(14)4(2)(23)m n m n-+ (15)2(711)(2)x x-+ (16)3(2)(117)m n m n+-(17)(52)(1116)a b a b+-(18)(17)(19)x x+-(19)3(1514)(53)x x-+(20)(8)(45)a b a b-+(21)4(87)()m n m n-+ (22)2(1312)(98)x x-+ (23)(314)(81)x x++ (24)10(23)(2)x x+-(25)12(21)(4)a a+-(26)(121)(83)x y x y-+ (27)(28)(29)x x+-(28)(217)(712)x x++ (29)2(7)(51)n n---(30)5(23)(3)m n m n-+ (31)(54)(116)n n+-(32)27()()m n m n-++ (33)2(154)(3)x x--(34)2(1318)(2)m n m n ---(35)2(107)(3)x y x y+-(36)(14)(1)x x+-(37)2(5)(165)x x--+(38)4(45)(23)b b--+ (39)(73)(311)x x--(40)2(32)(101)b b++(41)2(149)(78)x x+-(42)2(37)(2)a b a b-+-(43)8(2)(2)a b a b---(44)2(27)(45)x x-+-(45)5(23)(613)x x+-(46)(319)(519)x x-+-(47)2(65)(2)a b a b++ (48)(815)(2)x x-+-(49)(32)(617)x y x y--+(50)(133)(34)a b a b++ (51)(157)(310)x y x y-+(52)(7)(1312)a b a b++ (53)(8)(151)x y x y--+ (54)(3)(29)m n m n-++ (55)(43)(519)m n m n -++ (56)3(23)(3)m n m n---(57)5(5)(43)x y x y++(58)2(118)(5)b b-+-(59)2()(1917)a b a b+-(60)12(45)(45)x x+-(61)(145)(53)x x+-(62)3(6)(35)x x++(63)2(3)(916)a b a b-+-(64)(4)(115)x y x y--(65)(91)(115)x y x y-+ (66)3(1411)(4)x x-+ (67)5(3)(1)x x-+-(68)2(65)()x y x y-++(69)(47)(173)a b a b+-(70)(131)(6)m n m n---(71)2(111)(4)x x+-(72)2(32)(3)x y x y--(73)(133)(201)x x++(74)19(23)()a b a b+-(75)(13)(43)x x-+ (76)(45)(920)n n-+ (77)2(132)(83)x x-+ (78)4(16)(4)x x-++ (79)(715)(113)x y x y+-(80)(115)(4)a b a b-+ (81)(14)(29)x x--(82)3(313)(2)x y x y-+(83)4(23)(4)m n m n++(84)5(35)(2)a a--(85)10(213)(1)x x---(86)(419)(316)x x---(87)(51)(137)a a++(88)2(91)(21)a a-++ (89)2(512)(2)m n m n -+-(90)2(3)(177)a b a b---(91)2(32)(75)n n-+(92)6(3)(2)a b a b-+-(93)2(3)(75)m n m n++(94)2(97)(51)b b+-(95)2(107)(45)x y x y++(96)2(83)(6)x x-+(97)(15)(9)x x+-(98)(133)(4)y y--(99)(2)(103)a b a b--+(100)(910)(313)x x--+第11页共11页。

化学十字相乘法

化学十字相乘法

化学十字相乘法摘要:一、化学十字相乘法概念1.定义与背景2.适用范围二、化学十字相乘法原理1.基本原理2.化学反应方程式三、化学十字相乘法步骤1.确定反应物与生成物2.绘制十字相乘图3.计算各物质的系数4.验证结果四、化学十字相乘法应用与意义1.在化学反应中的应用2.在化学平衡中的应用3.在化学动力学中的应用4.对化学理论发展的贡献正文:化学十字相乘法是一种在化学反应中快速求解各物质系数的方法,该方法基于化学反应的物质守恒定律,通过构建十字相乘图,能够方便地计算出反应物与生成物之间的系数关系。

化学十字相乘法适用于解决具有简单反应过程的化学问题,特别适用于氧化还原反应、酸碱中和反应等类型。

通过这种方法,化学家们可以在短时间内得到反应物与生成物之间的系数关系,为后续的化学研究和实验提供重要依据。

化学十字相乘法的原理基于质量守恒定律和电荷守恒定律。

首先,根据反应物和生成物的化学式,确定反应物和生成物的种类及其数量关系。

然后,在坐标轴上绘制十字相乘图,其中横轴表示反应物,纵轴表示生成物。

接着,在十字相乘图中填写各物质的系数,使得反应物与生成物之间的质量守恒和电荷守恒得以满足。

最后,验证计算出的系数是否符合实际情况。

在实际应用中,化学十字相乘法可以帮助化学家快速求解化学反应方程式,进而分析化学反应的平衡性质、动力学性质等。

此外,化学十字相乘法在化学教育中也具有重要作用,通过学习这种方法,学生可以更好地理解化学反应的本质,提高解决化学问题的能力。

总之,化学十字相乘法作为一种高效求解化学反应方程式的工具,在化学研究和实践中具有重要意义。

因式分解法十字相乘法

因式分解法十字相乘法

十字相乘法因式分解
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。

原理就是运用二项式乘法的逆运算来进行因式分解。

十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。

对于像ax²+bx+c=(a₁x+c₁)(a₂x+c₂)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a₁,a₂的积,把常数项c分解成两个因数c₁,c₂的积,并使a₁c₂+a₂c₁正好等于一次项的系数b。

那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数为1时,可表达为x²+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

十字相乘法求烃的比值

十字相乘法求烃的比值

十字相乘法求烃的比值
十字相乘法是一种用于求解烃的比值的方法,它基于烃分子中碳原子和氢原子的比例关系。

这种方法特别适用于求解烃分子中碳原子和氢原子的个数比。

假设我们有一个烃分子,其分子式为C_xH_y,其中x 是碳原子的个数,y 是氢原子的个数。

根据烃的通式,我们知道:
对于烷烃(CnH2n+2):
y = 2x + 2
对于烯烃(CnH2n):
y = 2x
对于炔烃(CnH2n-2):
y = 2x - 2
我们可以使用十字相乘法来求解x 和y 的比值。

例如,对于烷烃,我们可以写出以下比例:
C : H = 1 : (2 + 2/x)
对于烯烃,比例是:
C : H = 1 : 2
对于炔烃,比例是:
C : H = 1 : (2 - 2/x)
通过比较给定的烃分子中的碳氢比与上述比例,我们可以确定该烃属
于哪一类,并求出x 和y 的值。

例如,如果我们有一个烃分子,其碳氢比为 1 : 3,那么这个分子是一个烯烃,因为烯烃的碳氢比总是 1 : 2。

请注意,这种方法仅适用于确定烃的类型和碳氢比,而不能用于确定具体的分子式。

要确定具体的分子式,我们需要更多的信息,如分子量或分子结构。

化学十字相乘法

化学十字相乘法

化学十字相乘法化学十字相乘法是一种常用的计算化学中各种物质之间的化学反应的方法。

它的原理是根据反应物和生成物之间的化学方程式,通过相乘的方式确定各个物质的摩尔比例关系。

这种方法在化学实验室中广泛应用,能够帮助化学家准确地计算出反应物和生成物的量。

化学十字相乘法的步骤如下:1. 首先,我们需要根据反应方程式确定反应物和生成物的化学式和摩尔比例关系。

例如,对于化学方程式 A + B → C + D,我们知道反应物A和B的摩尔比例为1:1,生成物C和D的摩尔比例也为1:1。

2. 然后,我们需要确定一个已知量。

这个已知量可以是反应物或生成物中的任何一个物质的摩尔数。

通常情况下,我们会选择已知量为反应物中的某个物质的摩尔数。

3. 接下来,我们使用已知量和摩尔比例关系来计算其他物质的摩尔数。

假设我们选择反应物A的摩尔数作为已知量,那么反应物B的摩尔数也为已知量,生成物C和D的摩尔数也为已知量。

4. 最后,我们可以根据摩尔数和化学式来计算反应物和生成物的质量或体积。

通过这种方式,我们可以得到反应物和生成物之间的量的关系。

化学十字相乘法的应用举例:例如,我们要计算硫酸和氢氧化钠反应生成硫酸钠和水的化学方程式。

根据方程式H2SO4 + 2NaOH → Na2SO4 + 2H2O,我们可以确定硫酸和氢氧化钠的摩尔比例为1:2,硫酸钠和水的摩尔比例也为1:2。

假设我们已知硫酸的摩尔数为1mol,根据摩尔比例关系,氢氧化钠的摩尔数也为1mol,硫酸钠的摩尔数为1mol,水的摩尔数为2mol。

通过摩尔数,我们可以计算出硫酸的质量,氢氧化钠的质量,硫酸钠的质量,水的质量等。

化学十字相乘法的优点在于它能够帮助化学家准确地计算出反应物和生成物的量,从而更好地控制化学反应的过程。

它能够提供实验设计和研究中的重要数据,并且可以用于计算化学反应的理论产率。

同时,化学十字相乘法也被广泛应用于计算化学方程式中的平衡常数和反应速率等相关参数。

完整版)十字相乘法

完整版)十字相乘法

完整版)十字相乘法在进行因式分解时,首先要考虑能否提取公因式,然后再考虑运用公式或十字相乘法,最后考虑分组分解法。

对于还能继续分解的多项式因式,仍然要用这一步骤反复进行。

以上步骤可以用口诀来概括:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”。

二次三项式是指多项式ax+bx+c,其中a为二次项,b为一次项,c为常数项。

例如,x-2x-3和x+5x+6都是关于x的二次三项式。

在多项式x-6xy+8y中,如果把x看作常数,它就是关于y的二次三项式;如果把y看作常数,它就是关于x 的二次三项式。

同样地,在多项式2ab-7ab+3中,如果把ab 看作一个整体,它就是关于ab的二次三项式。

还有多项式(x+y)+7(x+y)+12,把x+y看作一个整体,就是关于x+y的二次三项式。

十字相乘法是一种分解二次三项式的方法。

对于二次项系数为1的二次三项式x+(a+b)x+ab=(x+a)(x+b),方法的特征是“拆常数项,凑一次项”。

当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同。

例如,对于7x+(-8x),我们可以得到原式=(x+7)(x-8)。

另外,对于x^2-10x+16,我们可以将其分解为(x-2)(x-8)。

对于二次项系数不是1的二次三项式ax^2+bx+c=a1x^2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),它的特征是“拆两头,凑中间”。

当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同。

例如,对于-2x+(-8x),我们可以得到原式=-10x,而对于2x^2-11x-6,我们可以将其分解为(2x+1)(x-6)。

十字相乘法

十字相乘法

例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多 项式再因式分解。 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作 一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字分解法分解因式了。 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 = 2 ( x - y ) ²- 3 ( x - y ) - 2 1 -2 ╳ 21
十字相乘法
因式分解方法
01 原理
03 运算举例
目录
02 判定 04 分解因式
05 例题解析
07 注意事项
பைடு நூலகம்目录
06 重难点
基本信息
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等 于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。
例题解析
例3 例1
例2
例4
例1
把 2 x ²- 7 x + 3 分 解 因 式 . 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数,因为取负因数的结果与正因数结果相同。): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 13 ╳ 21

化学十字相乘法超详解

化学十字相乘法超详解

十字交叉(相乘)法
十字交叉法适合带有平均值的二元混合体系的相关计算,它是二元一次方程组求解的简化形式,把乘除运算转换为加减运算,给计算带来很大的方便。

例:实验室用向下排空气法收集NH3,测得瓶内气体在同温同压下平均相对分子质量为20,要计算所得气体中NH3与空气(相对分子质量按29计算)的体积比。

解题思路是:算出NH3的相对分子质量为14+3=17,由于题中给出空气的相对分子质量为29,又给出混合气体的平均相对分子质量为20,所以可以用十字交叉法计算:
NH3 17
20(把两个混合气体的平均相对分子质量写在中间)空气29
然后交叉相减(大数减小数)例:应该是17-20就写成20-17(因为要大数减小数)=3 由于是交叉相减,是左上方的17向右下方减,所以得数3要写在右下方同理29-20为大数减小数,所以不变=9,把得数9写在20的右上角即:17 9
20
29 3
之后,在9和3的中间填上分号,所得的结果为1/3,这个就是体积比。

注:十字相乘(交叉)法只用于两种混合气体,并且得出的比值不是质量比。

化学中的十字相乘法

化学中的十字相乘法

化学中的十字相乘法有关质量分数的十字交叉法先看一则例子例:将质量分数分别为30%和5%的盐酸按一定比例混合后得到质量分数为10%的盐酸,计算需加入的30%和5%盐酸的质量比是多少?分析:可用十字交叉法进行计算[解]设:30%和质量5%的盐酸的质量为x和y,有x 30%\ /10%-5% 5% 1—= 10% ———= —= —y 5%/ \30%-10% 20% 4答:需要的30%和5%的盐酸的质量为1:4什么是十字交叉法?即根据质量分数不同(如a,b,且a>b)的两份溶液按比例混合后得到另一质量分数的溶液(如c),则混合前溶液的质量(如x和y)比例可用以下公式进行计算:(说明:混合前a>b,混合后的质量分数大小必为a<c<b)x a\ /c-b <----大的数a在上面,c和b的延长线为c-b,通常叫“中数减小数” —= c ——<----中的数c在中间y b/ \a-c <----小的数b在下面,a和c的延长线为a-c,通常叫“大数减中数” 由于造型像个交叉的十字,所以叫十字交叉法……十字交叉法的原理:如上,设两份质量分数分别为a和b且a>b的溶液混合后得到质量分数为c的溶液,设a和b溶液的质量分别为 x和y,则:ax+by ——— = cx+y=> ax+by = c(x+y)=> ax+by = cx+cy=> ax-cx = cy-by=> (a-c)x = (c-b)yx c-b=> — = ——y a-c十字交叉法的应用:常应用于不同浓度的溶液的混合,含同一元素的不同化合物混合后元素的质量分数等,凡涉及到不同质量分数混合大都可用此法例题:1、实验室准备用30%和5%的盐酸混合配制质量分数为20%的盐酸1000g,需要30%和5%的盐酸各多少克?[解]设:需要30%和5%的盐酸的质量分别为x,yx 30%\ /20%-5% 15% 3—= 20% ———= ——= —y 5%/ \30%-20% 10% 2x=1000g*[3/(3+2)]=600gy=1000g-x=1000g-600g=400g答:需要600g 30%和400g 5%的盐酸2、若想将100g质量分数为10%的氯化钠溶液的质量分数提高一倍,需加入多少克氯化钠固体?[解]可将氯化钠固体看成质量分数为100%的溶液,设其质量为x,则x 100%\ /20%-10% 10% 1——= 20% ———— = —— = —100g 10%/ \100%-20% 80% 8则:x/100g=1/8x=100g/8=12.5g答:需加入12.5g氯化钠固体3、若想将100g质量分数为20%的氯化钠溶液的质量分数变为2%,需要加入水的质量是?[解]可将水看成质量分数为0%的溶液,设其质量为x,则100g 20%\ /2%-0% 2% 1——= 2% ———= —— = —x 0%/ \20%-2% 18% 9则:100g/x=1/9x=100g*9=900g答:需加入900g水化学计算十字交叉法的本质是:已知两个数的加权平均数和这两个数,求它们被加的权重及其比的计算。

化学十字相乘法

化学十字相乘法

化学--十字相乘法————————————————————————————————作者:————————————————————————————————日期:0000解题技巧系列“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )A .25.0% B.27.6% C.72.4% D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: a x+b(1-x )=c(a 、b 、c为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax-bx =c-b 解之,得:b ac a x b a b c x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在: C 2H 4 O 2 2 3 1 即:n(C 2H 4) n(O ) 组分1a c -b C x(组c 1-x a =十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

十字相乘法的解法步骤

十字相乘法的解法步骤

十字相乘法的解法步骤十字相乘法是一种常用的因式分解方法,主要用于分解二次三项式。

本文将介绍十字相乘法的解法步骤,帮助读者掌握这种方法。

引言十字相乘法是一种因式分解的方法,主要用于分解二次三项式(也就是具有形式 ax^2+bx+c 的多项式),它能够将多项式分解成两个一次因式的乘积。

下面将介绍十字相乘法的解法步骤。

步骤一:将多项式写成标准形式将多项式写成标准形式,也就是将常数项写在二次项和一次项的中间,使得多项式具有形式 ax^2+bx+c。

如果多项式不是这个形式,可以通过移项和化简的方式将其转化为标准形式。

步骤二:找到两个数的乘积等于常数项,且它们的和等于一次项的系数找到两个数的乘积等于常数项 c,且它们的和等于一次项的系数b。

这两个数通常被称为“十字相乘法因子”。

可以通过因数分解或者试除法来找到这两个因子。

步骤三:将多项式分解成两个一次因式的乘积将多项式分解成两个一次因式的乘积,通常可以将多项式写成以下形式:(ax+m)(ax+n),其中 m 和 n 是两个十字相乘法因子。

展开这个式子可以得到:(ax+m)(ax+n) = a^2x^2 + (m+n)ax + mn比较这个式子和原多项式,可以得到:a^2 = am+n = bmn = c根据第一个等式,可以知道 a 等于 1 或者 -1。

如果 a 等于 1,那么多项式已经是一个一次因式的平方,可以直接写成完全平方式的形式。

如果 a 等于 -1,那么多项式可以写成以下形式:-x^2+bx-c,可以将其分解成两个一次因式的乘积:-(x-m)(x-n)。

步骤四:验证分解是否正确将得到的两个一次因式相乘,看看是否能够得到原来的多项式。

如果乘积等于原来的多项式,那么分解是正确的。

结语以上就是十字相乘法的解法步骤,通过这些步骤,可以轻松地将二次三项式分解成两个一次因式的乘积。

化学十字相乘法

化学十字相乘法

化学十字相乘法
摘要:
1.化学十字相乘法简介
2.化学十字相乘法的运算规则
3.化学十字相乘法的应用举例
4.化学十字相乘法的优点与局限性
正文:
【化学十字相乘法简介】
化学十字相乘法是一种用于计算化学反应的物质的量比例的方法。

这种方法主要应用于中学化学教育中,以帮助学生更好地理解和掌握化学反应的基本原理。

【化学十字相乘法的运算规则】
在化学十字相乘法中,首先需要确定反应物和生成物的化学式,并在化学式下方画出一个十字线。

然后,根据反应物和生成物的化学式中的原子数量,将十字线上下两部分分别填上相应的原子数量。

接着,从十字线的左上角开始,将原子数量相乘,得到的结果即为反应物和生成物的物质的量比例。

需要注意的是,在计算过程中,要遵循质量守恒定律,即反应物的物质的量之和应等于生成物的物质的量之和。

【化学十字相乘法的应用举例】
例如,对于以下化学反应:2H2 + O2 -> 2H2O,我们可以用化学十字相乘法来计算反应物和生成物的物质的量比例。

因式分解-十字相乘法

因式分解-十字相乘法

因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x a b ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b p ab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。

交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。

从而)1)(7(762-+=-+x x x x 。

2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。

右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x -=-+762x )1)(7(-+x x xx⇓⨯⇓71xx x 67=+-数,从而得()()2762232x x x x -+=--。

化学十字相乘法

化学十字相乘法

化学十字相乘法
(实用版)
目录
1.化学十字相乘法简介
2.化学十字相乘法的原理
3.化学十字相乘法的应用实例
4.化学十字相乘法的优点与局限性
正文
【化学十字相乘法简介】
化学十字相乘法,是一种广泛应用于化学领域中的计算方法。

它的主要作用是用于快速计算化学反应的平衡常数和反应商,从而为化学反应的调控和优化提供理论依据。

【化学十字相乘法的原理】
化学十字相乘法的原理基于化学反应的动力学和热力学原理,通过计算反应物和生成物的反应速率和平衡常数,得出反应的进行方向和程度。

其核心思想是将反应物和生成物的浓度关系以十字相乘的形式进行计算,从而得出反应的反应商。

【化学十字相乘法的应用实例】
化学十字相乘法在许多化学反应中都有应用,例如在酸碱中和反应中,可以通过计算氢离子和氢氧根离子的浓度,得出酸碱反应的平衡常数。

在氧化还原反应中,可以通过计算氧化剂和还原剂的反应速率,得出反应的进行方向和程度。

【化学十字相乘法的优点与局限性】
化学十字相乘法的优点在于其计算简便,结果直观,能够快速判断化
学反应的进行方向和程度。

然而,它的局限性在于,对于一些复杂的化学反应,如涉及到多重反应和反应物生成物之间的竞争,化学十字相乘法的计算结果可能会有误差。

化学--十字相乘法

化学--十字相乘法

化学--十字相乘法0000解题技巧系列“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是23氢气的14.5倍。

可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A321283283⨯+⨯⨯314在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得:即:2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在:十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

化学--十字相乘法

化学--十字相乘法

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( ) A.25.0% B.27.6% C.72.4% D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4%答案:C 。

(解毕) 二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: ba ca xb a bc x --=---=1, 即:ca b c x x --=-12.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为: 3.解法关健和难点所在:十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

究其原因,无外乎乱用平均量(即上述a 、b 、c 不知何物)、交叉相减后其差值之比不知为何量之比。

关于上述a 、b 、c 这些化学平均量,在这里是指其量纲为(化学量1 ÷化学量2)的一些比值,如摩尔质量(g/mol )、溶液中溶质的质量分数(溶质质量÷溶液质量)或关于物质组成、变化的其它化学量等等。

因式分解十字相乘法

因式分解十字相乘法

因式分解十字相乘法十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

十字分解法能把一些二次三项式分解因式。

对于形如ax²+bx+c=(a₁x+c₁)(a₂x+c₂)的整式来说,方法的关键是把二次项系数a分解成两个因数a₁,a₂的积a₁·a₂,把常数项c分解成两个因数c₁,c₂的积c₁·c₂,并使a₁c₂+a₂c₁正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

不仅仅局限于课堂45分钟课下积极的练习反思,总结也是至关重要你可能曾经懊恼自己当初在课堂上没有好好听课那么请收起你的沮丧就现在,开始学每天进步一点点相信你能做到致迷途知反的你们定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.解析:十字相乘法的精髓,在于分解常数项。

对于初学者来说,可以根据常数项的具体数值,尝试着分解成两个因数相乘的形式,并且使这两个因式的值相加等于一次项系数。

上面的例题,很好的说明了十字相乘法因式分解的具体应用。

例题二:例题三:例题四例题五:练一练一、前言在北师版数学教材上,并没有十字相乘法这一章,在中考中十字相乘法也不作为考点考察。

但是,在初中阶段,一些一元二次方程的题目使用十字相乘法可以更快的解出答案;在高中阶段,十字相乘法可以说是随时可能用到;更重要的是,十字相乘法可以很好的培养数感。

因此,熟练掌握十字相乘法是非常必要的二、知己知彼想要熟练的掌握十字相乘法,就一定要了解它的原理,我们先看这样几个式子:观察这几个式子,相信大家能很快的说出下面这个式子的结果为了更加清晰的说明十字相乘的原理:我们做如下的说眀:小学我们都学过竖式乘法其实刚才列举的式子也可以用竖式进行计算从所列竖式中,我们不难发现,2×3=6,2+3=5(2x+3x=5x)搞清楚了这个原理,十字相乘法就很容易了,其实就是把上面的过程反过来,下面以一道题目为例进行具体的说明例1:因式分解我们心里清楚,最后的结果一定是下面这种形式问题的关键就是求出a和b而通过刚才的例子,我们知道14=ab,9=a+b,那么我们该从哪里入手呢?这里做两个说明:(1)分解的结果中a、b都是整数(不会出分数、无理数什么的)(2)要分解14,而不是去拆解9、因式分解题目结果中的系数,都是整数,那么14的分解情况就很少了,而和为9的情况太多了,由此可见去分解14是最简单的做法于是,我们得到了分解这类二次三项式的方法:先把常数14分解成两个因数的积(整数),再看一看这两个因数的和是不是等于一次项的系数。

《分解因式-十字相乘法》[精编文档]

《分解因式-十字相乘法》[精编文档]
“拆两头,凑中间”
请大家记住公式
十字相乘法公式:
x2 (a b)x ab (x a)(x b)
将下列各数表示成两个整数的积的形式
(1)6= 2×3 或 (-2)×(-3)或1×6或(-1) ×(-6) (2)-6= 1× (-6)或-1×6或2× (-3)或3× (-2)
(3)12= 1× 12或(-1)×(-12)或2× 6或(-2)× (-6) 或3×4 或(-3)× (-4)
∴1
2
一次项系数 十字交叉线
解:原式 (x 1)(x 2)1
(1).因式分解竖直写; (2).交叉相乘验中项; (3).横向写出两因式;
利用十字交叉线来分解 系数,把二次三项式分 解因式的方法叫做十字
相乘法。
十字相乘分解因式的一般步骤:
(1)把二次项系数和常数项分别分解因数 (2)尝试十字图,使经过十字交叉线相乘后所得 的数的和为一次项系数 (3)确定合适的十字图并写出因式分解的结果。 (4)检验。
方法一:提公因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察所给的多项式,尽可能地找出它们 的公因数(式)。
方法二:公式法
一、平方差公式:a2 b2 (a b)(a b)
二、完全平方公式:a2 2ab b2 (a b)2
整式乘法中,有
(x+a)(x+b)=x2+(a+b)x+ab
一、 若x2+mx-12能分解成两个整系数的一次 因式乘积,则符合条件的整数m个数是多少?
二、⑴ x2+5x+6; ⑵x2-5x+6;
(3) x2+5x-6; (4)x2-5x-6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得:b ac a x b a b c x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:c C 2H 4 28 O 2 32 29 3 1组分1 a c -b 混合物组分2 b a -c C3.解法关健和难点所在:十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

究其原因,无外乎乱用平均量(即上述a 、b 、c 不知何物)、交叉相减后其差值之比不知为何量之比。

关于上述a 、b 、c 这些化学平均量,在这里是指其量纲为(化学量1 ÷化学量2)的一些比值,如摩尔质量(g/mol )、溶液中溶质的质量分数(溶质质量÷溶液质量)或关于物质组成、变化的其它化学量等等。

设计这些平均量时应优先考虑待求量和题给条件,一般情况下尽可能的将待求量设计为上述化学量2(分数中的分母) ,至于化学量1则依题给条件选取最容易获得的化学量(分数中的分子),这样上述第1论点中的a 、b 、c 应该是分别这样的一些化学平均量(如下图):1和组分2的化学平均量的量纲中化学 量2 [如a 、b 、c 为摩尔质量(g/mol )时,便是物质的量 mol]的比值。

例2:把CaCO 3和MgCO 3组成的混合物充分加热到质量不再减少时,称得残留物的质量是原混合物质量的一半。

则残留物中钙和镁两元素原子的物质的量之比是A.1:4B.1:3C.1:1D.1:2解析:上述问题是计算两组分混合物中某两个化学量之比,可用十字交叉法解题。

解题时先设计混合物的平均化学量c ,该题中要求钙和镁两元素原子的物质的量之比(即原子个数比),而平均量中分母(即上述化学量y(组分2))与题给条件相差甚远,故以一摩尔组分质量为分母,一摩尔物质分解后残留物质量为分子而得如下的几个平均量:a=56g÷100g ; b=40g÷84g; c=1/2应用于十字交叉法:即: 所以,原混合物中两组分CaCO 3和MgCO 3物质的量之比(即残留物中Ca 和Mg 的物质的量之比为:n(Ca)∶n(Mg)=(1/42)g ÷100g/mol ∶(3/50) g÷84 g/mol =1∶3答案:B (解毕)注:熟练后或在要表达的计算题中可略去上图,而只以比例式表示,为防止出错,也可在草稿中画上述十字交叉图。

三、十字交叉法的应用与例析:1.两组分混合物中已知组分及混合体系的摩尔质量(或式量),求组分的物质的量之比(或组分气体的体积比、组分物质的微粒数之比):解答这类问题,需设计的平均化学量a 、b 、c 就直接用摩尔质量(g /mol )。

而用十字交叉法交叉相减后所得差值之比是组分的物质的量之比(或微粒数之比),或依阿伏加德罗定律,也等于(相同状态下)气态混合体系中组分气体的体积比。

组分CaCO 3 56/100 1/42混合物组分MgCO 3 40/84 3/50 1/2 m(MgCO3)例3.硼的平均相对原子质量为10.8,硼在自然界中有种同位素:105B与115B,则这两种同位素105B、115B在自然界中的原子个数比为A. 1∶2B.1∶4C.1∶6D.1∶8解析:相对原子质量与原子的摩尔质量数值上相等,故元素或原子的相对原子质量可看做十字交叉法中的平均化学量,量纲为g•mol-1,交叉相减后所得差值之比为两同位素的物质的量(即原子数)之比。

答案:B 解毕)2.两种溶液(同溶质)相混合,已知两溶液及混合溶液中溶质的质量分数,求两溶液的质量比:例4.将密度为1.84g•cm-3,质量分数为98%的浓硫酸与水配制成30%的稀溶液,应怎么配制?解析:要配制这种硫酸,必须先求出浓硫酸与水的比例。

因为溶液中溶质的质量分数为溶质质量占溶液质量的分数,所以质量分数实际上也是一种平均化学量,可用于十字交叉法求出浓硫酸和水的质量比。

这样,上述平均化学量a、b、c中的化学量2最好就设计为溶液质量,而化学量1取最方便的就是溶质质量,即平均化学量a、b、c就是溶液中溶质的质量分数,应用于十字交叉法(图略),记为:m(浓硫酸)∶m(水)=(30%-0)∶(98%-30%)=15∶34即取15份质量的浓硫酸与34份质量的水混合得此稀硫酸。

(解毕)3.两可燃物组成的混合体系,已知其组分及混合物的燃烧热,求组分的物质的量之比或百分含量。

例5.在一定条件下,CO和CH4燃烧的热化学方程式分别为:2CO(气)+O2(气)=2CO2(气)+566KJ;CH4(气)+2O2(气)=CO2(气)+2H2O(液)+890KJ现有CO和CH4组成的气体混合物89.6L(标准状态下测定),在上述条件下燃烧,释放的热量为2953KJ,则CO和CH4的体积比为()A. 1∶3B. 3∶1C.1∶2D.2∶1解析:可燃物的反应热以摩尔反应热来表示时,单位是:KJ/mol,因此也可以看做是一个平均化学量,两可燃组分及混合物的反应热可当做十字交叉法基本形式中的a、b、c进行十字交叉,交叉相减后所得差值之比即为两可燃组分的物质的量之比。

解题时设计并先求算气体混合物的反应热:混合气体的物质的量:n=89.6L÷22.4L•mol-1=4.00mol∴混合气体的平均反应热:Q(混合物)=2953KJ÷4.00mol=738.3KJ•mol-1双两组分的反应热分别为:Q(CO)=566KJ ÷2mol=283KJ •mo -1;Q(CH 4)=890KJ •mol -1这样,十字交叉法就记为:n(CO)∶n(CH 4)=(890-738.3)∶(738.3-283)≈1∶3答案:B 。

(解毕)4.其它有关物质组成、变化关系的两组分混合体系,依题意,设计适当的平均化学量,也可用十字交叉法求算两组分的某个化学量的比值或百分含量。

例6.在一定条件下,将25 gCO 2和CO 的混合气体通过灼热的碳粉,使之充分反应,测知所得气体在标准状态下的体积为22.4 L ,则在相同状态下原混合气体中CO 2和CO 的体积比为A.1∶4B.1∶3C.1∶2D.2∶1解析:本题所求为两组分混合气体中组分气体的体积之比(按阿伏加德罗定律,即为两组分气体的物质的量之比),依 ,CO 不与C 反应。

又从反应后的气体体积22.4 L(标态),是1 mol 纯净CO ,总质量为28 g ,即上述反应中气体质量增加了28g -25g=3g ,应用差量法可求得原混合气体的物质的量为:1mol -3 g ÷12 g/mol=0.75mol即原混合气体的摩尔质量是:25g ÷0.75mol=33.3g/mol,将两组分及混合气体的摩尔质量应用于十字交叉法(如下图):∴原混合气体中CO 2与CO 的体积比为:n(CO 2)∶n(CO)=1∶2答案:C 。

(解毕)值得注意的是,有时因题给条件的限制,无法将待求量设计为平均化学量的分母(即化学量2),此时就应以与已知量有关又容易换算为待求量的其它化学量做为平均量中的化学量2例7.KHCO 3和CaCO 3的混合物和等质量的NaHCO 3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO 3的质量分数是A.50%B.68%C.81%D.90%解析:根据KHCO 3和CaCO 3分别与酸反应的化学方程式:KHCO 3+HCl=KCl+H 2O+CO 2↑ CaCO 3+2HCl=CaCl 2+H 2O+CO 2↑依题意,上述混合物每消耗1摩尔HCl 需质量84 g,而组分KHCO 3和CaCO 3 每消耗1摩尔HCl 需质量分别是100g 和50g ,这样就可以把反应中消耗的HCl 设计为上述平均化学量中化学量2,而与HCl 反应消耗的固体物质质量设计为化学量1,应用于十字交叉法并记为 :即:又从上述化学方程式可看出,每消耗1mol 酸需KHCO 3 1mol,而CaCO 3则需0.5 mol 。

所以混合物中两组分KHCO 3和CaCO 3物质的量之比是:n(KHCO 3)∶n(CaCO 3)=17∶(8÷2)=17∶4KHCO 3100 CaCO 3 5084 34 16 CO 2+C===== 2CO高温混合物中KHCO3的质量分数是:例8.使乙烷和丙烷的混合气体完全燃烧后,可得CO2 3.52 g,H2O 1.92 g,则该混合气体中乙烷和丙烷的物质的量之比为A.1∶2B.1∶1C.2∶3D.3∶4解析:该题已知混合气体完全燃烧后生成CO2和H2O的质量,从中可以计算出这两种物质的物质的量,n(CO2)=3.52g÷44g/mol=0.08mol、n(H2O)=1.92g÷18g/mol=0.11mol;进而求出混合气体中每含1摩C所含H的物质的量,0.11mol×2÷0.08mol=11/4;而组分气体中乙烷和丙烷的同样定义的化学量分别是,乙烷C2H6为3,丙烷C3H8为8/3;将这些平均量应用于十字交叉法可得这两组分气体在混合气体中所含C原子数之比。

相关文档
最新文档