金属间化合物的晶体结构
金属间化合物的晶体结构
金属间化合物的晶体结构一、经典离子理论根据经典离子理论,金属和非金属之间的化学键是通过电荷间的吸引力形成的。
在金属间化合物中,金属离子以正电荷形式存在,而非金属离子以负电荷形式存在。
这种离子之间的吸引力使得金属离子和非金属离子结合在一起,形成晶体。
二、NaCl型结构NaCl型结构是金属间化合物中最典型的晶体结构之一、它由正交晶系的结构单元组成,其中金属离子和非金属离子交替排列。
每个正电荷的金属离子周围都有6个负电荷的非金属离子,每个负电荷的非金属离子周围也有6个正电荷的金属离子。
这种排列方式使得晶体具有高度规则和紧密堆积的结构。
例如,氯化钠(NaCl)和氟化钙(CaF2)都属于NaCl型结构。
三、CsCl型结构CsCl型结构也是金属间化合物中一个常见的晶体结构。
它由正交晶系的结构单元组成,其中一个金属离子和一个非金属离子位于体心立方(BCC)晶胞中。
这种排列方式使得晶体具有比NaCl型结构更紧密的堆积。
例如,氯化铯(CsCl)和溴化银(AgBr)都属于CsCl型结构。
四、ZnS型结构ZnS型结构是金属间化合物中另一个重要的晶体结构。
它由正交晶系中的结构单元组成,其中一个金属离子和一个非金属离子位于面心立方(FCC)晶胞中。
这种排列方式使得晶体具有更高的密度和更紧密的堆积。
例如,硫化锌(ZnS)和硫化铜(Cu2S)都属于ZnS型结构。
五、其他晶体结构除了上述三种常见的晶体结构,金属间化合物还可以具有其他类型的晶体结构。
例如,磷化锗(GeP)具有立方体结构,亚硫酸铁(FeSO4∙7H2O)具有单斜晶体结构。
这些不同的晶体结构导致了金属间化合物的物理和化学性质的差异。
总结:金属间化合物的晶体结构对其性质具有重要影响。
经典离子理论认为金属离子和非金属离子之间的离子吸引力是形成金属间化合物的化学键。
NaCl型结构、CsCl型结构和ZnS型结构是金属间化合物中最常见的晶体结构。
此外,金属间化合物还可以具有其他类型的晶体结构。
金属间化合物的晶体结构
12、Cu3Ti型结构
化学式: A3B ;
—A —B
12、 Cu3Ti型结构 —A —B
—A —Bຫໍສະໝຸດ 8、L21型结构 化学式: A2BC; 结 构:L21型—体心正方晶系;
—A —B —C
9、C11b型结构
化学式: AB2; 结 构:C11b型—体心正方晶系;
—A —B
10、hcp型结构
10、hcp型结构
11、DO19型结 构
化学式: A3B ;
—A —B
11、DO19型结 构 —A —B
1、面心立方结构
[001]
a
[100]
a
a
[010]
2、L12型结构
化学式:A3B; 结 构:L12型—面心正方晶系;
—A —B
[001]
c
[100]
a
a
[010]
3、L10型结构
化学式:AB; 结 构:L10型—面心正方晶系; 特点:[001]方向上是由仅含 A原子组成的原子面与仅含B原子的原子面交替重叠 堆垛而成,所以[100]、[010]方向上的点阵常数与[001]方向的不一样,把[001]视 为c轴,其他两轴为a轴;
—A —B
[001]
c
[100]
a
a
[010]
4、DO22型结构
化学式:A3B; 结 构:DO22型—面心正方晶系;
—A —B
5、体心立方结 构
6、B2型结构
化学式:AB; 结 构:B2型—体心正方晶系;
—A —B
7、DO3型结构
化学式: A3B ; 结 构:DO3型—体心正方晶系;
lani5储氢合金的晶体结构
lani5储氢合金的晶体结构Lani5储氢合金是一种具有重要应用价值的储氢材料,其晶体结构对于其储氢性能起着至关重要的作用。
本文将从晶体结构的角度对Lani5储氢合金进行详细介绍。
Lani5储氢合金的晶体结构属于典型的金属间化合物晶体结构。
它由镍原子和氢原子构成,镍原子构成了晶体的主体结构,而氢原子则位于晶体的空隙中。
Lani5晶体结构是一种六方最密堆积结构,晶胞中共有两个镍原子和十个氢原子。
在Lani5晶体结构中,镍原子排列成六角形的密堆积层,每个堆积层由ABABAB...的序列组成。
其中,A层由六个镍原子构成,B层由三个镍原子构成。
这种排列方式使得晶体结构中的镍原子形成六角形的通道,氢原子可以在通道中扩散和储存。
与传统的金属晶体结构不同,Lani5晶体结构中的氢原子占据了镍原子之间的空隙。
这种空隙位于六角形通道的中心位置,氢原子通过占据和扩散在这些空隙中。
氢原子在扩散时可以通过跳跃方式进行,即从一个空隙跳跃到另一个空隙。
这种扩散方式使得Lani5储氢合金具有较高的储氢容量和较快的储氢速率。
除了晶格结构对储氢性能的影响外,晶体结构中的缺陷也对储氢性能起着重要作用。
在Lani5晶体结构中,晶格缺陷可以提供额外的储氢位点,从而增加储氢容量。
例如,晶格中的空位可以吸附和储存氢原子,从而增加储氢容量。
此外,晶格缺陷还可以影响氢原子的扩散行为,进一步影响储氢速率。
值得注意的是,Lani5储氢合金的晶体结构是可逆的,即在吸附和释放氢原子时,晶体结构能够保持稳定。
这种可逆性使得Lani5储氢合金具有良好的循环稳定性和重复使用性能,从而适用于氢能源的储存和释放。
Lani5储氢合金的晶体结构对其储氢性能具有重要影响。
其六方最密堆积结构和空隙位于六角形通道中心的特点使得Lani5具有较高的储氢容量和较快的储氢速率。
晶格缺陷对储氢性能也起着重要作用。
Lani5晶体结构的可逆性使得其具有良好的循环稳定性和重复使用性能。
金属间化合物
钢中的过渡族金属元素之间形成一系列金属间化合物,即是指金属与金属、金属与准金属形成的化合物。其中最主要的有σ相和Lσves相,它们都属于拓扑密排(TcP)相,它们由原子半径小的一种原子构成密堆层,其中镶嵌有原子半径大的一种原子,这是一种高度密堆的结构。它们的形成除了原子尺寸因素起作用外,也受电子浓度因素的影响。
Laves相 在二元系中,Layes相是化学式为AB2型的复杂立方或复杂六方点阵的金属间化合物,其组元A的原子半径和组元B的原子半径的比值ra/rb约1.2。Laves相的晶体结构有三种类型:(1)MgCu2型为复杂立方系。(2)MgZn2为复杂六方系。(3)MgNi2为复杂六方系。电子浓度影响到LaYeS相的晶体结构类型。过渡族金属元素之间的Laves相随着元素原子序数增高,Laves相的晶体类型发生了由复杂立方点阵→复杂六方点阵→复杂立方点阵的转变。并且Laves260相的“平均族数”不超过8。在合金钢中,Laves相是具有复杂六方点阵的MgZn2型,它们是MoFe2、wFe2、NbFe2和TiFe2。在多元合金钢中,原子尺寸较小的锰、铬和镍可取代Laves相中铁原子的位置,原子尺寸较大的合金元素处于A原子的位置,形成化学式为(w,Mo,Nb)(Fe,Ni,Mn,cr)2的复合Laves相。Layes相出现在复杂成分的耐热钢中,是现代耐热钢中的一个强化相。
合金元素在钢的转变中的作用
合金元素对钢的临影响钢中的转变,改变钢的组织,以得到不同的性能。
cr- Mn 19%~24%Cr(800℃) 6.84~6.78
Cr—Fe 43.5%~49%Cr(600 C) 7.1~7.O
Cr-Co 56.6%~61%Cr 7.3~7.2
M0一Fe 47%~50%Mo(1400℃) 7.23~7.1 7
金属间化合物要点
以密排六方结构为 基的长程有序结构 长周期超点阵 laves相 σ相 χ相 Cr3Si(β-W)相 μ 相等
Cu3Au型(L12型) CuPt型(L11型) CuAuⅠ型(L10型)等 CuZn型(B2型) Fe3Al型(D03型) Cu2MnAl型(L21型)等
Mg3Cd型(D019型)等
CuPt型(L11型)
2.2.1几何密排相特点
以面心立方结构为基 的长程有序结构
➢ CuAuⅠ型(L10型)
化学式为AB。原 面心立方(001)面 被仅由Cu原子组成的 原子面及仅由Au原子 组成的原子面交替重 叠堆垛而成。典型的 例子有
➢ 定义:由不规则的四面体填充空间的密堆结构 。 ➢ 类型:laves相,σ相,χ相,β-W相等。 ➢ 特点:晶体中的间隙完全由不规则的四面体间隙
组成,没有八面体间隙,配位数>12,致密度> 0.74;原子间距极短 ,原子间电子交互作用强烈, 对称性低,滑移系少,塑性差。
2.2.1几何密排相特点
以面心立方结构为基 的长程有序结构
金属间化合物
晶体结构、结构稳定性 及电子理论
1定义
金属间化合物是指由两个或更多的金属组元或 类金属组元按比例组成的具有金属基本特性和不同 于其组元的长程有序晶体结构的化合物。
TiAl(L10)
2晶体结构分类
几何密排相 拓扑密排相
几何密排相
金属 间化 合物
拓扑密排相
以面心立方结构为 基的长程有序结构
MgZn2结构 原子半径小的Zn原子
形成四面体,原子半径大 的Mg原子占据四面体间隙 之中,本身构成一个四面 体骨架。每个Zn原子与6 个Mg原子和6个Zn原子相 邻,Zn原子的配位数为12; 每个Mg原子与4个Zn原子 和12个Mg原子相邻,Mg 原子的配位数为16。
1-3-1 金属的晶体结构
2
一、典型金属的晶体结构
最常见的金属晶体结构有三种:面心立方结 构、体心立方结构和密排六方结构。 本节主要讨论原子的排列方式、晶胞内原子 数、点阵常数、原子半径、原子配位数、致密度 和原子间隙大小。 下面分别加以讨论:
3
1、原子排列方式
1) 球体的紧密堆积
① 单一质点的等大球体最紧密堆积,如纯金属晶体。 ② 几种质点的不等大球体的紧密堆积,如离子晶体。
16
2) 密排六方结构
属于六方紧密堆积,以ABABAB…的方式堆积, 从结构中可分析出六方晶胞。 具有这种结构的金属:Be、Mg、Zn、Cd、 -Ti和-Co。
3) 体心立方结构
属于体心立方紧密堆积,原子是以体心立方空间 点阵的形式排列,可分析出体心立方晶胞。
具有这种结构的金属:V、-Fe、Nb、Mo、 Cr和W。
3、晶胞中的原子数
1) 简单立方结构 (SC / Simple cubic)
1 8 1 8
20
2) 体心立方结构
(bcc / Body-centered cubic)
3) 面心立方结构
(fcc / Face-centered cubic)
1 8 1 2 8
1 1 8 6 4 8 2
第三层堆积的特征: 有两种完全不同的堆积方式。 a. 堆积在单层空隙位置 从垂直图面的方向观察,第三层球的位置正好与 第一层相重复。如果继续堆第四层,其又与第二 层重复,第五层与第三层重复,如此继续下去, 这种紧密堆积方式用ABABAB……的记号表示。
六方紧密堆积hcp (ABAB…)
对应ABAB……紧密堆积方式,其球体
r(Ag)=0.288nm, r(Al)=0.286nm,但都不能形成连续 (无限)固溶体,为什么? 3、(1)叙述形成固溶体的影响因素; (2)形成连续固溶体的充分必要条件是什么?
tiv晶体结构
tiv晶体结构
tiv晶体结构是一种属于金属间化合物(intermetallic compound)的晶体结构类型。
它是由钛(Ti)和钒(V)两种金属元素组成的化合物,其化学式为TiV。
tiv晶体结构是属于立方晶系的晶体结构,具体来说是体心立方(BCC)结构。
在tiv晶体结构中,钛原子和钒原子分别位于体心和顶点位置。
在tiv晶体结构中,钛原子和钒原子之间的键合是金属键。
金属键是由金属元素中的自由电子形成的,这些自由电子能够在晶体结构中自由移动,从而使金属具有良好的电导性和热导性。
tiv晶体结构具有许多特殊的物理和化学性质。
首先,由于钛和钒元素具有不同的电负性,因此它们之间的键合是部分离子型(partially ionic)的。
这使得tiv晶体结构具有一定的电子偏移,从而导致了一些特殊的电子性质。
tiv晶体结构中的钛和钒原子之间的距离较短,使得晶体具有高硬度和较高的熔点。
这使得tiv晶体结构在一些高温和高压环境下具有良好的稳定性和耐腐蚀性。
tiv晶体结构还具有一些特殊的磁性质。
由于钛和钒原子之间的相互作用,tiv晶体结构可以具有铁磁性或反铁磁性,这取决于钛和
钒原子之间的配位方式和电子填充情况。
tiv晶体结构是一种特殊的金属间化合物晶体结构,具有独特的物理和化学性质。
它的存在为我们研究金属间化合物和相关材料提供了重要的参考和基础。
希望通过进一步的研究和探索,我们能够深入了解tiv晶体结构的特性及其在材料科学领域的应用潜力。
l12型金属间化合物
l12型金属间化合物
L12型金属间化合物是一种具有特殊结构和性质的金属化合物。
它由两种或多种金属原子组成,通过离子键或共价键相互结合而成。
这种化合物的结构特点是金属原子排列成一种特殊的有序晶体结构,称为L12结构。
L12结构具有高度对称性和三维空间有序性,因此在物理性质和化学性质方面表现出许多独特的特性。
L12型金属间化合物的研究非常重要,它们在材料科学和工程学领域有广泛的应用。
例如,在高温合金、催化剂、磁性材料、超导材料、电子材料等方面都有重要的应用。
此外,L12型金属间化合物还具有很好的耐高温、耐腐蚀、耐热疲劳等性能,因此也被广泛应用于航空航天、能源、汽车等领域。
目前,L12型金属间化合物的研究仍处于起步阶段。
研究人员正在探索这些化合物的性质、结构和合成方法,以进一步开发它们的应用潜力。
预计随着科技的不断进步,L12型金属间化合物将会在更多新领域得到应用,并为人类的生活和工作带来更多的便利和创新。
- 1 -。
金属间化合物晶体结构的研究——ⅳ
金属间化合物晶体结构的研究——ⅳ.σ相及α-mn结构
相晶体结构的新解释
本文旨在研究金属间化合物晶体结构,将σ相及α-mn结构相晶体结构进行新解释。
★新解释的内容
1、σ相晶体结构
① σ相晶体结构与MNx互溶体的相容系统有关,Mnx系统的超空弦网络模型说明:此种晶体由正交网格和正交对应的Mnx条纹组成。
② σ相晶体的六方晶系的晶体结构形态可以用狮子框架来解释,其中含有四个Mnx环路,环形空腔,Mnx结合了螺旋状的狮子框架里的四偶极子等结构。
③在σ相晶体中,Mnx与Mnx之间存在一种立体分子结构,它们之间存在类似网键的类似立体键,对晶体结构有着重要影响。
2、α-mn晶体结构
① α-Mn晶体结构中,MNx与MNx之间存在双键状结构,其中双键由Mnx和一个Mnx簇组成,形成双键状结构,此结构对α-Mn晶体结构有着重要的影响。
②也可以将α-Mn晶体九方晶系中的晶体结构形态解释为狮子框架,其中包含有八个Mnx环绕的晶胞,环形空间,Mnx结合四偶极子等状况,与σ相晶体不同。
③首先,MNx的分散特性影响了六方晶系的晶体结构。
其次,Mnx的直接键对六方晶系晶胞结构有重要影响,如直接键结构非常复杂,形
成一种新的晶体结构。
综上所述,本文对σ相及α-mn晶体结构进行了新的解释:一方面,此类晶体结构由正交网格和正交对应的Mnx条纹组成;另一方面,它们的晶体结构形态可以用狮子框架来表示,其中含有四个Mnx环路,环形空腔,Mnx结合四偶极子等状况;此外,Mnx与Mnx之间存在一种立体分子结构以及直接键,对晶体结构有着重要影响。
本文的研究结果可以为进一步研究金属间化合物晶体提供参考和指导意义。
1.8 金属间化合物
刘志勇 14949732@
9
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
3.原子尺寸因素化合物
• 当两种元素形成金属间化合物时,如果它们之间的原子半 径差别很大时,便形成原子尺寸因素化合物 1.填隙型(填隙化合物) 在过渡族金属与H、B、C、N等原子半径甚小的非金属元素 之间形成,rX、rM:非金属(X)与金属(M)的原子半径 1)简单填隙相:rX/rM<0.59 2)复杂填隙相:rX/rM>0.59 2.拓扑密排相(TCP相)
正常价化合物
• 正常价化合物的结构类型有NaCl型、CaF2型、立方 ZnS型(闪锌矿结构)、六方ZnS型(硫锌矿结构)
几种正常价化合物的晶胞 (a)NaCl型;(b)CaF2型;(c)闪锌矿结构;(d)硫锌矿结构
5/5/2014
刘志勇 14949732@
4
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
5/5/2014
刘志勇 14949732@
7
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2.电子化合物
电子化合物中电子浓度与晶体结构的关系 电子浓度=21/14 电 子 浓 度 =21/13 体心立方结 复 杂 立 方 结 密 排 六 方 复 杂 六 方 结 构(β 相) 构 ( β -Mn 结 构 ( ξ 构 结构, μ 相) 相) (γ 黄铜结 构) CuZn Cu5Zn8 Cu3Ga(中、 Cu3Ga (低 Cu9Ga4 高温) 温) Cu5Sn Cu31Sn8 Cu5Si Cu5Si Cu5Ge Cu31Si8 Ag3Al ( 高 Ag3Al ( 低 Ag3Al (中 温) 温) 温) AgZn AgZn Ag5Zn8 AgCd AgCd Ag5Cd8 AuZn Au5Zn8 FeAl Ni5Zn21 电 子 浓 度 =21/12 密 排 六 方 结构 (ε 相) CuZn3
金属间化合物晶体结构的研究Ⅲ.β-W结构相晶体结构的新解释
金属间化合物晶体结构的研究Ⅲ.β-W结构相晶体结构的新解
释
萧功伟
【期刊名称】《江西科学》
【年(卷),期】1990(000)003
【摘要】无
【总页数】1页(P1)
【作者】萧功伟
【作者单位】无
【正文语种】中文
【相关文献】
1.反铁电晶体结构相变的新研究 [J], 韩代朝;蔡玉平;马素敏
2.第一性原理研究Pt掺杂NiTi金属间化合物晶体结构与电子结构 [J], 别业旺;孙卫国
3.金属间化合物Fe5Ni3Si2粉末衍射数据及晶体结构研究 [J], 韩艳美;零妙然;梁建烈
4.新稀土金属间化合物晶体结构及高温晶格热膨胀性能研究 [J], 何维
5.金属间化合物晶体结构的研究(Ⅱ)——Laves相的新解释 [J], 萧功伟
因版权原因,仅展示原文概要,查看原文内容请购买。
工程材料及成型技术基础(吕广庶 张元明 著) 课后习题答案
《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂.答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种?α—Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
ti5si3晶格类型
ti5si3晶格类型
Ti5Si3是一种具有复杂晶体结构的金属间化合物,其晶体结构类型可以根据不同的制备条件和温度而有所不同。
根据不同的研究结果,Ti5Si3的晶体结构类型可以分为两种:一种是面心立方结构,另一种是六方密排结构。
在面心立方结构中,Ti5Si3的晶格常数为a=b=c=3.074Å,每个晶胞中含有10个原子,其中5个Ti原子和5个Si原子。
这种结构的Ti5Si3具有良好的高温强度和抗氧化性,因此在高温环境下具有较好的应用前景。
而在六方密排结构中,Ti5Si3的晶格常数为a=b=3.074Å,c=14.688Å,每个晶胞中含有24个原子,其中10个Ti原子和14个Si原子。
这种结构的Ti5Si3具有较好的塑性和韧性,可以在较低的温度下进行加工和成形。
除了上述两种晶体结构类型外,还有一些其他的变体结构,如Ti-rich Ti5Si3和Si-rich Ti5Si3等。
这些变体结构可以通过改变Ti和Si的原子比例来调节其物理和机械性能。
总的来说,Ti5Si3具有多种晶体结构类型,这些结构类型对其物理和机械性能有很大的影响。
了解不同晶体结构的特点和性质,有助于更好地应用这种材料。
同时,还需要进一步研究和探索其制备工艺、加工方法以及与其他材料的复合应用等方面的内容,以充分发挥其优势和应用潜力。
alni3化学成分
alni3化学成分
AlNi3是一种金属间化合物,由铝(Al)和镍(Ni)组成。
金属间化合物是由两种或更多种金属元素组成的化合物,通常具有特定的晶体结构和物理性质。
在AlNi3中,铝和镍以一定的比例结合在一起,形成特定的晶体结构。
从化学成分的角度来看,AlNi3中铝和镍的比例是1:3,这意味着每个铝原子与三个镍原子结合。
这种比例对于金属间化合物的性质和特性具有重要影响。
铝和镍作为过渡金属,它们的电子结构和化学性质不同,因此它们在化合物中的比例会影响化合物的性质。
从物理性质的角度来看,AlNi3可能具有特定的晶体结构,比如属于立方晶系或者其他晶体结构。
它的物理性质可能包括密度、熔点、导电性等方面的特点,这些性质与其化学成分密切相关。
从应用角度来看,AlNi3可能具有特定的用途。
金属间化合物常常具有特殊的物理和化学性质,因此可能用于特定的工业领域,比如作为催化剂、材料合金、电子器件等方面。
总的来说,AlNi3作为金属间化合物,其化学成分决定了其物
理和化学性质,以及可能的应用领域。
深入研究其化学成分对于理解其性质和应用具有重要意义。
金属间化合物
2.2.1几何密排相特点
以体心立方结构为基 的长程有序结构
➢ CuZn型(B2型) 化学式为பைடு நூலகம்B。Cu
原子占据体心位置, Zn原子占据各顶角, 典型例子有AlNi, AuCd等。
CuZn型(B2型)
2.2.1几何密排相特点
以体心立方结构为基的长 程有序结构
➢ Fe3Al型(D03型)
化学式为A3B。Al占据X位 置,其余位置为Fe原子所占据; 如果增加Al含量,Al原子将占 据Y位置,直到Al原子占满X和 Y点阵位置。当Al原子占满X和 Y位置时,就成为了B2结构, 化学式为FeAl。典型例子有 Cu3Al,Li3Be,Fe3Si等。
CuAuⅡ型等 MgCu2相 MgZn2相 MgNi2相
2.1晶体结构分类
几何密排相 ➢ 定义:由密排面按不同方式堆垛而成的。 ➢ 类型:面心立方、体心立方、密排六方结
构为基的长程有序结构和长周期超点阵。 ➢ 特点:较高的对称性,位错运动滑移面较
多,是有利于得到塑性。
2.1晶体结构分类
堆垛密排相
A ssessed T i - A l p h ase d i ag r am .
外因:温度,压强 内因:
➢ 原子百分比, ➢ 结合能因素, ➢ 原子尺寸因素, ➢ 原子序数因素, ➢ 负电性,
➢ 电子浓度。 内在因素相互关联并非 独立参量。
L10 D019
D022
2.3晶体结构的稳定性
先进金属结构材料-金属间化合物结构材料
基本结构
DO3 超结构:
以Fe3Al 为其代表。Al 只占X之上,其余为 Fe 原子所占据。如果增加 Al含量,Al原子将占据 Y位置,直到FeAl成分, Al 原 子 占 满 X 和 Y 点 阵 位置,就成为B2结构。 另外一个例子是Fe3Si。
基本结构
DO19或Mg3Cd型超点 阵
相 当 四 个 密 堆 六 角 亚 点阵穿插组成。其中 Cd 占 据 一 个 亚 点 阵 , Mg占据三个亚点阵。
化合物
Nb5Si3 Mo5Si3 Ti5Si3 MoSi2 Mo3Si Nb3Al Nb2Al NbSi2
V3Si Nb2Al NbBe17 Ti5Ge3 Cr3Si Cr2Nb NbAl3 Ti3Sn NbBe12 Fe2Zr ZrBe13 NiAl
熔点(℃) 2480 2180 2130 2030 2025 1963* 1940* 1930 1925 1871 1800* 1800* 1770 1720 1680* 1680* 1672* 1645 1645* 1640
典 型 的 例 子 有 : Ni3Al 、 Al3U、Co3V、FeNi3、 FePd3。
Au
Cu
基本结构
L11(CuPt的菱方超结构)
有序化后,原面心立方的 (111)面交替的被Cu及 Pt原子所占据,晶体结构 发生变形由立方变成菱方。 CuPt是唯一的一个例子。
基本结构
L10(CuAu I超结构)
Sij ijdr
影响大小的主要因素是原子间的距离r和原子轨道的相对取 向。
共价键表现出明显的方向性就主要取决于重叠积分对原子间 相对取向的依赖。
成键方向性
在金属间化合物组成原子间存在着具有显著方向性的共价键。 如Fox和Tabbemor利用功能电子衍射对β/ NiAl 的几个低角结 构因子进行了精确的测定,所给出的变形电荷密度分布图 (如下)清楚地显示了Ni-Al之间具有明显方向性的共价键作 用的存在。
1-3固溶体的晶体结构1-4金属间化合物的晶体结构(1)
E AA + EBB 〉 E AB (部分或完全有序) 2
有序固溶体: 有序固溶体 溶质原子与溶剂原子分别占据固定位置, 溶质原子与溶剂原子分别占据固定位置,每个晶胞
例如: 中溶质和溶剂原子之比都是一定的 。例如:在Cu-Al合 - 合 金中,Cu:Al原子比是 :1或3:1时从液态缓冷条件下可 原子比是1: 或 : 时从液态缓冷条件下可 金中 : 原子比是 形成有序的超点阵结构,用 形成有序的超点阵结构 用CuAl或Cu3Al来表示 或 来表示
化合物分别称为β相 相 相 化合物分别称为 相、γ相、ε相。
尺寸因素和电化学因素对结构也有影响. 尺寸因素和电化学因素对结构也有影响.电子浓度 值为21/14结构。 密排六方结构。
3.受原子尺寸因素控制的化合物 3.受原子尺寸因素控制的化合物 当两种原子半径相差很大的元素形成化合物时, 当两种原子半径相差很大的元素形成化合物时,倾 向于形成间隙相与间隙化合物, 向于形成间隙相与间隙化合物,而中等程度差别时则倾 向形成拓扑密堆相。 向形成拓扑密堆相。 1)间隙相与间隙化合物: 1)间隙相与间隙化合物: 间隙相与间隙化合物 通常是由过渡族金属原子与原子半径小于0.1nm 通常是由过渡族金属原子与原子半径小于0.1nm 所组成。 的非金属元素氮 的非金属元素氮、氢、碳、硼所组成。 (1)当 <0.59(Δr>=41%)时 (1)当rX/rM<0.59(Δr>=41%)时,形成具有简单晶体结构 的化合物, fcc、bcc、hcp或简单立方 或简单立方, 的化合物,如fcc、bcc、hcp或简单立方,通常称它们 间隙相,相应的分子式也较简单, MX、 为间隙相,相应的分子式也较简单,如M4X、M2X、MX、 MX2等。
Ni3Al基础知识
Ni3Al基金属间合金的研究S1******* 陈义高温结构材料起源于40年代军用飞机的需要, 目前已成为军用和民用高温燃汽轮机不可代替的关键性材料。
高温结构材料在高温下具有高强度, 以保证发动机的油耗不致过高; 具有很强的抗腐蚀能力, 在高温燃气的冲刷及腐蚀性介质的侵蚀下保持其性能; 还能长期安全可靠地工作。
而金属间化合物以其耐高温, 抗腐蚀和耐冲刷等特性成为航空航天、交通运输、化工机械等行业重要的结构材料, 并在近20年受到广泛研究。
由于金属间化合物晶体中金属键与共价键共存, 同时兼有金属韧性和陶瓷的高温性能, 因此具有很大的发展潜力。
由于金属间化合物Ni3Al 基高温结构材料在室温下具有优异的抗腐蚀性能, 受到工业界的注意, 但其晶间脆断是制约其工程化应用最大障碍, 表明这类材料具有巨大的应用潜力同时也存在一定缺陷。
1. Ni3Al 金属间化合物的特性Ni3Al 是一种具有L12 型晶体结构的长程有序金属间化合物( 表1) , 当接近其熔点时还能保持高度有序, 其晶格常数a= 0. 3561nm, 熔点为 ,杨氏模量, 电阻率为,热导率为, Ni3Al 金属间化合物熔点高, 抗高温氧化性能好, 有较高的高温强度和蠕变抗力以及强度大等特点, 而且在一定的温度范围内, 其屈服强度反而随温度的上升而提高, 这些特点都是高温结构材料所希望的。
2.合金元素在Ni3Al 金属间化合物中的作用2.1合金元素对力学性能的影响2.1. 1对强度的影响Ni3Al 在室温下通常强度不是很高。
但是大多数有序合金特别是那些具有L12 结构的大部分合金, 其塑性变形的一个显著特点是流变应力随温度升高而急剧增加。
Ni 基高温合金主要包括两相,固溶相 ( 无序的面心立方相, 具有A1结构)和中间化合物 ( 有序的面心立方相,具有L12 结构)。
通常,与无序或部分有序合金相比, 长程有序合金具有高的应变硬化速率。
W和Mo 的添加可大幅度地提高材料的高温抗拉强度和持久性能,W和Mo 同时加入要比单独添加Mo的强化效果好,但W和Mo 的加入降低了合金的塑性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—A —B
[001]
c aa
[100]
[010]
4、DO22型结构
➢ 化学式:A3B; ➢ 结 构:DO22型—面心正方晶系;
—A —B
5、体心立方结 构
6、B2型结构
➢ 化学式:AB; ➢ 结 构:B2型—体心正方晶系;
1、面心立方结构
[001]
a aa
[100]
[010]
2、L12型结构
➢ 化学式:A3B; ➢ 结 构:L12型—面心正方晶系;
—A —B
[001]
c aa
[100]
[010]
3、L10型结构
➢ 化学式:AB; ➢ 结 构:L10型—面心正方晶系; ➢ 特点:[001]方向上是由仅含A原子组成的原子面与仅含B原子的原子面交替重叠
10、hcp型结构
11、DO19型结 构
➢ 化学式: A3B ;
—A —B
11、DO19型结 构
—A —B
12、Cu3Ti型结构
➢ 化学式: A3B ;
—A —B
12、 Cu3Ti型结构
—A —B
—A —B
7、DO3型结构
➢ 化学式: A3B ; ➢ 结 构:DO3型—体心正方晶系;
—A —B
8、L21型结构
➢ 化学式: A2BC; ➢ 结 构:L21型—体心正方晶系;
—A —B —C
9、C11b型结构
➢ 化学式: AB2; ➢ 结 构:C11b型—体心正方晶系;
—A —B
10、hcp型结构