midas 入门:预应力混凝土梁分析例题

midas 入门:预应力混凝土梁分析例题
midas 入门:预应力混凝土梁分析例题

37

内容

概要1桥梁概况及一般截面 2 预应力混凝土梁的分析顺序 3 使用的材料及其容许应力 4 荷载5

设置操作环境6

定义材料和截面7定义截面8 定义材料的时间依存性并连接9

建立结构模型12定义结构组、边界条件组和荷载组13 输入边界条件16

输入荷载17输入恒荷载18 输入钢束特性值19 输入钢束形状20 输入钢束预应力荷载23

定义施工阶段25

输入移动荷载数据30

运行分析34

查看分析结果35通过图形查看应力35 定义荷载组合39 利用荷载组合查看应力40 查看钢束的分析结果44 查看荷载组合条件下的内力47

概要

本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应

力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,

以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的

步骤和方法。

图1. 分析模型

桥梁概况及一般截面

分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。

桥梁形式:两跨连续的预应力混凝土梁

桥梁长度:L = 2@30 = 60.0 m

图2. 立面图和剖面图

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。

1.定义材料和截面

2.建立结构模型

3.输入荷载

恒荷载

钢束特性和形状

钢束预应力荷载

4.定义施工阶段

5.输入移动荷载数据

6.运行结构分析

7.查看结果

使用的材料及其容许应力

? 混凝土

设计强度:2ck cm /kgf 400=f 初期抗压强度:2ci cm /kgf 270=f

弹性模量:Ec=3,000Wc1.5 √fck+ 70,000 = 3.07×105kgf/cm 2

容许应力:

?

预应力钢束 (ASTM A416-92低松弛270级,Φ15.2mm (0.6" strand)

屈服强度: 2py mm /kgf 160=f →strand /tonf 6.22=P y 抗拉强度: 2pu mm /kgf 190=f →strand /tonf 6.26=P u 截面面积: 2387.1cm A p = 弹性模量: 26p cm /kgf 10×

0.2=E 张 拉 力: fpi=0.7fpu=133kgf/mm 2

锚固装置滑动: mm 6=s Δ 磨擦系数: rad /30.0=μ m /006.0=k

荷载

? 恒荷载

自重

在程序中按自重输入

?

预应力

钢束(φ15.2 mm ×31 (φ0.6" - 31))

截面面积 : Au = 1.387 × 31 = 42.997 cm 2

孔道直径 : 133 mm 张拉力 : 抗拉强度的70%

fpj = 0.7 fpu = 13,300 kgf/cm 2

Pi = Au × fpj = 405.8 tonf 张拉后的瞬间损失(程序自动计算)

摩擦损失 :)(0)(kL X e P P +?=μα

30.0=μ, 006.0=k

锚固装置滑动引起的损失 : mm 6=I Δc 弹性收缩引起的损失 : 损失量 SP P E A f P ??=? 最终损失(程序自动计算)

钢束的松弛(Relaxation ) 徐变和收缩引起的损失

?

徐变和收缩

条件

水泥 : 普通硅酸盐水泥

长期荷载作用时混凝土的材龄 : =o t 5天 混凝土与大气接触时的材龄 : =s t 3天 相对湿度 : %70=RH 大气或养护温度 : C °20=T 适用规范 : CEB-FIP 徐变系数 : 程序计算 混凝土收缩变形率 : 程序计算

?

活荷载

适用规范:城市桥梁设计荷载规范 荷载种类:C-AL

C-AD(20)

设置操作环境

打开新文件

(

新项目),以 ‘PSC beam ’ 为名保存(保存)。

将单位体系设置为 ‘tonf ’和‘m ’。该单位体系可根据输入数据的种类任意转换。

文件 / 新项目

文件 /

保存 ( PSC beam )

工具 / 单位体系

长度> m ; 力>tonf

图3. 设置单位体系

单位体系还可以通过点击画面下端状态条的单位选择键

()来进行转换。

定义材料和截面

下面定义PSC beam 所使用的混凝土和钢束的材料特性。

模型 / 材料和截面特性 /

材料

类型>混凝土 ; 规范>GB-civil(RC) 数据库>40 ?

名称( Tendon ) ; 类型>用户定义 ; 规范>无 分析数据

弹性模量 (2.1e7) ?

图4. 定义材料对话框

同时定义多种材料特性时

,使用

键可以连续输入。

定义截面

PSC beam的截面使用比较简单的矩形截面来定义。

模型 /材料和截面特性 /截面

数据库/用户> 截面号 ( 1 ) ; 名称 (Beam)

截面类型>实腹长方形截面>用户

H ( 3 ) ; B ( 2 )

偏心>中-下部

图5. 定义截面的对话框

定义材料的时间依存性并连接

为了考虑徐变、收缩以及抗压强度的变化,下面定义材料的时间依存特性。 材料的时间依存特性参照以下数据来输入。

28天强度 : f ck = 400 kgf/cm 2

相对湿度 : RH = 70 %

理论厚度 : 1.2m ( 2A c / u= 2 x 6 / 10 = 1.2 ) 混凝土种类 : 普通水泥 (N.R) 拆模时间 : 3天

模型 /材料和截面特性 / 时间依存性材料(徐变&收缩)

名称 (徐变/收缩) ; 设计标准>CEB-FIP 28天材龄抗压强度 (4000) 相对湿度 (40 ~ 99) (70)

构件的理论厚度 (1.2)

混凝土种类 >普通水泥 (N, R) 开始收缩时的混凝土材龄 (3)

图6. 定义材料的徐变和收缩特性

截面形状比较复杂时,可使用模型>材料和街面特性

值>修改单元材料时间依存特性 的功能来输入h 值。

混凝土浇筑后随时间变化而逐渐硬化,时间越长其强度越大。本例题根据CEB-FIP所规定的混凝土强度发展函数考虑了混凝土的这一特性。

模型 / 材料和截面特性 / 时间依存性材料(抗压强度)

名称 (抗压强度) ; 类型>设计规范

强度发展>规范>CEB-FIP

混凝土28天抗压强度 (S28) (4000)

混凝土类型(a) (N, R : 0.25)

图7. 定义随时间变化的混凝土强度发展函数

参照图8将一般材料特性和时间依存材料特性相连接。即,将时间依存材料特性赋予相应的材料。

模型 / 材料和截面特性 / 时间依存材料连接

时间依存材料类型>徐变/收缩>徐变/收缩

强度进展>抗压强度

选择指定的材料>材料>

1:40 选择的材料

图8. 连接时间依存材料特性

建立结构模型

利用建立节点和扩展单元的功能来建立单元。

点格(关) ; 捕捉点(关) ; 捕捉轴线(关)

正面 ; 自动对齐

模型>节点>建立节点

坐标 (0,0,0)

模型>单元>扩展单元

全选

扩展类型>节点 线单元

单元类型>梁 ; 材料>1:40 ; 截面> 1: Beam

生成形式>复制和移动

复制和移动>等间距>dx,dy,dz>(2, 0, 0)

复制次数>(30)

图9. 建立几何模型

定义结构组、边界条件组和荷载组

为了进行施工阶段分析,将在各施工阶段(construction stage)所要激活和钝化的单元和边界条件定义为组,并利用组来定义施工阶段。

组>结构租 >新建… 定义结构组>名称( S-G ) ; 后缀 ( 1to2 )

定义结构组>名称 ( All )

单元号

(on)

窗口选择 (单元 : 1 to 18) 组>结构组>S_G1 (拖&放

)

窗口选择 (单元 : 19 to 30) 组>结构组>S_G2 (拖 & 放

) 全选

组>结构组>All (拖 &放)

图10. 定义结构组(Structure Group)

C

为了利用 桥梁内力图 功能查看分析结果而将其定义为组。

Drag & Drop

S-G1

S-G2

新建边界组

边界组名称的建立方法如下。

组>边界组>新建…

定义边界组>名称 ( B-G ) ; 后缀( 1to2 )

图11. 建立边界组(Boundary Group)

C

新建荷载组

恒荷载组和预应力荷载组名称的新建方法如下。

组>荷载组>新建… 定义荷载组>名称 ( Selfweight )

定义荷载组>名称 ( Tendon ) ; 后缀 ( 1to2 )

图12. 建立荷载组(Load Group)

C

输入边界条件

边界条件的输入方法如下。

单元号(关) ; 节点号(开) 模型 /边界条件 / 一般支撑

单选(节点 : 1)

边界组名称>B-G1

选择>添加

支撑条件类型> Dy, Dz, Rx (开) ?

单选(节点 : 16)

边界组名称>B-G1

选择>添加

支撑条件类型>Dx, Dy, Dz, Rx (开) ?

单选(节点 : 31)

边界组名称>B-G2

选择>添加

支撑条件类型> Dy, Dz, Rx (开) ?

图13. 定义边界条件

输入荷载

本例题针对恒荷载和预应力荷载进行施工阶段分析。移动荷载分析则需另行输入移动荷载数据。

荷载/ 静力荷载工况

名称 (恒荷载)

类型 (施工阶段荷载) ?

名称 (预应力 1)

类型 (施工阶段荷载) ?

名称 (预应力 2)

类型 (施工阶段荷载) ?

图14. 输入静力荷载工况的对话框

输入恒荷载

使用自重功能输入恒荷载。

荷载 / 自重

荷载工况名称> 恒荷载

荷载组名称 > 自重

自重系数 > Z (-1)

图15. 输入恒荷载

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

MIDAS梁格法学习小结及疑问

MIDAS梁格法学习小结及疑问 最近在做一个半径80米,曲线弧长90米,采取3跨30米布置的连续曲梁桥。经过计算我的圆心角为32度,必须得当作曲梁模拟。 首先我采用的是单箱梁模拟,但是经过师兄提醒,感觉到这样考虑十分不妥,因为曲梁桥弯扭藕合作用明显。横桥向扭矩的分析对桥梁最后结果有着很大的影响。即需要做横向分析。 因此特来论坛淘梁格法计算的资料,这一搜索不得了,让我有种醍醐灌顶的感觉。尤其是bridgedlut兄的见解,让我受益颇深。同时还有有很多前辈表述了自己做时曲梁碰到的问题及自己的见解。我老老实实的坐了一个多小时,十分耐心细致的看完了所有相关帖子。自己感觉到本来对梁格法停留在概念程度上的我已经对梁格法有了进一步的了解,并且对我现在正在做的工程有着很大的帮助,再次对各位表示谢谢了。谢谢各位斑竹辛苦的工作。谢谢kaisi论坛给我提供了一个很好的学习平台。 先谈谈自己看后的一些基本认识: 1.符拉索夫的三个方程经典的描述出了弯扭藕合作用对曲梁的重要影响,需进一步复习加深理解。 2.梁格体系涉及到纵向单元的划分:纵向单元划分当然是越细越好,但是原则上每跨分成8段以上比较理想,其中:截面变化处,关键部位等必须划分,并且连续弯梁桥的中间支座附近因内力变化剧烈,因此需加密网格。 3.横向虚梁的截面模拟。总体原则:每个等效划分梁格的纵向中性轴必须与远箱粱截面在同一高度。 4.通常都把箱梁腹板处化做梁肋。这样腹板处就被化做单元,可以直接查看其内力。 几点补充: 1.梁格法模拟的关键是横截面几何参数的等效化,我这方面的知识比较欠缺。请问能否提供一个比较详细的算例,我想bridgedlut 兄是一定有的,哈哈,或者介绍基本相关的书籍,以便查阅。 2.我这座连续曲梁桥,有两个桥墩,三跨布置,中跨布置两道横隔板,边跨设置边横隔板。请问梁格法在横隔梁处的处理是不是也只把这部分当做实心的截面来看就可以,是否横隔梁处也得沿着全跨分为几个梁格?也就是横隔梁处的计算通常是怎么处理的,针对梁格法? 特此对有关梁格法的相关好贴做了一个小小的总结,一来方便大家查阅,二来自己后续学习查看也更加方便些。 梁格法计算问题

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

MIDAS例题---连续梁教学内容

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 12.psc设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m; 主梁高度:1.6m;支座处实体段为1.8m; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外1.5%,人行道向内1.5%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和1.6m标准断面

2、主要材料及其参数 2.1 混凝土各项力学指标见表1 表1 2.2低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径:15.24mm 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数:0.000012 2.3普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa 标准强度:R235 235 MPa / HRB335 335 MPa 热膨胀系数:0.000012 3、设计荷载取值: 3.1恒载: 一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。 二期恒载:人行道、护栏及桥面铺装等(该桥梁上不通过电信管道、水管等)。 其中: 桥面铺装:采用10cm的沥青混凝土铺装层;沥青混凝土安每立方24kN计算,则计算铺装宽度为15m,桥面每米铺装沥青混凝土重量为:0.16×24×15=57.6kN/m;

[整理]MIDAS连续梁桥建模.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

MIDAS—GEN施工阶段分析例题

例题钢筋混凝土结构施工阶段分析 2 例题. 钢筋混凝土结构施工阶段分析 概要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。真实模拟建筑物的实际建造过 程,同时考虑钢筋混凝土结构中混凝土材料的时间依存特性(收缩徐变和抗压强度的 变化)。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.使用节点单元及层进行建模 5.定义边界条件 6.输入各种荷载 7.定义结构类型 8.运行分析 9.查看结果 10.配筋设计

例题 钢筋混凝土结构施工阶段分析 3 1.简要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。(该例题数据仅供参考) 例题模型为六层钢筋混凝土框-剪结构。 基本数据如下: 轴网尺寸:见平面图 主梁: 250x450,250x500 次梁: 250x400 连梁: 250x1000 混凝土: C30 剪力墙: 250 层高: 一层:4.5m 二~六层 :3.0m 设防烈度:7o(0.10g ) 场地: Ⅱ类 图1 结构平面图

例题 钢筋混凝土结构 抗震分析及设计 1

例题钢筋混凝土结构抗震分析及设计 例题. 钢筋混凝土结构抗震分析及设计 概要 本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入反应谱分析数据 9.定义结构类型 10.定义质量 11.运行分析 12.荷载组合 13.查看结果 14.配筋设计 2

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

Midas GTS操作例题列表

GTS操作例题列表: 基础例题 1 二维平行隧道施工阶段分析 2 三维隧道施工阶段分析 3 三维连接隧道施工阶段分析 4 二维路堤施工阶段分析 5 三维基坑开挖阶段地下水渗流分析 6 铁路移动荷载分析 7 三维基坑支护施工阶段分析 8 桥台基础施工阶段分析 9 二维衬砌分析 高级例题 10 地铁施工阶段分析 11 铁路隧道Y型连接段施工阶段分析 12 城市交叠隧道施工阶段分析 实际工程列表 1 公路隧道-断层带区段 2 公路隧道-断层带区段 3 公路隧道-洞门_端差 4 公路隧道-洞门_无端差 5 公路隧道-曲线隧道 6 公路隧道-三维并行隧道 7 公路隧道-避难所 8 公路隧道-河谷区段 9 公路隧道-联拱隧道 10 护岸结构-防浪堤连接区段 11 护岸结构-护岸墙连接区段 12 铁路隧道-横穿上部公路隧道 13 地铁隧道-管棚支护导坑法隧道 14 基础-桥台基础 15 其他隧道-U形隧道 16 土坝 17 堆石坝 验证例题列表 1 无限弹性体上的圆孔 2 无限弹性体上的球腔 3 横观同性无限弹性体上的圆孔 4 莫尔-库伦无限体上的圆孔 5 各向不同应力作用下无限弹性体上的直线圆形隧道 6 弹性地基上的条形基础 7 条形荷载作用下的弹性Gibson地基

8 弹性半无限体上的圆形基础 9 莫尔-库伦地基上的条形和圆形基础 10 条形基础承载力(粘聚力随深度变化) 11 屈雷斯卡地基上的正方形基础 12 冲切问题中的塑性流动 13 剑桥粘土和修正剑桥粘土模型的三轴试验 14 基坑支护 15 倾斜面上的隧道挖掘 16 [稳定流] 三角形土坝 17 [稳定流] 限制水流的截水墙 18 [稳定流] 坝基截流 19 [稳态] 水库粘土层 20 [稳态] 无侧限大坝渗流 21 [稳定流] 倾斜渗透 22 [稳定流] 大坝竖直面(Muskat问题) 23 [稳定流] 向河堤无侧限流动 24 [稳定流] 隧道渗流问题 25 [非稳定流] 水井径向流 26 [非稳定流] 固结分析 27 [非稳定流] 水库蓄水分析 28 [非稳定流] 水位骤降分析 29 [固结] Cryer’s问题 30 [固结] 饱和土固结分析

midas Civil Designer 连续梁-弯桥-跟随例题

Civil Designer 连续梁-弯桥-跟随例题 2014年4月23日 北京迈达斯技术有限公司

目录 一、CDN模型及分析结果导入 (1) 二、定义构件 (1) 三、项目设计 (2) 四、查看结果 (3) 五、结果调整—调束 (4) 六、结果调整—调筋 (6) 七、柱的设计 (8) 八、更新模型数据至Civil (9)

一、CDN模型及分析结果导入 1.运行midas Civil,打开模型“连续梁-弯桥-演示”,点击运行分析(点或者按F5键); 2.点击主菜单PSC(设计)>CDN>创建新项目(或点击创建新项目并执行设计); 3.在CDN中,点击模型>保存,将模型保存以“连续梁-弯桥-演示”保存; Tips:也可以通过Civil>导出模型和分析结果文件导出模型文件*.mct以及分析结果文件*.mrb后,打开midas CDN软件,模型>导入>导入Civil模型和结果文件(*.mct,*.mrb)。 二、定义构件 1.点击主菜单模型>自动,选择目标点击全部选择,勾选名称,可以自定义构件的名 称,验算位置选择各段,点击确认;(也可以手动定义构件,点击模型>手动,手动选择单元进行构件定义,并定义该构件的名称以及类型,点击确认;或者根据构件

的类型进行构件定义,点击模型>类型,选择目标以及类型(梁、柱、基础、任意),点击确认;) Tips:定义构件可以选择三种方式:自动、手动、类型,定义好构件之后可以通过手动方式对已定义好的构件进行重新定义,在左侧工作树中显示定义完成的构件,可勾选是否显示或修改构件名称、类型等等,同时模型以定义完成的构件模式显示。 三、项目设计 1.点击主菜单RC/PSC设计>设置,设置“设计参数”“验算选项”,验算选项部分勾选全选,该菜单整合了RC和PSC设计参数,以及按规范要求的验算选项; 2.点击RC/PSC设计>生成,将Civil中的荷载组合完全导入至CDN中,同时,按承载能力、正常使用、弹性阶段优化荷载组合分类;(如未导入荷载组合,亦可点击自动生成,选择设计规范,自动生成荷载组合) 3.点击RC/PSC设计>运行,选择目标完成设计; Tips:在初次设计时,也可以进行“一键设计”,无需定义构件,默认按每个单元即是一个构件进行快速设计,直接点击“RC/PSC>运行”即可;如果需要修改构件的设计参数,点击RC/PSC设计>参数。

必看最经典梁格——midas空心板梁桥梁桥法工程实例

空心板梁桥工程实例 1几何尺寸 空心板梁几何尺寸见图4.1.1至图4.1.3。 图4.1.2 边板截面(cm)图4.1.3 中板截面(cm) 2主要技术指标 (1) 结构形式:装配式先张法预应力混凝土简支空心板梁 (2) 计算跨径:16m (3) 斜交角度:0度 (4) 汽车荷载:公路-Ⅱ级 (5) 结构重要性系数:1.0 3 计算原则 (1) 执行《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

(2) 6厘米厚现浇C50混凝土不参与结构受力,仅作为恒载施加。 (3) 温度效应,均匀温升降均按20摄氏度考虑;温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条的规定取值。 (4) 按A 类部分预应力混凝土构件设计。 (5) 边界条件:圆形板式橡胶支座约束用弹性支承进行模拟,弹簧系数SDx=SDy=1890 KN/m;SDz=9.212E+05KN/m;SRx=078E+09KN.m/rad; 4主要材料及配筋说明 (1) 空心板选用C50混凝土 (2) 预应力钢绞线公称直径mm s 2.15φ,1根钢绞线截面积2 139mm A p =,抗拉强度标准值Mpa f pk 1860=,锚具变形总变形值为12mm。横截面预应力筋和普通钢筋布置见图4.4.1和图4.4.2。预应力筋有效长度见表4.4.1 图4.4.1边板钢筋钢绞线布置图(cm) 图4.4.2 中板钢筋钢绞线布置图(cm) 图中N9筋(实心黑点)为普通钢筋,其余为钢绞线。 表4.4.1 16米空心板预应力筋有效长度表

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

MIDAS梁格法建模

MIDAS梁格法建模 2021-4-2612:14MIDAS梁格法建模使用该软件,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢wentao8401全文结束》》-4-2614:29前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys的子结构分析也可以。谈谈我对梁格的几点认识: 1、它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3、梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)

4、梁格需要注意的几个方面:第一、关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。第二、截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。以上主要是总结一下自己学习的一些体会,难免有不正确的地方,望高手进一步指点。附上自己认为比较好的一些资料跟模型供大家查阅。希望多多交流。lingboms

学习midas心得

r Calculate Propertes Now MIDAS/SPC U 1.5.1 - Sectional Property Calculate Iriported AutoCAD DXF model data -Model: Cunie [140], Point [仙町 I —I —JI —1\ Procts# Message / i r I r 练习 midas 时的心得 I Generate Section Type ---------------- ti Plane 广 Line ? ■■I. ..■■■. .■■■ . ?■■■■■ ^11 ■■■ :_■■■■■? ?■■■. . ■■■ r i^lerge Strai^t Line^— Angle | [Deg] rjame [ r Location I 厂 Group I Sectior Color Apply Clos e I 馆 SEcliQn ]

HIDA^/src V 1 ■応~I - 5e[;n re]… PtLilt [*] H PW pl4ihr ii^cl L?i (S^Etitii f1 J a n 缈?叶 fr^pgrti ?& >f 1 CBqrinn 町?町駁|c ?)4Eud ? 首先在CAD 中将需要导入的截面画好(注意截面必须是闭合的!),然后保存 为DXF 文件;在midas 中打开截面特性计算器,选择与 导入DXF 文件,然后点生成截面、计算截面特性再保存为 中截面添加选择spc 数值,点击导入spc 截面就是保存的sec 文件!然后只需 要设置一些截面的参数就可以了! 7! > V tt ■,■ 10 u Hart Sortian I- Marhbo-EHr CciaiE Fne ke<^LJdt^ [占田 a I CtKt ] V ¥1* Ei 七 尹打*■冷劈《 T<-ilc K+lp 'D 磴U 曾I 口 垢 PnriBfhf HnJ _ lb IlH ■ *C 1 2户怕口怕3胶I 厂 血I |>Pdr m2、 f 畅(5性 F : hd mVfiR 甩口F Irntidl ['Iv% 何rrn ■哎 oL|「*nii 广 Irf 『Em nri Iratq] L ] 口cram Zn- L JJ. T U a Bf 7 niBAS/y^C V ii5 +1 £Htr ?rMi m 托 uw* |vf?rrF<1 A ?FinR4? Kr rw4l*l 4?la -ItodHp Curve ffl]. P*lnt [fl] 决? pl?e fPCLl.n [lectio.-PI] y^ner^tea. ItiF prftfiertiFS - ?-F 1 arctinn ATF C -J J 匚 ulalrd. I i I CAD 一致的单位,再 sec 文件;在 midas 刁:>■ V r > . 1£ tie 4 >

迈达斯Midascivil梁格法建模实例

迈达斯M i d a s c i v i l梁格法建模实例 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

相关文档
最新文档