函数不等式的几种证明方法数学系大学论文
凹凸性与积分不等式
凹凸性与积分不等式利用函数的凹凸性证明不等式是不等式证明中的一个重要方法,本论文通过选择适当的例题总结出如何利用函数的凹凸性来证明不等式的一般方法与思路。
引言在数学中我们所遇到的不等式已经很多,且个别的不等式证明比较复杂,而不等式的证明方法是我们必须掌握的一个重要部分。
不等式的证明方法有很多种,其中利用函数的凹凸性证明不等式的方法是数学研究中常用的,也是我们重点要掌握的方法。
本文将通过具体的例题详细地总结归纳出如何利用函数的凹凸性证明不等式的具体方法、步骤及思路。
定义:设函数f(x)为定义在区间I上的函数,若对I上任意两点x1、x2和任意实数λ∈(0,1)总有:f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数,反之,如果总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称f为I上的凹函数。
凸函数的特征引理:f为I上的凸函数对于I上任意三点总有x1<x2<x3:f(x2)-(x1)/x2-x1≤f(x3)-(x2)/x3-x2严格凸函数上式严格不等式成立。
证明见文献[1].定理3 设为f(x)区间l上的可导函数,则以下论断等价:1.f(x)为l上的凸函数;2.f(x)为l上的增函数;3.对l上的任意两点x1,x2,有f(x2)≥(x1)+f′(x1)(x2-x1)。
定理4 设f为区间l上的二阶可导函数,则在l上f为凸(凹)函数的的充要条件是f″(x)≥0(f″(x)≤0),x∈l。
证明:f″(x)≥0、f′(x)为增函数,f(x)为l上的增函数f(x)为l上的凸函数(根据定理3),同理f为l上的凹函数f″(x)≤0。
詹森(Jensen)不等式:若f为[a,b]上的凸函数,则对任意的x2∈[a,b],λ2∈(1,2…n),∑λ2=1有f(∑λ2x2)≤∑λ2(f2);若f为严格凸函数,不全相等,x2(ī=1,2…n)则上式严格不等式成立。
证明见文献[1]。
证明不等式的几种方法
昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。
本文主要归纳了几种不等式证明的常用方法。
关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。
证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。
主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。
2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。
具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。
差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。
2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。
其中变形是求差法的关键,配方和因式分解是经常使用的方法。
3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。
应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。
商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。
2.变形:化简商式到最简形式。
3.判断:商与1的大小关系,就是判定商大于1还是小于1。
应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。
高等数学中证明不等式的几种方法
高等数学中证明不等式的几种方法收稿日期:2018-08-22作者简介:佘智君(1976-),女(汉族),讲师,主要从事于计算数学与应用软件的研究。
不等式的证明是高等数学的重要内容,同时也是高等数学教学中的一个难点,学生遇到不等式的证明时经常不知道如何下手。
不等式的证明方法灵活多样,技巧性强,所以证明不等式之前要对具体问题具体分析,根据题设及不等式的结构特点、内在联系,选择适当的证明方法,这样才能使证明过程简化。
一、利用函数的单调性利用单调性证明不等式是高等数学中最常用的一种方法,其基本思路是将不等式作适当的变形,作辅助函数f (x ),再利用导数确定该函数的单调性,把不等式的证明转化为利用导数研究函数的单调性,从而使不等式得到证明。
例题1证明:ln (1+x )>x1+x (-1<x <0)证明:设f (x )=ln (1+x )-x1+x∴f ′(x )=x(1+x )2∴f ′(x )<0(-1<x <0)∴f (x )在(-1<x <0)内单调下降又∵f (0)=0∴f (x )>0(-1<x <0)故ln (1+x )>x1+x(-1<x <0)二、利用微分中值定理证明不等式利用微分中值定理证明不等式的关键是不等式经过恒等变形后一端可化成函数值之差的形式,即f (b )-f (a ),则可考虑拉格朗日中值定理,这时构造辅助函数f (x ),使得f (x )在[a ,b ]上满足中值定理的条件,然后利用中值定理得到所要的结论。
例题2证明:x-y x <ln x y <x-yy(0<y <x )证明:设f (x )=lnx ,而f (x )=lnx 在(y ,x )满足拉格朗日中值定理∴∃ξ∈(y ,x )使lnx-lny=f ′(ξ)(x-y )=1ξ(x-y )∵0<y <ξ<x∴1x <1ξ<1y ∴x-y x <ln x y <x-y y 三、利用泰勒公式如果已知条件或不等式中含一阶及二阶等高阶导数时,一般用泰勒公式。
数学分析中几类证明不等式的方法
㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
凸函数的性质和一些不等式的证明
凸函数的性质和一些不等式的证明高等教育自学考试毕业论文论文题目:凸函数的性质和一些不等式的证明作者姓名:XXX专业:数学教育主考学校:兰州大学数学与统计学学院__准考证号: XXXXXXXXXXXX指导教师姓名职称:XXX甘肃省高等教育自学考试办公室印制2013 年 3 月 4 日XX 专业论文标题:凸函数的性质和一些不等式的证明论文标题(Properties of convex function andinequality )论文作者(XX )论文作者(XXXXXXXXX )数学专业本科论文目录内容摘要: (4)关键词: (4)一、凸函数 (5)1.凸函数的定义 (5)2.常见的凸函数 (6)4.凸函数的定理 (6)二.凸函数在证明不等式中的简单应用 (7)1.凸函数在几何平均值中的应用 (7)2.凸函数在Young不等式中的应用 (9)3.凸函数在Jensen不等式中的应用 (9)4.凸函数在三角不等式中的应用 (10)注释: (11)参考文献: (11)凸函数的性质和一些不等式的证明——凸函数的证明XX内容摘要:我们通过学习通过我们熟知的一元二次函数:y=x2一些凸函数的定义、概念和它的性质,还有凸函数在Jensen不等式、三角不等式中的应用,让我们了解凸函数的用途。
并且用它的一些特殊的性质来解决我们实际生活中的实际问题。
关键词:凸函数、性质、Jensen不等式、三角不等式、一、凸函数1.凸函数的定义我们都学习了二元一次的函数2()f x x =的图像,它的特点是:曲线2y x =上任意两点间的弧线总在这两点连线的下方。
我们把具有这一种特性的曲线称为凸的由此,我们定义:设()f x 在[,]a b 上有定义,若曲线()y f x =上任意两点间的弧线总位于连接该两点的直线之下,则称函数()f x 是凸函数.上面的定义只是简单的描述性定义,下面我们介绍关于凸函数的精确定义,以便于我们更好的利用它的性质。
凸函数在不等式证明中的应用《毕业论文》.
在数学思想方法中,函数思想是很重要的一种思想方法,其精髓在于利用函数的相关性质对讨论的问题进行推理和论证,进而寻求解决问题的途径。凸函数是一类性质特殊的函数,广泛应用于数学规划,控制论等领域,函数凸性是数学分析中的一个重要概念,它在判定函数的极值、研究函数的图象以及证明不等式诸方面都有广泛的应用.凸分析作为数学的一个比较年轻的分支,是在50年代以后随着数学规划,最优控制理论、数理经济学等应用数学学科的兴起而发展起来的.现行高等数学教材中,也都对函数的凸性作了介绍,由于各版本根据自己的需要,对凸函数这一概念作了不同形式的定义,本文就以凸函数几种定义的等价性给以证明,并给出简单的应用,应用凸函数的概念与性质来证明几个重要且常用的不等式和凸函数在证明一般不等式中的应用,针对它在证明比较复杂的不等式方面有着重要作用,本文对凸函数的性质在比较经典的不等式证明中的简单应用进行初步讨论.
设 为任意两点,为了证明定义1对任意实数 成立,则先证明当 为有理数 ( 为自然数)时成立,事实上:
ቤተ መጻሕፍቲ ባይዱ为有理数的情况获证.
若 为无理数,则 有理数
使得 (当 时),从而由 的连续性有
对于有理数 ,上面已证明有
此式中令 取极限,联系上式,有
即定义1对任意无理数 也成立. 这就证明了定义2、3蕴涵定义1.
.
证明:1°(证明ⅰ)与ⅱ)等价).
对 中任意 ,根据凸函数定义,条件ⅱ)等价于
(A)
另一方面,将条件ⅱ)中的不等式乘以 ,移项变形,可知它等价于 (B)
可见, ,令 时,则
从而由(A)可推到(B).反之, ,若令 则 ,从而可由(B)推得(A). 故ⅰ)与ⅱ)等价.
数学论文【不等式的证明方法】(汉)
黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。
其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。
1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。
主要依据是实数的运算性质与大小顺序关系。
即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。
(1)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。
(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。
所以222(2)5a b a b +≥--成立。
例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。
利用函数的凹凸性证明不等式
n
即有 入11 22… ^nn a 1 a+ a+ a≥
a l a 2… a
意 三 点 总有 x x < X : < 。 例 2 用 凸 函数 的概 念 证 明不 等 式:对 综 上 ,若 证 明 的 不等 式 的 两 边 或一 边 f x) (1/ 2X ≤ f x) (2/ 3x 任意实数 a ,有 e m/≤ 1 2 e e) (2一 x x- 1 (3一 x) x一 2 ) ,b / (a 十 是 同 一 函数 在 不 同 点 处 函数 值 的 叠加 , 则 分 析 :再 仔 细观 察 此 不 等 式 ,可变 形 严格 凸函数上式严格不等式成立。 般 需通过将不等式适 当变形构造辅助 函 证明见文献 [] 1. 为 e / ( )≤ 1 2 1 1 2 e:与 数 ,利用 凹 凸 性证 明之 。 /b / e+(— / ) 一 定理 3 设 为 f x 区 间 1 的可 导 函 凸函数的定义式 f ^x+ 卜 ^) ≤ 入f () 上 ( .( x) 总 之 ,在 掌 握 函 数 的 凹 凸性 定 理反 映
引 言 x n + l y> ( + ) n x y 2。 1x y n x y i + / 型 与 前 面 几 道 例 题 有 明显 的 区 别 , 即 不 在数学中我们所遇到的不等式 已经很 分析:这是一个 函数不等式 ,但其含 等 式左 边 是 1个代 数 式 相 加 的形 式 ,且 ∑ 3 多 ,且个 别 的不 等式证 明比较复杂 ,而 有两个变量 ,对不等式作简单变形,不等 =1 由此 我 们 自然 想 到 了 凸 函数 定 , 不 等 式 的证 明 方法 是 我们 必 须 掌握 的一 个 式等价于:x n + 1 y 2> (+ ) 2 n 义 的 一 般 情 况 , 即詹 森 不 等 式 , 其 应 用 lx y n/ x y / I 重 要 部 分 。不 等 式 的 证 明方 法 有 很 多 x / ,不等式两边含有相 同 “ y 2 形式 ” : 相 当 广 泛 。 但 本 题 的 辅 助 函数 不 象 上 题 种 ,其 中利用 函数的 凹凸性证明不等 式 t n , 可 设辅 助 函数 f t = l t t ) 那 么 容 易 构 造 ,将 原 不 等 式 两 边 取 对 数 lt故 () t n (>0 。 的方 法是数 学研 究 中常用的 ,也是我 们 因此原不等式可化为 f x + () 2 () f Y / > 变形 为 : i 11 ii…+ a) n( a + a+
论文:柯西—施瓦茨不等式的证明及其应用
摘要柯西—施瓦茨不等式是数学学科中应用较为广泛的一类重要不等式,常常作为重要的基础去架设条件与结论之间的桥梁.柯西—施瓦茨不等式可以证明,推广其它不等式和解竞赛题,而且它也是发现新命题的重要工具.文章主要利用一元二次不等式,一元二次函数和向量三种方法证明了柯西—施瓦茨不等式,介绍了柯西—施瓦茨不等式在实数域,复数域,欧式空间,微积分和概率论中的表现形式以及柯西—施瓦茨不等式的推广,并且给出了它在初等数学,欧式空间,微积分,级数及概率论中的一些应用.灵活巧妙地运用柯西—施瓦茨不等式,可以使一些较困难的实际问题得到比较简单的解决,甚至可以得到一步到位的效果.关键词:柯西—施瓦茨不等式;向量;积分;级数;推广The Proof and Application of Cauchy -Schwartz Inequality 09404222 LIANG Xiao-wen Mathematics and Applied MathematicsFaculty adviser ZHANG An -lingAbstractCauchy-Schwartz inequality is a kind of important inequality which is widely used in mathematics,and it is often as an important basis to set up the bridge between condition and conclusion.Cauchy-Schwartz inequality can prove and promote other inequalities and solve contest questions,at the same time it is also the important tool to discover new propositions. The paper mainly uses one-variable quadratic inequality, quadratic equation in one unknown and vector to prove the Cauchy-Schwartz inequality, and this paper introduces the forms of Cauchy-Schwartz inequality in real number field, complex number field, euclidean space, calculus and probability theory and the promotion of Cauchy-Schwartz inequality , and the paper gives some applica- tions of Cauchy-Schwartz inequality in elementary mathematics,euclidean space, calculus, series and probability ing the Cauchy-Schwartz inequality flexibly can make some relatively difficult problems get more simple to slove and can even get an one-off effect.Key words: Cauchy-Schwartz inequality; vector; integral; series; promotion目录1 引言............................................. 错误!未定义书签。
不等式证明的若干种方法毕业论文
本科生毕业论文题目不等式证明的若干种方法院系_____________ 数学系_____________ 专业数学与应用数学2013年5月本科生毕业设计(论文♦创作)声明本人重声明:所呈交的毕业设计,是本人在指导教师指导下,进行研究工作所取得的成果。
除文中已经注明引用的容外,本设计的研究成果不包含任何他人创作的、已公开发表或没有公开发表的作品容。
对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。
本设计创作声明的法律责任由本人承担。
作者签名:年月日本人声明:该毕业设计是本人指导学生完成的研究成果,已经审阅过毕业设计的全部容,保证题目、关键词、摘要部分中英文容的一致性和准确性,并通过一定检测手段保证毕业设计未发现违背学术道德诚信的不端行为。
指导教师签名:年月日不等式证明的若干种方法高银梅(师学院数学系数学与应用数学2009级)摘要:无论在初等数学还是高等数学中,不等式都是十分重要的容。
而不等式的证明则是不等式知识的重要组成部分。
在本文中,我总结了一些数学中证明不等式的方法。
在初等数学不等式的证明中经常用到的有比较法、综合法、分析法、换元法、增量代换法'反证法、放缩发、构造法、数学归纳法、判别式法等等。
在高等数学不等式的证明中经常利用中值定理、泰勒公式♦拉格朗日函数以及一些箸名不等式,如:柯西不等式、蔭森不等式、施瓦茨不等式、赫尔德不等式等等。
从而使不等式的证明方法更加完善,有利于我们进一步探讨和研究不等式的证明。
通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯。
关键词:不等式,证明方法,常用,特殊Abstract: both in elementary mathematics and higher mathematics, the inequality is very important content・ Inequality and the proof is an important part of knowledge・ In this article, I suniniarized some mathematical proof of the method of inequality. Inequality in elementary matheinatics analyst is often used with comparison method, synthesis, analysis, change element method, incremental substitution method, the reduction to absurdity, zooming, construction method, mathematical induction, discriminant method and so on. Inequality in higher mathematics analyst often use of mean value theorem, Taylor formula, Lagrange function, and some well-known inequalities, such as cauchy inequality, Jensen,s inequality, inequality Schwartz, held, and so on. So that the inequality proof method more perfect, good for our further discussion and study of inequality proof・ By studying these proofs, can help us to solve some practical problems, to cultivate logical reasoning ability and abstract thinking ability and the students to form good learning habits of thinking, good at thinking・Keywords: inequality, the proof method, commonly used, special目录1前言 (6)2利用常用方法证明不等式 (7)2. 1比校法 (7)2. 2综合法 (7)2. 3分析法 (8)2. 4换元法 (8)2. 5增量代换法 (8)2. 6反证法 (9)2. 7放缩法 (9)2. 8构造法 (10)2. 9数学归纳法 (10)2.10判别式法。
中值定理在不等式证明中的应用本科毕业论文
编号:本科毕业论文题目:中值定理在不等式证明中的应用系院:数学科学系姓名: 王长普学号:专业:小学教育(数学方向)年级:2008级指导教师:钟铭职称:副教授完成日期:2012年5月摘要本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍.关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式AbstractThis paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function. in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality. And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussedKey words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals目录摘要 (I)Abstract (I)1 引言 (1)2 拉格朗日中值定理在不等式证明中的应用 (2)2.1 拉格朗日中值定理 (2)2.2 利用拉格朗日中值定理证明不等式 (2)2.2.1 直接公式法 (2)2.2.2 变量取值法 (4)2.2.3 辅助函数构造法 (5)3 泰勒中值定理在不等式证明中的应用 (7)3.1 泰勒中值定理 (7)3.2 利用泰勒公式证明不等式 (7)3.2.1 中点取值法 (7)3.2.2 端点取值法 (9)3.2.3 极值取值法 (9)3.2.4 任意点取值法 (11)4 柯西中值定理在不等式证明中的应用 (14)4.1 柯西中值定理 (14)4.2 利用柯西中值定理证明不等式 (14)5 积分中值定理在不等式证明中的应用 (16)5.1 积分中值定理 (16)5.2 利用积分证明不等式 (16)结束语 (18)参考文献 (19)致谢 (20)1 引言不等式也是数学中的重要内容,也是数学中重要方法和工具.中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理以及积分中值定理等.以拉格朗日中值定理(也称微分中值定理)为中心,介值定理是中值定理的前奏,罗尔定理是拉格朗日中值定理的特殊情形,而柯西中值定理、泰勒中值定理及定积分中值定理则是它的推广.利用中值定理证明不等式,是比较常见和实用的方法.人们对中值定理的研究,从微积分建立之后就开始了以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态.此外,在极值问题中有重要的实际应用.微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁.微分中值定理从诞生到现在的近300年间,对它的研究时有出现.特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇.不等式的证明不仅形式多种多样,而且证明方式多变,常见的方法有:利用函数的单调性证明,利用微分中值定理证明,利用函数的极值或最值证明等,在众多方法中,利用中值定理证明不等式比较困难,无从下手,探究其原因,一是中值定理的内容本身难理解,二是证明不等式,需要因式而变,对中值定理的基础及灵活性要求较高.我们在日常教学中常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一,我们有必要把这类问题单独拿出来进行研究,找出它们的共性,以方便我们日后的教学研究工作的开展.2 拉格朗日中值定理在不等式证明中的应用2.1 拉格朗日中值定理拉格朗日(grange ,,法国数学家,力学家,文学家).拉格朗日中值定理 设函数在闭区间[]上连续,在开区间内可导,则在开区间()内至少存在一点,使得(1)或 . (2)拉格朗日中值定理是罗尔定理的推广,即罗尔定理是拉格朗日定理当时的特殊情形.拉格朗日定理中,由于,因而可将表示为,. 这样(1)式还可表示为,. (3) 若令,则有,. (4) 一般称式(1)、(2)、(3)、(4)式为拉格朗日公式. 2.2 利用拉格朗日中值定理证明不等式 2.2.1 直接公式法例2.1 证明不等式成立.分析 首先要构造一个辅助函数; 由欲证形式构成“形似”的函数区间. 运用拉格朗日公式来判断.证明 设.由拉格朗日公式(2)可得 ,. 等式两边同取绝对值,则有()2121-'sin sin x x f x x ⋅=-δ. 而 ()δδδcos 'sin ===x x f . 又因为 . 因此,就得到. 证毕.评注 此题如果单纯地应用初等数学的方法来证明,会难以得出结论,而应用了拉格朗日公式,再利用三角函数的简单知识,问题就游刃而解了.例2.2 证明不等式,()成立.分析 此题利用反三角函数的有关知识,构造一个辅助函数,再利用拉格朗日中值定理就可以轻轻松松地解出此题.证明 设,在上满足拉格朗日定理的全部条件,因此有(),.因为,可得.例2.3[3] 证明())0,1(,)(11>->-<-<---b a p b a pa b a b a pb p p p p .证明 设函数,,则,.不难看出在区间上满足拉格朗日定理条件,于是存在,使. 由于,所以,上式为. 因为当时为单调增函数,,所以 . 两边同时乘以,则得)()()(111b a pa b a p b a pb p p p -<-<----ξ,即)()(11b a pa b a b a pb p p p p -<-<---, 证毕. 2.2.2 变量取值法例2.4 证明不等式成立,其中.分析 (1)根据题中式子构造一个相似函数,和定义区间.(2)利用对数的四则运算法则,将对数式整理成拉格朗日中值定理所满足的形式,从而得出结论.证明 设,.由拉格朗日公式(3),则有()θa b a ab a b a b --ln -ln ln +==. (1) 由不等式,可推得及. 代入(1),即 . 证毕.评注 解此题关健在于观察要证明的不等式中把对数式拆开成,再利用拉格朗日的公式来轻松地得出结论.例2.4 证明不等式,对一切,成立.分析 此题首先利用对数的有关知识,构造了一个辅助函数,再利用拉格朗日中值定理解出此题.证明 由拉格朗日公式(4),令,.则有 ()()hh h h ⋅+=+=+θ11ln -1ln 1ln ,. (1)当时,由不等式 ,可推得及. (2)当时,由不等式,可知 .由于, 可推(2)式成立,将(2)式代入(1)式,就可知不等式成立.评注 证明此种不等式的关健是构造一个辅助函数,再利用初等数学的有关知识来证明不等式.例2.5 证明若,则.证明 令,则在R 上连续、可导,且.情形一 当时,由拉格朗日定理知使 . 整理有.因为,所以有.情形二 当时,由拉格朗日中值定理知,使 . 整理有.因为此时,三边同时乘以, 所以成立.综上所述,当时,成立.从以上例题可以发现:灵活构造“”的取值,不仅可使证明过程简单,有时甚至是解题的关键. 2.2.3 辅助函数构造法例2.6[4] 设函数在上连续,在内可导,又不为形如的函数.证明至少存在一点,使.证明 做辅导函数)()()()()(a x ab a f b f a f x g ---+=,则为形如的函数.因为不为形如的函数,所以至少存在一点,使)()()()(),()(b g b f a g a f c g c f ==≠,但.情形一 ,此时ab a f b f ac a f a c a b a f b f a f a c a g c g a c a f c f --=--⎥⎦⎤⎢⎣⎡---+=-->--)()()()()()()()()()()(.即 . 因为,所以由中值定理知,使 , 从而有 .情形二 ,此时ab a f b f a b ac a b a f b f a f b f c b c g b g c b c f b f --=-⎥⎦⎤⎢⎣⎡---+-=-->--)()()()()()()()()()()(, 即 .因为,所以由拉格朗日中值定理,使得 , 从而有.综上所述,在内至少有一点使原式成立. 证毕. 许多证明题都不能直接应用定理进行证明.利用拉格朗日中值定理证明问题时,如何构造辅助函数,是证明的关键.3 泰勒中值定理在不等式证明中的应用3.1 泰勒中值定理泰勒中值定理 如果函数在含有的开区间内有直到阶导数,则对任一点,有10)1(02000)()!1()()(!))(()(!2)(''))((')()(++-++-+⋅⋅⋅+-+-+=n n n o o o x x n f x x n x n f x x x f x x x f x f x f ξ 其中是与之间的某个值,上式称为按的幂展开的阶泰勒公式.下面就泰勒中值定理中函数展开点的不同情况来证明不等式. 3.2 利用泰勒公式证明不等式 3.2.1 中点取值法选区间中点展开是较常见的一种情况,然后在泰勒公式中取为适当的值,通过两式相加,并对某些项进行放缩,便可将多余的项去掉而得所要的不等式.下面以实例说明.例3.1[5] 设在区间内, > 0,试证:对于内的任意两个不同点和,有. 证明 将分别在及处展开,得()()()()()()20000!2'''x x f x x x f x f x f -+-+=ξ, 其中是与之间的某个值. 上式中分别取及,()()()()()()0120110101,,!2'''x x x x f x x f x f x f ∈-+-+=ξξ;()()()()()()()20202202002,,!2'''x x x x f x x x f x f x f ∈-+-+=ξξ. 上面两式相加,得()()()()()()()20222011021!2''!2''2x x f x x f x f x f x f -+-+=+ξξ.因为,所以,,即 .注 (1)若题中条件“”改为“”,而其余条件不变,则结论改为 .(2)若例1的条件不变,则结论可推广如下: 对内任意个不同点及,,且,有 .例3.2 设函数在区间[a ,b]上二阶连续可导,且,证明 其中.证明 将在处展开,得()()()()()()20000!2'''x x f x x x f x f x f -+-+=ξ. 其中是与之间的某个值. 因为,所以有()()()()()2000!2'''x x f x x x f x f -+-=ξ,上式在作定积分,然后取绝对值()()()()()⎰⎰⎥⎦⎤⎢⎣⎡-+-=ba abdx x x f x x x f dx x f 2000!2'''ξ ()()()()3220-24-2-''21a b M dx x x M dx x x f ba ba=≤=⎰⎰ξ. 即. 3.2.2 端点取值法当条件中出现,而欲证式中出现厂,展开点常选为区间两端点然后在泰勒公式中取为适当的值,消去多余的项,可得待证的不等式.例 3.3 函数在区间[a ,b]上二阶可导,且,证明:在内至少存在一点,使得.证明 将分别在及处展开,得()()()()()()()x a a x f a x a f a f x f ,,!2'''121∈-+-+=ξξ; ()()()()()()()b x b x f b x b f b f x f ,,!2'''222∈-+-+=ξξ. 上面两式中取,()()()212!2''2'2⎪⎭⎫ ⎝⎛-+-⋅+=⎪⎭⎫⎝⎛+a b f a b a f a f b a f ξ;()()()222!2''2'2⎪⎭⎫ ⎝⎛-+-⋅-=⎪⎭⎫⎝⎛+a b f a b b f b f a b f ξ.上面两式相减,并由,得()()()()()()()()122122''''8)(''''8ξξξξf f a b f f a b a f b f +-≤--=-. 记()()(){}21''''max ''ξξξf f f ⋅=. 其中,. 于是,有()()()()()()()()224'',''4a b a f b f f f a b a f b f --≥-≤-ξξ即.3.2.3 极值取值法当题中不等式出现函数的极值或最值项,展开点常选为该函数的极值点或最值点.例3.4[6] 设函数)在区间内二阶可导,且存在极值及点,使,试证:至少存在一点,使.证明 将在处展开,得()()()()()()22'''c p f c x c f c f x f -+-+=!ξ,其中, 介于与之间. 上式取,并由,得,其中介于与之间. 两边同乘以,得()()()()()()22!2''c p c f f c fc f p f -+=ξ, (1)当时,上式取,得()()()()()()02200,,''8!2''x a f a b x a f x f ∈-≤-=ξξξ. 即.(2)当时,上式取,同理可得()()()()b x x f a b f ,,8''002∈-≥ξξ.由(1)及(2)得,存在,使得.再由的连续性,得[]()()[]()x f a b x f b a x b a x ,2,max 8''max ∈∈-≥.注 (1)当题中条件“连续”去掉,而其他条件不变时,结论可改为在内至少存在一点 ,使得成立(2)当题中条件添加时,结论可改为:在内至少存在一点,使得成立. 3.2.4 任意点取值法当题中结论考察的关系时,展开点常选为该区间内的任意点,然后在泰勒公式中取为适当的值,并对某些项作放缩处理,得所要的不等式.例3.5[7] 函数在区间上二阶可导,且≤A ,≤ B ,其中A ,B 为非负常数, 试证:,其中.证明 将在处展开,()()()()()()20000!2'''x x f x x x f x f x f -+-+=ξ,其中介于与之间. 上式中分别取及,()()()()()()()01201000,,!2'''x a x a f x x x f x f a f ∈-+-+=ξξ; ()()()()()()()b x x b f x x x f x f b f ,,!2'''02202000∈-+-+=ξξ. 上面两式相减,得()()()()()()()()[]2012020''''21'x a f x b f a b x f a f b f ---+-=-ξξ. 即()()()()()()()()[]2012020''''21'x a f x b f a b a b a f b f x f -------=ξξ.故()()()()()()()()()[]2012020''''211'x a f x b f a b a f b f a b x f -+--++-≤ξξ ()()()[]202022a x x b a b Ba b A -+--+-≤ .即,再由的任意性, 故有,其中.例3.6 函数在区问上二阶可导,且,,试证. 证明 将在处展开,()()()()()()2!2'''t x f t x t f t f x f -+-+=ξ,其中车于与之间. 上式中分别取及,()()()()()()()t a t a f t x t f t f a f ,,!2'''121∈-+-+=ξξ;()()()()()()()b t t b f t x t f t f b f ,,!2'''222∈-+-+=ξξ. 上边两式相加,得()()()()()()()[]2221''''412'21t b f t a f t b a t f t f -+---+-=ξξ. 上式两端在上对作积分,()()()()()()()[]⎰⎰⎰-+---+-=b ab a badt t b f t a f dt t b a t f dt t f 2221''''412'21ξξ()()()()()[]d t t b f t a f dt t f b ab a ⎰⎰-+---=2221''''41ξξ.于是有()()()()()[]d t t b f t a f dt t f b ab a⎰⎰-+--=2221''''81ξξ,()()()[]()()⎪⎭⎫ ⎝⎛-+-≤⎰⎰⎰bab a badt t b f dt t a f dt t f ]''[''812221ξξ()()()128322a b M dt t b dt t a M bab a -=⎪⎭⎫ ⎝⎛-+-≤⎰⎰. 即.注 从不等式的特点出发,应用实际范例给出了泰勒公式中展开点选取的几种情况:区间的中点,已知区间的两端点,函数的极值点或最值点,已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好地运用泰勒中值定理证明不等式.4 柯西中值定理在不等式证明中的应用4.1 柯西中值定理柯西中值定理 设函数,满足 (1)在闭区间上连续; (2)在开区间内可导; (3)对任一有, 则存在, 使得=.4.2 利用柯西中值定理证明不等式例4.1 设函数在内可微,,证明:在内,.证明 引入辅助函数在[][]()()()0,,1,1x x o x ∈-或上应用柯西中值定理,得 因为()()()00,00,1,f g f x '==≤且所以()()()()1 1.f x f f x x g x ξ'=≤⇒≤≤ 例4.2[8] 证明不等式()()221ln 110.x x x x x +++>+> 证明 令()()()22ln 1,11,f x x x x g x x =++=+-则上式转化为由于上应用柯西中值定理,得()()()()()()()()0,0f x f x f f g x g x g g ξξ'-=='-于是又转化为.因为()()()()22222ln 111ln 111f g ξξξξξξξξξξξξ+++++++'==+'+而当()22101ln 10,x ξξξξξ>>+++>时,所以()()()()()()1,f f g f x g x g ξξξξ'''>⇒>⇒>' 即()221ln 11.x x x x +++>+例4.3[9] 若,求证:()21112cos cos .x x x e e x x e ->-证明 证明()21112cos cos x x x e e x x e ->-,实际上只需证,设()()()()[]12,cos ,,,t f t e g t t f t g t x x ==则在上,满足柯西中值定理条件, 所以 . 即 .()()()2111212121cos cos cos cos cos cos sin x x x cc e e x x e x x e x x e c-=->->-. 其中用到是单调增加函数.5 积分中值定理证明不等式5.1积分中值定理定理5.1(积分第一中值定理) 若在区间上连续,则在上至少存在一点使得()()().,a b a a b f dx x f b≤≤-=⎰ξξ定理5.2(推广的积分第一中值定理) 若在闭区间上连续,且在上不变号,则在至少存在一点,使得()()()()b a dx x g f dx x g x f baba≤≤=⎰⎰ξξ,.5.2 利用积分中值定理证明不等式例5.1[11] 证明.证明 估计积分的一般的方法是:求在的最大值和最小值,又若,则()()()()dx x g M dx x g x f dx x g m bab ab a⎰⎰⎰≤≤.本题中令()()()100,119≤≤≥=+=x x x g xx f ,. 因为.所以1011212101109109109=<+<=⎰⎰⎰dx x dx xx dx x . 例5.2 证明.证明 在区间上求函数的最大值和最小值. ,令,得驻点.比较,,知为在上的最小值,而为在上的最大值.由积分中值定理得()()0202220412-≤≤-⎰--e dx e ex x ,即.注 由于积分具有许多特殊的运算性质,故积分不等式的证明往往富有很强的技巧性.在证明含有定积分的不等式时,也常考虑用积分中值定理,以便去掉积分符号,若被积函数是两个函数之积时,可考虑用广义积分中值定理.如果在证明如1和2例题时,可以根据估计定积分的值在证明比较简单方便.结束语中值定理是一条重要定理,它在微积分中占有重要的地位,起着重要的作用, 深入挖掘渗透在这一定理中的数学思想,对于启迪思维,培养创造能力具有重要 意义.伟大的数学家希尔伯特说“数学的生命力在于联系” .数学中存在着概念之间的亲缘关系,存在着理论结构各要素之间的联系,存在着方法和理论之间的联系, 存在着这一分支邻域与那一分支邻域等各种各样的联系,因此探索数学中各种各样的联系乃是指导数学研究的一个重要思想.实际上,具体地分析事物的具体联系,是正确认识和改造客观世界必不可少的思维方式在一定的意义上说,数学的真正任务就在于揭示数学对象之间、数学方法之间的内在固有联系,这一任务的解决不断推动数学科学向前发展.中值定理在一些等式的证明中,我们往往容易思维定式,只是对于原来的式子要从哪去证明,很不容易去联系其它,只从式子本身所表达的意思去证明.今后应当注重研究中值定理各定理之间的联系,更好的应用中值定理解决不等式的证明.参考文献[1] 高尚华.华中师范大学第三版.数学分析(上)[M].北京:高等教育出版社,2001,(06).[2] 董焕河、张玉峰.高等数学与思想方法[M].陕西:西安出版社,2000,(09).[3] 高崚峰.应用微分中值定理时构造辅助函数的三种方法[J].四川:成都纺织高等专科学校学报.2007,(07):18-19.[4] 张太忠、黄星、朱建国.微分中值定理应用的新研究[J].江苏:南京工业职业技术学院学报.2007,(8):12-14.[5] 张元德、宋列侠.高等数学辅导30讲[M]. 清华大学出版社,1994,(6).[6]AI Jing- of Convex Function[J].Journal of Kaifeng University, Vol.17,No.2,Jun.2003:.[7] 钟朝艳.Cauchy中值定理与Taylor定理得新证明[J].云南:曲靖师专学报.1998,(9):9.[8] 荆天.柯西中值定理的证明及应用[J].北京:科技信息(学术版).2008,(06):14.[9] 葛健牙、张跃平、沈利红.再探柯西中值定理[J].浙江:金华职业技术学院学报.2007,(06):23.[10]刘剑秋、徐绥、高立仁.高等数学习题集(上)[M].天津:天津大学出版社,1987,(07).[11] 刘法贵、左卫兵.证明积分不等式的几种方法[J].高等数学研究,2008,(06).[12] 蔡高厅.高等数学[M].天津大学出版社,1994,(06).[13] W. Rmdin, Principle of Mathematical Analysis (Second edition)[J]. Mc Graw-Hill , New York, 1964,(09):96-102.致谢从2008年9月到现在,我在黄淮学院已经渡过接近四年的时光.在论文即将完成之际,回想起大学生活的日日夜夜,百感交集.在大学学习的四年时间里,正是老师们的悉心指导、同学们的热情关照、家人的理解支持,给了我力量,从而得以顺利完成学业.在此对他们表示诚挚的谢意!本论文是在导师钟铭的悉心指导下完成的.导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远.他对数学理论在经济,金融领域中的应用的想法和建议,使学生受益匪浅、铭刻终生.本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血.在此,谨向导师表示崇高的敬意和衷心的感谢!感谢数学科学系其他老师讲授的数学基础课程,为我夯实了数学研究的理论基础,他们是李东亚老师、魏本成老师、庞留勇老师、侯亚林老师等.感谢数学系全体领导、老师、同学创造了一个宽松,自由的学习环境.此外我还感谢室友冯克飞、王宁对我的论文完成过程中给我的指导,她们深厚的数学功底以及对数学应用软件操作等方面的知识给了我很大的帮助.最后深深地感谢我的父母,把最诚挚的感谢送给他们,感谢他们无微不至的关心和支持,感谢他们的无私奉献以及为我所做的一切.。
【数学与应用数学专业】【毕业论文文献综述开题报告】一些不等式的证明及推广(可编辑)
【数学与应用数学专业】【毕业论文+文献综述+开题报告】一些不等式的证明及推广(20_ _届)本科毕业论文一些不等式的证明及推广摘要:本文主要介绍了柯西不等式、Young不等式、赫尔德不等式和闵可斯基不等式的基本形式以及它们的证明,此外还对这几个重要不等式的推广做了比较系统的综述,并举例说明了这些不等式在各个方面的具体应用。
关键字:柯西不等式;Young不等式;赫尔德不等式;闵可斯基不等式The Proof And Generalization of Some Important InequalitiesAbstract: This paper summarized the basic form of several important inequalities and their proof, such as Cauchy inequality, Young inequality, Holder inequality and Minkowski inequality. In addition, this article introduces some generalizations of these inequalities and some applications in every aspect by taking examples.Key words: Cauchy inequality; Young inequality; Holder inequality;Minkowski inequality;目录1 引言 12 柯西不等式 32.1 柯西不等式的定义 32.2 柯西不等式的几种证明方法 33 柯西不等式的推广及应用 83.1 在实数域上柯西不等式的几个推广结论83.2 柯西不等式的推广形式83.3 柯西不等式在欧氏空间的推广形式 103.4 证明不等式103.5 用柯西不等式解释样本线性相关系数124 Young不等式144.1 Young不等式的定义144.2 Young不等式的几种证明方法144.3 带项的Young不等式 154.4 Young不等式(积分形式)的定义164.5 Young不等式(积分形式)的几种证明方法164.6 Young逆向不等式174.7 Young不等式与Young逆不等式的推广185 赫尔德积分不等式 205.1 赫尔德积分不等式205.2 赫尔德积分不等式的几种证明方法 20 5.3 赫尔德不等式的推广 23结论 26致谢 27参考文献281 引言不等关系是自然界中存在着的基本数学关系。
不等式的证明方法论文
1.1 不等式的概念
不等式的定义:用不等号将两个解析式连结起来所成的式子.
1.2 实数运算的性质(符号法则)
(1) .
(2) .
(3) .
(4) .
1.3 不等式的性质
(14)可乘性: ,
.
第二章 证明不等式的常用方法
关键词:不等式;中值定理;证明
A Lot of Methods about Inequality Proof
YANGJia-cheng
(Grade 2009, Mathematics and Applied Mathematics, College of Mathematics and Computer Science,Chongqing Three Gorges University, Wanzhou, Chongqing 404100 )
(乱序积和)
(顺序积和)
其中 是 的一个排列,即
倒序积和≤乱序积和≤顺序积和.
例3设 是 个互不相同的自然数,证明:
.
证明:设 是 的一个排列且 ,
因 ,所以由排序不等式,得,
.
又因为 ,故 ,
即 .
说明:排序不等式适用于与数的排列相关的问题.
从应用中,可看出在利用重要不等式来证明不等式时必须注意重要不等式所需要的条件,以及有时需要变形等适当处理,凑成重要不等式的形式.
②讨论 符号来确定 在指定区间的增减性,
③根据函数的单调性及区间端点处的函数值即可得证.
其中步骤①是关键,作出适当辅助函数 ,值得注意的是步骤②讨论 符号,有时一阶导的符号不能判断,这就需要判断二阶导数的符号,若仍旧不能判断,再求三阶导数,重复上述过程.
柯西不等式的证明及应用论文
南京师范大学泰州学院毕业论文(设计)(一三届)题目:柯西不等式的证明及应用院(系、部):数学科学与应用学院专业:数学与应用数学姓名:学号指导教师:南京师范大学泰州学院教务处制摘要:本文对柯西不等式及其推论、变形、推广和积分形式进行了诠释,详细介绍了柯西不等式的几种典型证明方法,如配方法、判别式法、数学归纳法、运用基本不等式和推广不等式、利用二次型和向量内积等方法,并通过列举一系列范例揭示柯西不等式在不等式证明、等式证明、求最值、解析几何、求参数范围、解方程、解函数、几何等方面的应用。
说明了柯西不等式是数学中的一个非常重要的不等式,它结构对称和谐,在初等数学和高等数学中都有比较广泛的应用,在数学的各个分支都可以见到它的应用。
灵活巧妙地运用它,往往可使一些比较困难的问题迎刃而解,甚至收到出奇制胜、事半功倍的效果,充分体现柯西不等式的重要性及较强的应用性。
关键词:柯西不等式;证明;应用Abstract:In this paper, Cauchy inequality and its corollary, deformation, diffusion and integral form are explained in detail. What’s more, several typical Cauchy inequality proofs, such as the distribution method, discriminant method, mathematical induction, the use of the basic and promotional inequality, using the second type and vector inner product are introduced. Furthermore, the paper reveals the application of Cauchy inequality in inequalities, equality proof, for the most value, analytic geometry, the scope of demand parameters, solving equations, the solution function and geometry through a series of examples. Cauchy inequality is a very important mathematics inequality. Within its harmonious symmetrical structure, it is widely used in elementary mathematics, higher mathematics and almost every branches of mathematics. When using it flexibly, most of the difficult problems can be solved, or even users can receive a surprise move, a multiplier effect. All these fully reflect the importance of Cauchy inequality and the strong capability of application.Keywords: Cauchy inequality; proof; application目录1绪论 (3)1.1 研究意义 (3)1.2 国内外研究现状 (3)1.3 本文解决的主要问题 (4)2柯西不等式的诠释 (5)2.1 柯西不等式 (5)2.2 柯西不等式的推论 (5)2.3 柯西不等式的变形 (6)2.4 柯西不等式的推广 (7)2.5 柯西不等式的积分形式 (8)3柯西不等式的证明 (9)3.1 配方法 (9)3.2 判别式法 (9)3.3 数学归纳法 (10)3.4 运用基本不等式 (11)3.5 运用推广不等式 (12)3.6 利用二次型 (12)3.7 利用向量内积 (13)4柯西不等式的应用 (14)4.1 在证明不等式方面的应用 (14)4.2 在证明等式方面的应用 (16)4.3 在求最值方面的应用 (18)4.4 在解析几何方面的应用 (19)4.5 在求参数范围问题中的应用 (22)4.6 在解方程问题中的应用 (22)4.7 在解函数问题中的应用 (23)4.8 在几何上的应用 (23)结论 (26)谢辞 (27)参考文献 (28)1 绪论在自然界中存在着大量的不等量关系,不等关系也是最基本的数学关系,不等式在数学研究和数学应用中起着重要的作用。
利用导数证明不等式的几种方法
利用导数证明不等式的几种方法作者:秦昊来源:《教育教学论坛》2015年第10期摘要:不等式证明的方法有很多,利用导数来证明不失为一个简单易掌握的方法,本文应用导数的有关概念、定理、典型实例,对不等式证明的方法进行了探究与归纳。
关键词:不等式;导数;证明中图分类号:G712 文献标志码:A 文章编号:1674-9324(2015)10-0189-02不等式的证明方法多种多样。
在初等数学里介绍过比较法、放缩法、反证法、归纳法等方法,在学习了导数的应用以后,用导数来证明不等式,往往能起到很好的效果。
一、利用函数的单调性证明不等式在学习了导数之后,可以利用导数来判定函数的单调性。
定理1 设函数在区间[a,b]上可导,如果对任意的x∈(a,b),恒有f ′(x)>0(或f ′(x)利用函数单调性证明不等式,不等式两边的函数必须可导。
所构造的辅助函数f (x)应在某闭区间上连续,开区间内可导,且在闭区间的某端点处f (x)的值为0,然后通过在开区间内f ′(x)的符号来判断f (x)在闭区间上的单调性。
二、利用微分中值定理证明不等式第三利用a利用微分中值定理证明不等式时,要抓住定理的核心,在满足定理的两个条件下,主要是利用“存在一点.高等数学中证明不等式的方法很多,利用导数证明有时候可以将复杂繁冗的问题变的简单。
以上将利用导数证明不等式的方法作了简单归纳,但我们遇到的问题远远不止这些。
有些不等式的证明可以使用多种方法,只有多思考、多总结,灵活运用导数的基本理论和方法,才能熟练掌握其中技巧,简单快捷地解决不等式证明问题。
参考文献:[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,1991.[2]同济大学数学教研室.高等数学[M].北京高等教育出版社,1996[3]尹建华.利用微积分证明不等式[J].承德民办师专学报,2001,21(2):8-9.[4]吴江.微积分在不等式证明中的应用[J].北京市计划劳动管理干部学院学报,2001,9(3):44-46.[5]刘玉琏,傅沛仁.数学分析讲义[M].北京:高等教育出版社,1992.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文学院统计与应用数学学院班级数学一班学号姓名论文题目函数不等式的几种证明方法分析指导教师(姓名及职称)讲师[总评成绩: ]函数不等式几种证明方法分析Analysis of methods in proving function inequalities统计与应用数学学院数学与应用数学专业2010 (1)班2010720066指导老师:内容摘要:不等式在数学中有非常重要的地位,对于不等式的考察可以体现学生的基础知识水平和严密的逻辑思维。
在高中我们就学过比较法和构造函数法来解决不等式问题,在高等学府学习过数学分析,微积分等等以后,了解到还有许多方法来证明不等式,比如说设置辅助函数,考察新函数单调性;考察函数的极值或者是最大最小值;有微分中值定理;函数的凹凸性;泰勒公式;积分性质;积分中值定理;变限积分;柯西中值定理;导数的性质;导数的定义,不等式的放缩等等方法。
本文将逐一介绍这些解题方法,每种方法都会通过一些例题,来验证一些解题的思想和步骤,给出简洁的证明过程,使得大家在碰到数学不等式证明方面更为得心应手,也显示出数学分析思想在不等式领域中的地位。
关键词:不等式;泰勒级数;函数单调性;中值定理;定积分Abstract::Inequality holds the extremely important status in mathematics, it can inspect students’basic knowledge level and strict logical thinking. In high school we learned comparative method and construct assistant function to solve the inequality problem, after learning mathematical analysis or calculus at university, ,we know there are many other methods to prove inequality, for example setting auxiliary function, considering the monotonicity of the new function; using the function’s extreme value and maximum or minimum values; differential mean value theorems; the concavity or convexity of functions; Taylor formula; integral; integral mean value theorem; variable limit integral derivative; definition of inequality and so on. This paper will introduce the above methods, through some examples to verify the ideas and steps of each methed furthermore we give a concise proof to prove thses inequalities, let everybody can prove mathematical inequalities more handy, and shows the important of mathematical analysis in the inequality field.Keywords: Inequality;Taylor’s series;Monotone function;Mean value theorem ;Definite目录一引言 (1)二解题思想和方法 (1)1导数法 (1)2中值定理法 (7)3其他证明方法 (10)三总结 (13)参考文献 (14)一 引言不等式是数学非常重要的组成部分,使我们了解量之间的大小关系,在数学中起着很重要的用处。
对于一个数学系学生来说,或者是对于一个学生来说,多做不等式方面的题目,能丰富数学知识,又能锻炼逻辑思维,因为证明不等式,方法多变,解题手段灵活,有很强的技巧性。
不等式更在一些实际问题中充当工具性的方法,有时对于一个实际问题而言,证明其中的不等式只是很小的一部分,但是却不能忽略它的存在。
高等数学中的不等式基本可以分为函数不等式和数值不等式,两者都可以通过构造新函数来证明不等式,两者证明的方法是很相似的。
证明不等式没有特定的套路去套用,方法随着题目的不同而也在变化,有时只是变换很小的一部分,方法就能彻底的改变。
在具体做题目的过程中,要注意观察,善于联想,根据不等式的结构,内在的一些联系来选择最合适的方法,熟悉证明方法的推理思维,熟悉步骤技巧,能看透问题的本质,这样就能选出正确的方法去证明。
在高中的时候,我们就会一些不等式的证明,但对于有些不等式,需要借助到高等数学或者是微积分才能解决,从构造新函数,研究新函数的性质,比如单调性,极值最值;到套用一些公式,比如Lagrange 中值定理,Cauch y 中值定理等等;还有研究函数的导数的一些性质,以及积分不等式的解法等等,都是一些非常有技巧性且需要很强逻辑思维能力的题目,下面将一一介绍这些方法。
二 解题思想和方法1导数法导数的内容我们在高中就学过,大学之后就给了一个更精准的定义。
在大学里,我们加强了用导数来求单调性的能力,并且引入了新的概念即函数凹凸性,函数的极值。
这些东西在合适的条件下都能表达一定的大小关系,所以用导数来求解不等式,是一个很基础的方法。
1.1导数定义法这一方法要求我们首先找出0x ,使得)(0x f 为不等式的一边,这时候利用定义和条件去证明。
这种方法较为简单,也不是很常用,但不容易想起。
例1[5] 现有一个函数12()sin sin 2sin n f x a x a x a nx =+++…,n a a a ,,21都是实数,n 为R +,对于R x ∈∀,都有x x f sin )(≤,求证1221n a a na +++≤… 证:因为12()cos 2cos2cos n f x a x a x na nx '=+++…所以12(0)2n f a a na '=+++…,再由导数定义可以得到0()(0)(0)0lim x f x f f x →-'==- 00()()lim lim x x f x f x x x →→==又因为x x f s i n )(≤,所以1s i n )0(lim 0=≤'→x x f x ,所以1221n a a na +++≤…,原不等式得证。
这一题其实只要能想起导数的定义,再将原式的在0处的导函数值,就能 简单的凑出导数的定义的大框架,问题就迎刃而解了。
1.2可导函数单调性法这种方法一般将多项式移向不等式的一端,然后将此作为一个新的函数,研究它的单调性,结合函数的定义域等条件来研究函数的一些特征,从而完成证明。
这是最能让人联想起来的一种方法,很基础也很实用。
关于导数单调性的定理都反映了导函数和原函数的导数的关系,里面会出现很明显的大小关系,如果能将不等式与单调性结合在一起,证明将会变得很简单。
所以我们也经常用函数的导数来判断原函数在区间上的一些性质。
(1)利用题目来构造新函数,并且确定好区间[]b ,a ;构造函数较为简单技巧:利用两边的差;利用不等式两边的形式;若有指数等等,建议用比值来确定大小关系等等。
通过例题来简单的表述做差法和作商法。
例1[2]已知,a b c >>求证:222222a b b c c a ab bc ca ++>++证:原式变为222222222222a b b c c a ab bc ca ab ca b c bc c a ab ++--->-+-+- 2222(b )bc(b c)(c b )(b c)[a bc a(c b)]a c a =-+-+-=-+-+=()()()0b c a b a c --->例题解释:本题用了很简单的比较作差法,通过恒等变形,再由此联想到二次三项式的展开,问题就迎刃而解了。
例2[5]有,,0a b c >,求证:3()a b c a b c a b c abc ++≥证:由于对称性,可以设0a b c ≥≥>,a b c a b c 和3()a b c abc ++都是正数。
此时作商:222..3333333333b c ()a b c b c a c b a a b c a b c a b c a b c a b ca b ca b c a a b c abc ------------++===333()()()a b b c c a a b a b c c---,因为0a b c ≥≥>,所以1,1,1a b a b c c ≥≥≥,所以得出333()()()1a b b c c a a b a b c c---≥,所以有3()a b c a b c a b c abc ++≥。
这两个例子主要是教大家怎么构造新函数,无外乎作差或者是作比值,例2中不等式为指数式,很容易联想到指数的比值性质。
(2)在构造出函数的基础上,通过研究其函数的单调导函数的特征来研究新性,从而去证明不等式。
例3当0>x 时,证明)0(11)1ln(22>++->++x x x x x 。
证:首先构造函数,1)1ln(1)(22x x x x x f +-+++=有题意知)(x f 在0≥x 这个范围内是连续的;),0(,0)1ln()(2+∞∈>++='x x x x f 。
所以)(x f 在),0[+∞是单增的,所以知)0(,0)0()(>=>x f x f 所以有01)1ln(122>+-+++x x x x , 所以)0(1)1ln(122>+>+++x x x x x ,原题得证。
例4[4]证明:b ba ab a ba +++≤+++111。
证:构造新函数)0(,1)(≥+=x x x x f ,)(x f 在),0[+∞上是连续的。
求导可知,0)1(1)(2>+='x x f 有定理二知,)(x f 在),0[+∞上是单调递增的,又因为b a b a +≤+≤0,可知)()(b a f b a f +≤+。