液体动压滑动轴承实验
液体动压轴承试验
Page 6
实验二—液体动压轴承实验
四、实验方法与步骤
油膜压 力分布 测定
步骤分解
Page 7
轴承摩擦 特性曲线 的确定
PPT大宝库【】
实验二—液体动压轴承实验
(1) 油膜压力分布的测定
开启油泵,调节溢流阀,使加载油腔 压力在0.2Mpa以下
二、实验设备
•滑动轴承实验台
1-轴承箱 2-供油压力表 3、4-溢流 阀 5-加载油腔压力表 6-液压箱 7变速箱 8-调速电机控制器 9-底座 10-油泵 电机开关 11-总开关 12-调速电机
Page 3
PPT大宝库【】
实验二—液体动压轴承实验
三、实验原理与结构
1. 静压加载 当输送压力油到加载板的油腔时,轴承即获得载荷,轴 承载荷为:
正行程 反行程 正行程 反行程 正行程 反行程 正行程 反行程
0g
灵敏度
200g
400g
600g
800g
线性度
迟滞
重复性
精度
1000g
实验二—液体动压轴承实验
表3半桥邻臂实验记录
受力方式图
电桥接线图
半桥邻臂
计算公式与结论
Page 16
次 数
1 2 3 平均值 结果
加载(g) 电压(mv)
正行程 反行程 正行程 反行程 正行程 反行程 正行程 反行程
加载荷,调节溢流阀使得 p0=0.2Mpa,并计算此时载荷F,待 各压力表稳定后,记录压力表的数值
Page 9
实验二—液体动压轴承实验
(1) 油膜压力分布的测定
再将加载压力调至P0=0.4Mpa,计 算此时载荷F待压力表稳定后记录压
实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解
3)转速对油膜压力的影响 转速越高,单位时间通过载荷作用面的润滑 油就越多,产生的摩擦力就越大,油膜压力就越 大,特别是当转速达到一定值使流体的流动由层 流变为紊流时,承载力会得到显著提高。在转速 升高的同时会使润滑油的温度上升,运动粘度下 降,使油膜压力降低承载能力下降。相比而言, 油温升高带来的油膜压力降低比转速上升带来的 油膜压力升高要小得多。 4)液体动压滑动轴承设计的结构、尺寸,制造 精度,材料选择对动压油膜的产生和压力的大小 都有直接的影响。
实验7 液体动压滑动轴承油膜压 力与摩擦仿真及测试分析
7.1 实验目的
通过在 HSB 型试验台上,对液体动压 轴承进行径向和轴向油膜压力分布及大小的 测量和仿真,对摩擦特性曲线进行测定及仿 真,了解影响液体动压滑动轴承油膜建立及 影响油膜大小各项因素之间的关系。
7.2 实验原理
利用轴承与轴颈配合面之间形成的楔形间
3、滑动轴承油膜压力仿真与测试分析界面
4、滑动轴承摩擦特征仿真与测试分析界面
7.8 实验内容
1.液体动压轴承油膜压力周向分布测试分析
该实验装置采用压力传感器、A/D板采集该 轴承周向上七个点位置的油膜压力,并输入计 算机通过曲线拟合作出该轴承油膜压力周向分 布图。通过分析其分布规律,了解影响油膜压
传感器采集的实时数据。
注:此键仅用于观察和手动纪录各压力传感器采集的数据,软件所
需数据将由控制系统自动发送、接收和处理。
7.7软件界面操作说明
1、由计算机桌面“长庆科教”进入启动界面
2、在图7-7启动界面非文字区单击左键, 即可进入滑动轴承实验教学界面。
操
作
[实验指导]: 单击此键,进入实验指导书。 [进入油膜压力分析]: 单击此键,进入油膜压力及摩擦特性分析。 [进入摩擦特性分析]: 单击此键,进入连续摩擦特性分析。 [实验参数设置]: 单击此键,进入实验参数设置。 [退出]: 单击此键,结束程序的运行,返回WINDOWS界面。
流体动压润滑径向滑动轴承计算举例
流体动压润滑径向滑动轴承计算举例
试设计一流体动压润滑径向滑动轴承。
其径向外载荷为 5000N ,轴颈转速为960r/min ,轴颈所允 许的最小直
径为20mm 。
解:
工作载荷HN 〕 ^000~
轴馬宽径叱引d
卷考值 [―TT ----- 1 轴颈直径贞mm]
歹且1 00 ▼ r 自定义'
轴转速
960
开赠i 计算
混合润滑计算
rt 十算结果显示
釉承压强(MPaJ 12.5000 釉頑速度〔“旳]1 0053 r 使用参考间隍计算
3)估算轴承间隙
卩间隙计算结果显示
直径间003
相对间隙
0.0015
计算间隙
4)选择材料
包角选择n iso
ZCuSn10P1
J
许用摄大压强〔忖pa] 许用摄丈速度丽畑 许用 pv®(Mpa x m/s ) 材料属性 15
10
15 踢音洞
材料适用场合
用于中速、重戟及受变载荷的轴承.用于中速、
承°
中载的轴 参考值
轴承平均压强12.500MPa 轴承平均速度
1. OOSm/s pv® 1
2.566M Pa.m/s
5)流体动压润滑计算结果
1) 选择轴承的内径
二
101
12.5663
0.00110
席自定文相对间隙
输入自定义相对间隙值: |0.0015
匚吝输入已知裁量
轴承相
(从
略)
6)根据计算结果需要重新设计,按“返回”按钮,即可以得到可行方案。
液体动压滑动轴承实验台毕业设计
摘要滑动轴承是用来支撑轴及其它回转零件的一种重要部件,因其本身具有一些独特的优点:轴颈轴瓦间所特有的润滑油膜具有缓冲吸振作用,使用寿命长,结构紧凑,回转速度高等,这些优点使它在某些场合占有重要地位。
因此滑动轴承在金属切削机床、内燃机、铁路机及车辆、轧钢机、雷达、卫星通信地面站及天文望远镜等方面的应用十分广泛。
为了帮助大学学生更加深入、细致地了解和研究滑动轴承,各种滑动轴承实验台应运而生,但在实验的效率、效果方面都还有不足。
现有的滑动轴承试验台不能满足我们需要的要求,因此,我们需要为了测试专门的改进。
本论文主要对液体动压滑动轴承进行分析、设计,使得其能够更好的工作,测得各种实验数据。
对电机、温度传感器、加热装置进行解析、选择,可以测量及仿真径向油膜压力分布、油膜温度变化、油槽温度变化等各种参数。
在基于流体力润滑理论的基础上,以雷诺方程的建立和求解过程,揭示了影响油膜压力的因素和其变化规律。
可以通过改变各种参数揭示影响油膜压力的因素及其变化规律,从而能够更加深刻的理解和掌握滑动轴承的原理。
如此一来,不仅完成了滑动轴承实验,并且加深了对油膜承载机理的理解,同时还提高了对滑动轴承的设计能力。
关键词:液体动压滑动轴;油膜压力;油膜温度AbstractSliding bearing is used to support shaft and other rotating parts is an important part,Because of its itself has some unique advantages:Between the journal bearing of lubricating oil film vibration cushioning、Long service life、Compact structure、Rotation speed is higher and so on,These advantages make it occupies an important position in some occasions.So the sliding bearing in the metal cutting machine tools, internal combustion engines, railway and vehicle, rolling mill, radar, satellite communication earth station and astronomical telescope are widely used, etc.In order to help college students more in-depth and meticulous understanding of and research on the sliding bearing, all kinds of sliding bearing experimental platform arises at the historic moment, but in the experimental efficiency, effect and inadequacy.Existing sliding bearing test rig can not meet the requirements of we need, therefore, we need to test the specific improvements.This thesis mainly analyze the fluid dynamic pressure sliding bearing, the design, make it can work better, measured a variety of experimental data.Motor, temperature sensors, heating device for parsing, choice, can be measured and simulation of radial oil film pressure distribution, oil film temperature, oil temperature and other parameters.Based on flow, on the basis of manual lubrication theory, with the establishment of the Reynolds equation and the solving process, reveals the factors that affect the oil film pressure and its change rule.Can by changing various parameters that influences factors of oil film pressure and variation law, to be able to more deeply understand and master the principle of sliding bearing.As a result, not only completed the sliding bearing experimental, and deepen the understanding of the mechanism of oil film bearing, also raised the design capability of sliding bearing.Key words:Liquid dynamic pressure sliding bearing; The oil film pressure;The oil film temperature目录摘要 (I)Abstract................................................................. I I 第一章绪论. (4)1.1 国内外研究现状和发展趋势 (1)1.1.1 液体动压滑动轴承试验台国内外研究现状 (1)1.1.2 液体动压滑动轴承试验台发展趋势 (2)1.2 液体动压滑动轴承试验台的研究目的和意义 (2)1.3 课题研究的主要内容 (2)第2章液体动压滑动轴承的理论基础 (4)2.1 滑动轴承 (4)2.1.1 滑动轴承的主要类型和结构 (4)2.2 液体动压润滑的基本原理和基本关系 (5)2.2.1 液体动压油膜的形成原理 (5)2.2.2 液体动压润滑的基本方程 (6)2.2.3 油楔承载机理 (8)2.3 径向滑动轴承液体动压基本原理 (9)2.3.1 径向滑动轴承液体动压润滑的建立过程 (9)2.3.2 径向滑动轴承的主要几何关系和承载能力 (10)2.3.3 径向滑动轴承的参数选择 (11)第3章液体动压滑动轴承油膜特性分析 (13)3.1 径向滑动轴承油膜压力分布的理论基础 (13)3.1.1液体动压润滑的基本方程 (13)3.1.2 雷诺方程的简化 (13)3.1.3 雷诺方程的无量纲形式 (14)3.1.4 雷诺方程的无量边界条件 (15)3.1.5 开设油槽时油膜压力的计算 (16)第4章液体动压滑动轴承试验台的实现 (17)4.1 试验台的简介 (17)4.1.1 液体动压滑动轴承试验台的结构简图 (17)4.1.2 关于电机的选择 (18)4.1.3 关于热敏电阻传感器的选择 (20)4.1.4 关于加热装置的选择 (22)4.2 液体摩擦径向滑动轴承的计算 (25)4.2.1 主要技术指标 (25)4.2.2 选择轴承材料和结构 (25)4.2.3 润滑剂和润滑方法的选择 (26)4.2.4 承载能力计算 (26)4.2.5 层流校核 (27)4.2.6 流量计算 (27)4.2.7 功耗计算 (28)4.2.8 热平衡计算 (28)4.2.9 安全度计算 (29)4.3 滑动轴承内轴瓦、油温、油压的关系 (29)第五章总结 (33)参考文献 (34)致谢 (35)第一章绪论滑动轴承是用来支撑轴及其它回转零件的一种重要部件,因其本身具有一些独特的优点:轴颈轴瓦间所特有的润滑油膜具有缓冲吸振作用,使用寿命长,结构紧凑,回转速度高等,这些优点使它在某些场合占有重要地位。
动压滑动轴承实验指导书
动压滑动轴承实验指导书一、实验学时本实验2学时。
二、实验目的1. 观察油膜的形成与破裂现象、分析影响动压滑动轴承油膜承载能力的主要因素;2. 测量轴承周向及轴向的油膜压力、绘制其油膜压力分布曲线;3. 测定轴承的摩擦力、绘制轴承特性(λ−f )曲线;4. 掌握动压滑动轴承试验机的工作原理及其参数测试方法。
(1) 油膜压力(周向和轴向)的测量; (2) 转速的测量;(3) 摩擦力及摩擦系数的测量;三、实验机的构造及参数测试原理直流电机 2-V 形带 3-箱体 4-压力传感器 5-轴瓦 6-轴7-加载螺杆8-测力杆 9-测力传感器 10-载荷传感器 11-操作面板 图1 1.传动装置直流电机1通过V 带2驱动轴6旋转。
轴6由两个滚动轴承支承在箱体3上,其转速由面板11上的电位器进行无级调速。
本实验机的转速范围3~375转/分,转速由数码管显示。
2.加载方式由加载螺杆7和载荷传感器10组成加载装置,转动螺杆7可改变外加载荷的大小。
载荷传感器的信号经放大和A/D 转换后由数码管显示其载荷数值。
加载范围0~80㎏,不允许超过100㎏。
3. 油膜压力的测量在轴瓦5中间截面120°的承载区内(见图2左图)钻有七个均布的小孔,分别与七只压力传感器4接通,用来测量径向油膜压力。
距正中小孔的B/4轴承有效长度处,另钻一个小孔连接第八只压力传感器,用来测量轴向压力。
图2压力传感器的信号经放大、A/D 转换分别由数码管显示轴承径向油膜压力和周向油膜压力。
4. 摩擦系数的测量在轴瓦外圆的后端装有测力杆8(见图1),测力杆紧靠测力传感器9,轴旋转后,轴承间的摩擦力矩应由力臂作用于测力传感器所产生的摆动力矩相平衡。
即302F 2M L Fc D L Fc L F D F C M ⋅=⋅=⋅=⋅故 摩擦系数(3)式中:F — 轴承外载荷 (N) F=外加载荷 + 轴承自重=750 N 30FL Fc F f ⋅==F M L -力臂长度 (mm ) F M — 轴承的摩擦力 (N) F C — 测力传感器读数四、实验数据处理及绘制有关曲线为消除载荷对机械系统变形引起测量的误差,通常在载荷不变的情况下,分级改变转速,测量各级转速下有关参数,然后进行计算处理和绘制有关曲线。
液体动压滑动轴承油膜压力分布和摩擦特性曲线
机械设计基础(Ⅲ)实验报告 班级姓名液体动压滑动轴承油膜压力分布和摩擦特性曲线 学号一、 概述液体动压滑动轴承的工作原理是通过轴颈的旋转将润滑油带入摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时油就被挤入轴与轴瓦配合面间的楔形间隙内而形成流体动压效应,在承载区内的油层中产生压力,当压力的大小能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜,这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦间的摩擦是处于完全液体摩擦润滑状态,其油膜形成过程及油膜压力分布如图6-1所示。
图6-1 建立液体动压润滑的过程及油膜压力分布图滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η(Pa.s)、轴的转速n(r/min)和轴承压强p(Mpa)有关,令pnηλ=式中,λ——轴承摩擦特性系数。
图6-2 轴承摩擦特性曲线观察滑动轴承形成液体摩擦润滑过程中摩擦系数变化的情况,f-λ关系曲线如图6-2所示,曲线上有摩擦系数最低点,相应于这点的轴承摩擦特性系数λkp称为临界特性数。
在λkp以右,轴承建立液体摩擦润滑,在λkp以左,轴承为非液体摩擦润滑,滑动表面之间有金属接触,因此摩擦系数f 随λ减小而急剧增大,不同的轴颈和轴承材料、加工情况、轴承相对间隙等,λkp也随之不同。
本实验的目的是:了解轴承油膜承载现象及其参数对轴承性能的影响;掌握油膜压力、摩擦系数的测试及数据处理方法。
二、 实验要求1、在轴承载荷F=188kgf 时,测定轴承周向油膜压力和轴向油膜压力,用坐标纸绘制出周向和轴向油膜压力分布曲线,并求出轴承的实际承载量。
在轴承载荷F=128kgf 时,测定轴承周向油膜压力和轴向油膜压力,用计算机进行数据处理,得出周向和轴向油膜压力分布曲线及轴承的承载量。
2、测定轴承压力、轴转速、润滑油粘度与摩擦系数之间的关系,用计算机进行数据处理,得出轴承f-λ曲线。
三、 实验设备及原理本实验使用 HZS-1型液体动压轴承实验台,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承和轴等所组成。
液体动压径向滑动轴承实验台仿真软件的研制
』E立銮道1人堂亟±堂位途塞!缝丝通过查阅文献发现目前国内从事滑动轴承实验台开发的高校主要有两家,一是哈尔滨工业大学,二是大连理工大学,另外还有一些实验仪器制造厂商也在研制该实验台。
哈尔滨工业大学根据不同时期的技术手段现己先后开发了两种型号的滑动轴承实验台01,广泛应用于各高校机械设计基础实验课中。
国内滑动轴承实验台主要有以下几种型号:l,HzSA.III型(机械式)液体滑动轴承实验台幽1-1HZSA.III型(机械式)液体滑动轴承实验台Figurel-1TheHZSA·IlljournalbearingteststandHZSA—III型(机械式)液体滑动轴承实验台如图1一l所示。
该实验台采用千分表读取径向油膜和轴向油膜压力,人工绘制径向油膜压力分布曲线和轴向油膜压力分布曲线的实验方法。
这种实验台大多数是在定轴承参数条件下工作,无法考察变参数对轴承油膜压力分布的影响情况,因此很难向学生全面反映影响轴承压力分布的各种因素及由此引起的结果,这与当前教学对实验的要求不相符。
2、HZSB—IIl型滑动轴承实验台图1-2HZSB.III型新型液体滑动轴承实验台Figure1-2TheHZSB—IIIjournalbearingteststand2』E噩窒堡鑫堂亟±堂僮诠塞!缝耸图t-3HZSB,III型滑动轴承实验台结鞠简图Figurel-3ThestructurediagramofHZSB-IIIjournalbearingteststand图1.2所示为HZSB.III型滑动轴承实验台,图1.3为其主要功能框架简图,该实验台在技术上有了很大的改进。
它与计算机联接,在滑动轴承周向、轴向承载区安装压力传感器,经电压放大器,A/D转换装置,采集有关油膜压力分布的实验数据,输送到计算机中。
然后,利用微机进行计算,数据处理,包括在屏幕上显示实验曲线、用打印机打印实验报告等吲。
1.2.2滑动轴承仿真实验台的国内外发展现状利用计算祝闻接操作滑动轴承实验设备所实现鲍实验并不是真正意义上的仿真实验吲。
实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析
思考题
1. 动压滑动轴承的油膜压力大小与实验 中那些因素有关? 2. 加载载荷对最小油膜厚度有何影响? 3. f—μ 曲线中A点及μ 0点的意义。 第一次μ 0=?第二次μ 0= ?。 改变加载载荷和电机转速对μ 0的影响? 4. 润滑油温度如有变化将会对动压滑动 轴承的油膜压力的变化产生什么影响?
实验7 液体动压滑动轴承油膜压 力与摩擦仿真及测试分析
7.1 实验目的
通过在 HSB 型试验台上,对液体动压 轴承进行径向和轴向油膜压力分布及大小的 测量和仿真,对摩擦特性曲线进行测定及仿 真,了解影响液体动压滑动轴承油膜建立及 影响油膜大小各项因素之间的关系。
7.2 实验原理
利用轴承与轴颈配合面之间形成的楔形间
轴颈与轴承中心的连线上,我们把外载荷作 用线与轴颈和轴承中心连线所形成的夹角称 为偏位角。(见下页 )
液体动压润滑油膜形成过程及油膜压力分布
动压油膜形成
由于实验台的外载荷是加在轴瓦上,故 动压油膜形成如上图示。
7.4 动压油膜建立的判断
液体动压润滑是否建立,可通过在HS-B试验 台上做摩擦特征曲线,简称f–u 曲线来判断。
F P dB
F d B S
— 外载荷(N) — 轴颈直径(mm) — 轴承有效工作长度(mm) = d × B —有效工作面积(mm)
7.5 油膜压力测量、分析
1. 动压润滑压力油膜
径 向 压 力 油 膜 示 意 平 均 压 力 示 意 图
轴向压力油膜示意图
径向滑动轴承油 膜压力分布曲线
2.油膜压力分析
固体摩擦区 液体摩擦区
摩擦特征曲线图
7.4 动压油膜建立的判断
固体摩擦区 液体摩擦区
摩擦特征曲线图中: f — 轴颈与轴承之间的摩擦系数 0 — 轴承特性系数 A — 临界点(非液体润滑向液体润滑转变) — 临界特性系数
滑动轴承实验之一
实验16 滑动轴承实验之一滑动轴承的工作原理是通过轴颈将润滑油带入轴承摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时,油就被带入轴与轴瓦配合面间的楔形间隙内形成流体动压效应,即在承载区内的油层中产生压力。
当压力能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜。
这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。
因此这种轴承摩擦小,轴承寿命长,具有一定吸振能力。
本实验就是让学生直观地了解滑动轴承的动压油膜形成过程与现象,通过绘制出滑动轴承径向油膜压力分布曲线与承载量曲线,深刻理解滑动轴承的工作原理。
一、实验目的1.观察滑动轴承的动压油膜形成过程与现象。
2.通过实验,绘出滑动轴承的特性曲线。
3.了解摩擦系数、转速等数据的测量方法。
4.通过实验数据处理,绘制出滑动轴承径向油膜压力分布曲线与承载量曲线。
二、设备和工具图16-1 滑动轴承实验台结构滑动轴承实验台结构如图16-1所示:它由底座1,箱体2,轴3,轴瓦4,压力表5,加载砝码6,加载杠杆7、8,测力百分表9,测距杠杆14,测力弹簧片10,控制面板11,Ⅴ型传送带12,直流电机13等组成。
实验台有关数据:1.轴瓦:材料—ZQAL9—4表面粗糙度—1.6宽度—B=75mm2.轴:材料—45#表面粗糙度—0.8直径—d=60mm3.电动机:型号—130SZO2额定功率—P=355W额定转速—n =1500rpm4.V 带传动:型号—O 型内周长—L =l120mm根数—Z =2中心距—a =350mm传动比—i =3.1755.润滑油:牌号—45号机油粘度—η=0.34(s Pa ⋅)6.加力杠杆比:42.6277.测矩杠杆力臂长—L =160mm测力弹簧片刚度系数—K = N /格(见实验机上标牌,每个实验机均不相同)三、实验原理轴瓦4与测矩杠杆14联成一体,压在轴上,直流电动机13通过V 型传动带12驱动轴3旋转。
箱体内装有足够的润滑油,轴将润滑油带到轴与轴瓦之间。
流体动压润滑条件下滑动轴承的优化分析.
本科毕业设计题目流体动压润滑条件下滑动轴承的优化分析专业汽车服务工程作者姓名李洋洋学号2011206004单位机械与汽车工程学院指导教师杜娟2015年5月教务处编原创性声明本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。
除文中已经引用的内容外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。
对本文的研究作出重要贡献的个人和集体,均在文中以明确的方式表明。
本人承担本声明的相应责任。
学位论文作者签名:日期:指导教师签名:日期:摘要就当今的汽车而言,大约有80%的机械部件的损坏来自于磨损。
机械系统中摩擦能够得到相关的优化,更能够提高机械性能,延长其使用寿命。
然而传统发动机滑动轴承用非定常流体设计,对于发动机滑动轴承耐磨性能并没有真正的进行定性分析,缺乏一定的说服力。
本文首先介绍了滑动轴承的相关知识,然后对流体动压润滑进行详细说明并建立了流体动压润滑的计算模型,然后以发动机主轴承为例,分析轴承在不同转速下的最小油膜厚度、润滑油温升,发现转速过高时,油膜厚度过小且温升过高,导致滑动轴承不能处于良好的润滑状态,分析该现象的原因并提出相关改进方案:增粗轴颈、加宽轴承。
然后分别根据两种改进方案在不同转速下的最小油膜厚度、润滑油温升两个角度分析改进措施的优劣性。
关键词:流体动力润滑;转速;最小油膜厚度;温升AbstractIn terms of today's cars, and about 80% of the damage of the mechanical components from wear and tear. Mechanical friction in the system can get related optimization, more can improve the mechanical properties, extend its service life. However, the traditional engine bearing design with unsteady flow for engine bearing wear resistance and no real qualitative analysis, the lack of certain powers of persuasion.This paper first introduces the sliding bearing of the related knowledge, and elaborate on the hydrodynamic pressure lubrication and the calculation of hydrodynamic pressure lubrication model is established, and then to launch a main bearing as an example, analysis of the bearing under different rotational speed, the minimum oil film thickness, oil temperature rise, found at high speed, the temperature rise of the oil film thickness is too small and too high, lead to sliding bearing can't in good lubrication condition, analyses the reason of this phenomenon and put forward relevant improvement plan: enlargement of journal, widen the bearing. Then respectively according to the two kinds of improved scheme under different rotational speed, the minimum oil film thickness, oil temperature rise two Angle analysis of superiority and inferiority of some improvement measures.Keywords:hydrodynamic lubrication; Speed; Minimum oil film thickness; Temperature rise目录前言................................................................................................I I 1.轴承设计计算所涉及到的基础知识 .. (1)1.1 滑动轴承 (1)1.2牛顿粘性定律 (2)1.3.表面粗糙度 (3)1.3.1表面粗糙度定义 (3)1.3.2 表面粗糙度对零件的影响 (3)2.流体动压润滑 (4)2.1流体动压润滑基本理论 (4)2.2流体动力润滑的基本方程 (5)2.2.1油层速度的分布 (5)2.2.2润滑油流量 (6)3.发动机滑动轴承的流体润滑设计 (8)3.1建立弹性流体动压润滑的计算模型 (8)3.1.1建立动压润滑模型 (8)3.1.2相关参数选择 (8)3.2动压润滑设计 (9)3.2.1油膜承载能力的计算 (9)3.2.2最小油膜厚度的计算 (10)3.2.3轴承热平衡计算 (11)4.发动机主轴承流体润滑计算与结果分析 (12)4.1流体润滑计算 (12)4.2流体润滑计算结果分析 (15)5.发动机主轴承耐磨性改进方案 (16)5.1增大轴颈直径 (16)5.1.1最小油膜厚度分析改进方案 (16)5.1.2润滑油温升分析改进方案 (17)5.2增大轴承宽度 (17)5.2.1最小油膜厚度分析改进方案 (17)5.2.2润滑油温升分析改进方案 (18)结论 (19)参考文献 (20)致谢 (21)流体动压润滑条件下滑动轴承的耐磨性优化分析前言滑动轴承是机械系统中常见的装置之一,也是生产过程中不可或缺的原件。
液体动压滑动轴承实验指导书
实验四 液体动压滑动轴承实验指导书一、实验目的1、了解实验台的构造和工作原理,通过实验进一步了解动压润滑的形成,加深对动压原理的认识。
2、学习动压轴承油膜压力分布的测定方法,绘制油膜压力径向和轴向分布图,验证理论分布曲线。
3、掌握动压轴承摩擦特征曲线的测定方法,绘制f —n 曲线,加深对润滑状态与各参数间关系的理解。
二、实验原理及装置1.概述此项实验是径向加载的液体动压滑动轴承实验。
其目的是测量轴承与转轴间隙中的油膜在圆周方向的压力分布值(见图1),并验证径向油膜压力最大值批P MAX 不在外载荷F R 的垂线位置,而是在最小油膜厚度附近,即0=∂∂XP 处。
该实验还可以测试下列几项内容。
(1)测量轴承与转轴间隙中的油膜在轴线方向的压力分布值,并验证轴向压力分布曲线呈抛物线分布,即轴向油膜最大压力值在轴承宽度的中间位置(见图2)。
图1 周向油膜压力分布曲线 图2轴向油膜压力分布曲线(2)测量径向液体动压滑动轴承在不同转速、不同载荷、不同粘度润滑油情况下的摩擦系数f 值,根据取得的一系列f 值,可以做出滑动轴承的摩擦特性曲线,进而分析液体动压的形成过程,并找出非液体摩擦到液体摩擦的临界点,以便确定一定载荷、一定粘度润滑油情况下形成液体动压的最低转速,或一定转速、一定粘度润滑油情况下保证液体动压状态的最大载荷(见图3)。
图3 轴承摩擦特性曲线2.实验装置及原理本实验使用湖南长庆科教仪器有限公司生产的HS-B型液体动压轴承实验台如图4所示,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承等组成。
图4 滑动轴承试验台1.操纵面板2.电机3.三角带4.轴向油压传感器接头5.外加载荷传感器6.螺旋加载杆7.摩擦力传感器测力装置8.径向油压传感器(7只)9.传感器支撑板10.主轴11.主轴瓦12.主轴箱1)传动装置由直流电机2通过三角带3带动主轴顺时针旋转,由无级调速器实现无级调速。
本实验台主轴的转速范围为3~375rpm,主轴的转速由装在面板1上的数码管直接读出。
实验三 滑动轴承实验
实验17 滑动轴承实验之二滑动轴承的工作原理是通过轴颈将润滑油带入轴承摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时,油就被带入轴与轴瓦配合面间的楔形间隙内形成流体动压效应,即在承载区内的油层中产生压力。
当压力能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜。
这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。
因此这种轴承摩擦小,轴承寿命长,具有一定吸振能力。
本实验就是让学生直观地了解滑动轴承的动压油膜形成过程与现象,通过绘制出滑动轴承径向油膜压力分布曲线与承载量曲线,深刻理解滑动轴承的工作原理。
一、实验目的1.观察滑动轴承的液体摩擦现象。
2.了解摩擦系数与压力及滑动速度之间的关系。
3.按油压分布曲线求轴承油膜的承载能力。
图17-1 试验机结构简图二、设备和工具试验机结构简图如图17-1所示,它包括以下几部分:1.轴与轴瓦轴8材料为45钢,轴颈径表面淬火,磨光,通过滚动轴承安装在支座上。
轴瓦7材料为锡青铜。
在轴瓦的中间截面处,沿半圆周均布七个小孔,分别与压力表相连。
2.加载系统由砝码16,通过由杆件11,12,13,14,15组成的杠杆系统及由杠件3,9,10组成的平行四边形机构,将载荷加到轴瓦上。
3.传动系统由直流电动机,通过三角带传动,驱动轴逆时针转动。
直流电动机用硅整流电源实现无级调速。
4. 供油方法轴转动时,由浸入油池中的轴,将润滑油均匀的带如轴与瓦之间的楔形间隙中,形成压力油膜。
5. 测摩擦力装置轴转动时,对轴瓦产生轴向摩擦力F ,其摩擦力矩F.d/2使构件3翻转。
由固定在构件3上的百分表2测出弹簧片在百分表处的变形量。
作用在支点1处反力Q 与弹簧片的变形成正比。
可根据变形测出反力Q ,进而可推算出摩擦力F 。
6. 摩擦状态指示装置图17-2 摩擦状态指示电路图17-2摩擦状态指示电路。
将轴与轴瓦串联在指示灯电路中,当轴与轴瓦之间被润滑油完全分开;及处于液体摩擦状态时,指示灯熄灭,当轴与瓦之间力非液体摩擦状态时指示灯亮或闪动。
滑动轴承实验报告
滑动轴承实验报告
滑动轴承实验报告⼀、实验⽬的
⼆、实验条件及实验台的结构⽰意图
1、实验台编号及主要参数:
d=60(mm);A=60(cm2),L=60(mm)2、实验台结构⽰意图
3、加载油腔压⼒P0(kg/cm2):P0=
4、润滑油规格:
①种类及牌号:②动⼒粘度:(P 0·S ) 5、进油温度:℃; 6、平均温度:℃。
三、实测数据及计算结果
1、油膜周围压⼒分布状况及油膜压⼒沿轴向分布的影响系数的测定,数据与计算结果:
0n ——主轴转速;
K ——油膜压⼒沿轴向分布影响系数。
d
m l P F
K
式中:F=P 0×80+8,l=6cm (轴承有效长度) d ——轴承内径,d=6cm 。
2、油膜压⼒分布曲线:
周向轴向
3、动压轴承特性曲线测定的实测及计算数据:
f ——摩擦系数,F
G
Fd GL f 52/==
;λ——轴承特性值,p
n
=
ηλ;
η——润滑油动⼒粘度,可以查图,亦可实测(Pa·s ) P ——⽐压(N/mm 2) P=F/dL P 0=4kg/cm 2时,P=0.689 P 0=2kg/cm 2时,P=0.356
4、轴承的特性曲线:
四、思考题及实验结果分析讨论
1、哪些因素影响液体动压轴承的承载能⼒及其油膜的形成?
2、当转速增加或载荷增⼤时,油压分布曲线有些什么变化?
3、f—λ曲线说明什么?当轴承参数(如相对间隙δ)改变时曲线有什么变化?
4、实验结果的分析讨论。
实验⽇期:年⽉⽇报告⼈:。
液体动压润滑径向轴承油膜压力和特性曲线
液体动压润滑径向轴承油膜压力和特性曲线HZS —I 型试验台一. 实验目的1. 观察滑动轴承液体动压油膜形成过程。
2. 掌握油膜压力、摩擦系数的测量方法。
3. 按油压分布曲线求轴承油膜的承载能力。
二. 实验要求1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。
2. 绘制摩擦系f 与轴承特性 Z 的关系曲线。
3. 绘制轴向油膜压力分布曲线三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。
当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。
这时轴的中心相对轴 瓦的中心处于偏心位置, 轴与轴瓦之间处于液体摩擦润滑状态。
因此这种轴承摩擦小, 寿命长,具有一定吸震能力。
液体动压润滑油膜形成过程及油膜压力分布形状如图 滑动轴承的摩擦系数 转速n (r/min)和轴承压力式中:)—轴承特性数观察滑动轴承形成液体动压润滑的过程,摩擦系数 f 随轴承特性数 几的变化如图8-2所示。
图中相应于f 值最低点的轴承特性数Z c 称为临界特性数,且>€以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。
小而急剧增加。
不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等, 也随之不同。
四. HZS-1型试验台结构和工作原理1.传动装置如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V 带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。
8-1所示。
f 是重要的设计参数之一,它的大小与润滑油的粘度 n (Pas)、轴的P (Mfa)有关,令P(7)祐以右为液体摩擦润滑区,因此f 值随几减 f —A曲线不同,Z c1 2 3 41 —测力计2—测力杆3—卡板4—加载板 5 —轴6—轴承7 —平衡重块图8-8加载及摩擦力矩测量装 置Go —初始载荷(包括压力表、平衡重及轴瓦的自重) Go = 8 kgf 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CQH-A液体动压滑动轴承实验台使用说明书本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。
该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。
一、实验台结构简介1. 该实验台主要结构见图1所示:图1 滑动轴承试验台结构图1. 操纵面板2. 电机3. V带4. 轴油压表接头5. 螺旋加载杆6. 百分表测力计装置7. 径向油压表(7只)8. 传感器支承板9. 主轴10. 主轴瓦11. 主轴箱2. 结构特点该实验台主轴9由两个高精度的单列向心球轴承支承。
直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。
主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加载大小由负载传感器传出,由面板上右数码管显示。
主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。
主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。
在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。
3. 实验中如需拆下主轴瓦观察,需按下列步骤进行:a. 旋出外加载传感器插头。
b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。
二、主要技术参数实验轴瓦:内直径d=60mm有效长度B=125mm表面粗糙度∇7)材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg⋅f)百分表精度0.01 量程0—10mm油压表精度 2.5% 量程0~0.6Mpa测力杆上测力点与轴承中心距离L=120mm测力计标定值k=0.098N/格电机功率:355W调速范围:2~400rpm实验台总量:52kg三、电气工作原理5 4 3图二1—主轴转速数码管:主轴转速传感器采集的实时数据。
2—外加载荷数码管:外加载荷传感器采集的实时数据(kgf)。
3—无油膜指示灯:用于轴瓦与主轴间润滑油膜状态指示。
4—主轴调速旋钮:用于调整主轴转速。
5—电源开关: 此按钮为带自锁的电源按钮。
该仪器的转速控制由两部分组成:一部分为由脉冲宽度调制原理所设计的直流电机调速电源,另一部分为由单片机控制的转速测量及显示电路,以及测转速的红外传感器电路。
调速电源除了能输出直流电机所需的励磁电压和电枢电压外,还能为转速测量及显示电路提供直流电源电压。
转速测量及显示电路有四位LED数码管。
该仪器工作时,如果轴瓦和轴之间无油膜,则很可能烧坏轴瓦,为此人为设计了轴瓦保护电路,如无油膜,油膜指示灯亮。
正常工作时油膜指示灯灭。
该仪器的负载调节控制由三部分组成:一部分为负载传感器,另一部分为电源和负载信号放大电路,第三部分为负载A/D转换及显示电路。
传感器为柱式力传感器,在轴向布置了两个应变片来测量负载。
负载信号通过测量电路转换为与之成比例的电压信号,然后通过线性放大器放大到最大有1伏以上。
最后该信号送至A/D转换及显示电路,按一定的要求直接显示负载值。
四、电气装置技术性能1. 直流电动机功率:355W2. 测速部分:a. 测速范围:2转/分~400转/分b. 测速精度:±1转/分3. 加载部分:a. 调整范围:0~1000N(0~100kg f)b. 传感器精度:±0.2%(读数)4. 工作条件:a. 环境温度:-10℃~+50℃b. 相对湿度:≤80%c. 电源:~220V±10% 50Hzd. 工作场所:无强烈电磁干扰和腐蚀气体。
五、使用步骤1. 开机前的准备:初次使用时,需仔细参阅本产品的说明书,特别是注意事项。
a. 用汽油将油箱清理干净,加入机油(按环境温度选定)至圆形油标中线。
b. 面板上调速旋钮逆时针旋到底(转速最低)加载螺旋杆旋至与负载传感器脱离接触。
2. 通电后,面板上两组数码管亮(左一转速,右一外加载),调节调零旋钮使负载数码管清零。
3. 旋转调速旋钮,使电机在100—300转/分运行,此时油膜指示灯应熄灭。
稳定运行3—4分钟。
4. 即可按实验指导书的要求操作。
六、注意事项1. 使用的机油必须通过过滤才能使用,使用过程中严禁灰尘及金属屑混入油。
2. 由于主轴和轴瓦加工精度高,配合间隙小,润滑油进入轴和轴瓦间隙后,不易流失,在做摩擦系数测定时,油压表的压力不易回零,为了使表迅速回零,需人为把轴瓦抬起,使油流出。
3. 所加负载不允许超过1200N(120kg f),以免损坏负载传感器元件。
4. 机油牌号的选择可根据具体环境温度,在10# ~30# 内选择。
5. 为防止主轴瓦在无油膜运转时烧坏,在面板上装有无油膜报警指示灯,完全液体润滑状态正常工作时指示灯熄灭,严禁在指示灯亮时主轴高速运转。
6. 为保证轴与轴瓦的精度,实验台应在卸载下启动或停止。
滑动轴承实验指导书一、实验目的1. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。
2. 测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。
3. 观察载荷和转速改变时径向油膜压力的变化情况。
4. 观察径向滑动轴承油膜的轴向压力分布情况。
5. 了解径向滑动轴承的摩擦系f的测量方法和摩擦特性曲线的绘制方法。
二、实验台的构造与工作原理实验台的构造如图1所示。
图1 滑动轴承实验台构造示意图1. 直流电机2. V带传动3. 箱体4. 轴5. 轴瓦6. 压力表7. 加载装置8. 弹簧片9. 测力计(百分表)1. 实验台的传动装置由直流电动机1通过V带2驱动主轴沿顺时针(面对实验台面板)方向转动,由无级调速器实现轴4的无级调速。
本实验台轴的转速范围3~500转/分,轴的转速由数码管直接读出。
2. 轴与轴瓦间的油膜压力测量装置轴的材料为45号钢,经表面淬火、磨光,由滚动轴承支承在箱体3上,轴的下半部浸泡在润滑油中,本实验台采用的润滑油的牌号为N68(即旧牌号的40号机械油),该油在20℃时的动力粘度为0.34Pa S0轴瓦5的材料为铸锡铅青铜,牌号为ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)。
在轴瓦的一个径向平面内沿圆周钻有7个小孔,每个小孔沿圆周相隔20°,每个小孔联接一个压力表,用来测量该径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。
沿轴瓦的一个轴向剖面装有两个压力表,用来观察有限长滑动轴承沿轴向的油膜压力情况。
3. 加载装置油膜的径向压力分布曲线是在一定的载荷和一定的转速下绘制的。
当载何改变或轴的转速改变时所测出的压力值是不同的,所绘出的压力分布曲线的形状也是不同的。
转速的改变方法于前所述。
本实验台采用螺旋加载(见图1),转动螺杆即可改变载荷的大小,所加载荷之值通过传感器数字显示,直接在实验台的操纵板上读出(取中间值)。
这种加载方式的主要优点是结构简单、可靠性高,使用方便,载荷的大小可任意调节。
4. 摩擦系数f测量装置径向滑动轴承的摩擦系数f随轴承的特性系数ηn/p值的改变而改变(η—油的动力粘度,n—轴的转速,p—压力,p=W/Bd,W—轴上的载荷,B—轴瓦的宽度,d—轴的直径,本实验台B=125mm,d=60mm)如图2所示。
在边界摩擦时,f随ηn/p的增大而变化很小(由于n值很小,建议用手慢慢转动轴);进入混合摩擦后,ηn/p的改变引起f的急剧变化,在刚形成液体摩擦时f达到最小值,此后,随ηn/p的增大油膜厚度亦随之增大,因而f亦有所增大。
摩擦系数f之值可通过测量轴承的摩擦力矩而得到。
轴转动时,轴对轴瓦产生周向摩擦力F,其摩擦力矩为F·d/2,它使轴瓦5翻转,其翻转力矩通过固定在弹簧片上的百分表9测出弹药簧片的变形为Δ,经过以下计算就可得到摩擦系数f之值。
根据力矩平衡条件得:Fd/2=LQ。
L—测力杆的长度(本实验台L=120mm),Q—作用在A处的反力。
设作用在轴上的外载荷W,则:f=F/W=2LQ/Wd而Q=KΔ(K—测力计的刚度系数N/格,见实验台使用说明书主要技术参数的说明)。
∴ f = 2LKΔ/WdΔ—百分表读数(百分表的读数—格数)。
图2nfpη-线图5. 摩擦状态指示装置指示装置的原理如图3所示。
当轴不转动时,可看到灯泡很亮;当轴在很低的转速下转动时,轴将润滑油带入轴和轴瓦之间收敛性间隙内,但由于此时的油膜很薄,轴与轴瓦之间部分微观不平度的凸峰高峰处仍在接触,故灯忽亮忽暗;当轴的转速达到一定值时,轴与轴瓦之间形成的压力油膜厚度完全遮盖两表面之间微观不平度的凸峰高度,油膜完全将轴与轴瓦隔开,灯泡就不亮了。
图3 油膜显示装置电路图三、实验方法与步骤1. 绘制径向油膜压力分布曲线与承载曲线图4 油压分布曲线(上图)油膜承载曲线(下图)(1 )启动电机,将轴的转速逐渐调整到一定值(可取200~300转/分左右),注意观察油膜指示灯亮度的变化情况,待油膜指示灯完全熄灭,此时已处于完全液体润滑状态。
(2 )用加载装置加载(约400N);(3 )待各压力表的压力值稳定后,由左至右依次记录积各压力表的压力值;(4 )卸载、关机;(5)根据测出的各压力表的压力值按一定比例绘制出油压分布曲线与承载曲线,如图4的上图所示。
此图的具体画法是:沿着圆周表面从左到右画出角度分别为30°、50°、70°、90°、110°、130°、150°等分别得出油孔点1、2、3、4、5、6、7的位置。
通过这些点与圆心O连线,在各连线的延长线上,据压力表测出的压力值(比例:0.1MP=5mm)画出压力线1—1'、2—2'、3—3'……7—7'。
将1'、2'……7'各点连成光滑曲线,此曲线就是所测轴承的一个径向截面的油膜径向压力分布曲线。
为了确定轴承的承载量,用P i sinφi(i=1,2……7)求得向量1—1'、2—2'、3—3'……7—7'在载荷方向(即y轴)的投影值。
角度φi与sinφi的数值见下表:然后将P i sinφi这些平行于y轴的向量移到直径0—8上。
为清楚起见,将直径0—8平移到图4的下部,在直径0″—8″上先画出轴承表面上的油孔位置的投影点1″、″……8″,然后通过这些点画出上述相应的各点压力在载荷方向的分量,即1″′、2″′……7″′等点,将各点平滑连接起来,所形成的曲线即为在载荷方向的压力分布。
用数格法计算出曲线所围的面积。
以0″—8″线为底边作一矩形,使其面积与曲线所围面积相等。