第一章 时间序列分析简介
时间序列分析第一章

对香港恒生指数取一阶对数差分后趋势图
第十六页,共54页。
1.2.3时间序列的主要分类
4.按时间序列分布规律分:高斯型时间序列,非高斯型 时间序列。
高斯型时间序列:服从正态分布的时间序列。
非高斯型时间序列:不服从正态分布的时间序列。
我们研究的通常是服从正态分布的时间序列,即高 斯型时间序列。
N次独立重复实验的结果。 5.二者建模思路不同:
第三十四页,共54页。
应用时间序列分析方法的重要性
与回归分析方法相比较,有时应用时间序列分析方法显 得很有必要:
❖1 .很多情况下,很难或不可能得用变量间的因果关
系来说明某一变量的变化。 ❖ 2 .即使能估计出一个有关变量的令人满意的回归方程,
其结果也可能不能用于预测。
我们所研究的是离散性时间序列,对于连续性时间序列,可以 采用等间隔采样使之化为离散序列。
第十三页,共54页。
1.2.3时间序列的主要分类
3.按序列的统计特性分:平稳序列,非平稳序列。
平稳序列:时间序列的统计特性不随时间而变化。
非平稳序列:时间序列的统计特性随时间而变化。
第十四页,共54页。
1.2.3时间序列的主要分类
分段平均法
最小二乘法
普通最小二乘法
折扣最小二乘法
: y yˆ 2 min : t i y i yˆ i 2 min
移动平均法
一次移动平均法
二次移动平均法
指数平滑法
一次指数平滑法
Brown Holt
单参数线性指数平滑法 双参数线性指数平滑法
3月被英国皇家统计学会授予“佳氏银章奖”。
❖ 目前,时间序列分析方法仍在不断的发展和完H.To善ng(汤家之豪)博中士 。
第一讲 时间序列分析

一、时间序列的含义
例1、国际航线旅客客票数.图1给出某国 际航空公司1949—1960年间客票月总数 (单位:千张)的时间序列曲线.直观上看, 每年有一次大的峰值和一次小的降值.并 且逐年不断增加。
一、时间序列的含义
例2,图2是我国铁路客流员的统计曲线,记录 了1971—1981年客票月总数.从铁路客流量的 时间序列曲线上可见,每年都有一次较大的峰 值,大约是在1、2月份,也就是每年的春节前 后有一次最大的峰值.
例如,对河流水位的测量。其中每一时 刻的水位值都是一个随机变量。如果以 一年的水位纪录作为实验结果,便得到 一个水位关于时间的函数xt。这个水位函 数是预先不可确知的。只有通过测量才 能得到。而在每年中同一时刻的水位纪 录是不相同的。
随机过程:由随机变量组成的一个有序序列称 为随机过程,记为{x (s, t) , sS , tT }。其中S 表示样本空间,T表示序数集。对于每一个 t, tT, x (·, t ) 是样本空间S中的一个随机变量。 对于每一个 s, sS , x (s, ·) 是随机过程在序数集 T中的一次实现。
80 60 40
20
Trend-cy cle for SA LE
S from SEA SO N, MO D_1
0
Seas factors fo r SA L
-20
JAN 1S9E9P01M9A90YJ1A9N911S9E9P21M9A92YJ1A9N931S9E9P41M9A9Y4J1A9N951S9E9P61M9A96YJ1A9N971S9E9P81M9A98YJ1A9N992S0E0P02M0A00YJ2A0N012S0E0P220E0S2 from SEA S ON, MOD_
下面的图2表示了去掉季节成分,只有 趋势和误差成分的序列的一条曲线。 图3用两条曲线分别描绘了纯趋势成分 和纯季节成分。图4用两条曲线分别描 绘了纯趋势成分和纯误差成分。这些 图直观地描述了对于带有几种成分的 时间序列的分解。
(整理)时间序列分析讲义__第01章_差分方程.

第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
第一章 时间序列分析简介(人大版)

1.1 引言
最早的时间序列分析可以追溯到 7000年前的古 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来,就构 成所谓的时间序列。对这个时间序列长期的观察使 他们发现尼罗河的涨落非常有规律。由于掌握了尼 罗河泛滥的规律,使得古埃及的农业迅速发展,从 而创建了埃及灿烂的史前文明。
按照时间的顺序把随机事件变化发展的过程记 录下来就构成了一个时间序列。对时间序列进 行观察、研究,找寻它变化发展的规律,预测 它将来的走势就是时间序列分析。
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
1.2 时间序列的定义
随机序列:按时间顺序排列的一组随机变量
观察值序列:随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列 x1 , x2 ,, xt 随机序列和观察值序列的关系
, X 1 , X 2 ,, X t ,
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
中国人民大学出版社
中国人民大学音像出版社
《应用时间序列分析》
目
录
第一章 第二章 第三章 第四章 第五章 第六章
时间序列分析概论

上海财经大学统计学系
5
第一章时间序列分析概论
例3.GDP即国内生产总值,它是对一国(地区) 经济在核算期内所有常住单位生产的最终产品总 量的度量,常常被看成反映一个国家(地区)经 济状况的重要指标。本例给出我国1978年— 2007年GDP数据(单位:亿元)的时间序列图。
上海财经大学统计学系
6
上海财经大学统计学系
20
上海财经大学统计学系 16
5.金融时间序列分析
研究金融过程的动态结构 探索金融变量之间的动态关系 对金融数据进行季节或其它形式的周期调 整(如日内效应、周效应等) 通过对具有自相关关系的模型误差分析, 改进用时间序列进行回归分析的模型 对均值或波动率进行点预测或区间预测
上海财经大学统计学系 17
1
第一章时间序列分析概论
2.定义 在统计研究中,有大量的数据是按照时间顺 序排列的,使用数学方法表述即用一组随机 序列 , X1 , X 2 , , X t ,
表示随机事件的时间序列,简记为 X t , t T 或者 X t 。
上海财经大学统计学系 2
关于时间序列 X t ,对于任意的t, X t 是一个随机变量,且每个随机变量所服从的 分布可以不同,对于任意的t和s, X t 与 X s 不是相互独立的。 根据不同的需要,数据的收集可以按 小时、天、周、月或者年为间隔进行,现在 更有以秒为时间间隔的高频时间序列。
由美国北卡来罗纳州立大学(North Carolina State University)的两位教授(A. J. Barr and J. H. Goodnight)共同开发。 专门用于数学建模和统计分析的软件系统。在数 据处理和统计分析领域,SAS系统被誉为国际上 的标准软件系统 。 人机对话界面不太友好,并且在编程操作时需要 用户最好对所使用的统计方法有较清楚的了解, 非统计专业人员掌握起来较为困难。
第一章 时间序列分析简介

本章内容
引言 时间序列的定义 时间序列分析方法简介 时间序列分析软件
1.1 引言
最早的时间序列分析可以追溯到7000年前的古 最早的时间序列分析可以追溯到7000年前的古 7000 埃及。 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来, 古埃及人把尼罗河涨落的情况逐天记录下来 双星 天狼星:夜空里最亮的恒星,是大犬座中的一颗双星。 天狼星:夜空里最亮的恒星, 逐天记录下来,就构 。 恒星 大犬座中的一颗双星 中的一颗 成所谓的时间序列 时间序列。 成所谓的时间序列。 太阳亮 倍的蓝白星 双星中的亮子星是一颗比太阳 倍的蓝白星, 双星中的亮子星是一颗比太阳亮23倍的蓝白星,体积略大 尼罗河:尼罗河位于非洲东北部,流经布隆迪 卢旺达、 布隆迪、 尼罗河:尼罗河位于非洲东北部,流经布隆迪、卢旺达、 于太阳。 于太阳。 对这个时间序列长期的观察, 对这个时间序列长期的观察,发现尼罗河的涨落非 坦桑尼亚、乌干达、苏丹和埃及等国,跨越世界上面积最 坦桑尼亚、乌干达、苏丹和埃及等国, 等国 在中国古代,看作恶星,象征侵扰, 在中国古代,看作恶星,象征侵扰,所以文人们写出 常有规律。 常有规律。 大的撒哈拉沙漠,最后注入地中海。全长6650公里,为世 公里, 大的撒哈拉沙漠,最后注入地中海。全长 公里 会挽雕弓如满月,西北望,阿拉伯语意为“ 。 “会挽雕弓如满月,西北望 ,使古埃及农业迅速发展 掌握了尼罗河泛滥的规律,使古埃及农业迅速发展, 界上最长的河流。(尼罗河—阿拉伯语意为 大河) 。(尼罗河 射天狼”的词句。 掌握了尼罗河泛滥的规律 射天狼”的词句 界上最长的河流。(尼罗河 ,阿拉伯语意为“大河) , 而古埃及却崇拜天狼星, 而古埃及却崇拜天狼星,因为它与尼罗河的泛滥有着密 从而创建了埃及灿烂的史前文明。 从而创建了埃及灿烂的史前文明。 切的联系。 切的联系。
学习使用Excel进行时间序列分析和预测建模

学习使用Excel进行时间序列分析和预测建模时间序列分析和预测建模是一项重要的统计分析技术,在各个领域都得到了广泛应用。
本文将详细介绍如何使用Excel进行时间序列分析和预测建模。
第一章:时间序列分析基础时间序列是一系列按照时间顺序排列的数据点组成的序列。
时间序列分析的目标是找出数据中隐含的各种模式和趋势,并借此进行预测。
在Excel中,我们可以使用以下几种方法进行时间序列分析。
1.1 绘制时间序列图首先,我们需要将时间序列数据导入Excel,并将其按照时间顺序排列。
然后,选中数据并在插入菜单中选择“散点图”或“折线图”来绘制时间序列图。
通过观察时间序列图,我们可以初步了解数据的趋势和季节性变化。
1.2 计算平均值和标准差平均值和标准差是时间序列分析中常用的描述性统计量,可帮助我们了解数据的集中趋势和变异程度。
在Excel中,可以使用“AVERAGE”函数和“STDEV”函数来计算平均值和标准差。
第二章:时间序列分析方法在时间序列分析中,我们通常使用移动平均法和指数平滑法来找出数据中的趋势和季节性变化。
2.1 移动平均法移动平均法是一种简单的平滑方法,可以帮助我们过滤掉数据中的随机波动,突出数据的趋势。
在Excel中,可以使用“AVERAGE”函数和“OFFSET”函数来计算移动平均值,并将其绘制在时间序列图上。
2.2 指数平滑法指数平滑法通过对过去观察到的数据进行加权平均来预测未来的趋势。
在Excel中,可以使用“EXPONENTIAL”函数进行指数平滑,并将平滑后的趋势线与原始数据绘制在时间序列图上。
第三章:时间序列预测建模时间序列预测建模是基于历史数据来预测未来的趋势和模式。
在Excel中,我们可以使用线性回归模型和ARIMA模型进行时间序列预测建模。
3.1 线性回归模型线性回归模型通过拟合历史数据的线性趋势来进行未来的预测。
在Excel中,我们可以使用“TREND”函数来计算线性趋势,并将其绘制在时间序列图上。
时间序列分析(第一章、第二章)

方法三: 二次曲线法
xt a bt ct 2 t ,
(a, b, c)T (YY T )1YX
t 1,2, ,24
xt 5948 .5 17.0t 1.6t 2
1. 二次项估计(趋势项)
数据和二次趋势项估计
2. 季节项、随机项
例二、美国罢工数(51-80年) (滑动平均法)
6500
杭州近三年房价走势
房地产业、房价
关乎国计民生的支柱产业 影响着城镇居民的住房消费 影响着水泥,钢铁,建材,冶金等相关
行业的发展 影响着地方政府财政收入 …………………………….
股市是经济的晴雨表 从股市本身看,我国股市的确有自己的
特点 股票是一种高风险的资本投资
………………………………
《应用时间序列分析》
何书元 编著 北京大学出版社
概率统计学科中应用性较强的一个分支 广泛的应用领域:
金融经济 气象水文 信号处理 机械振动 …………
Wolfer记录的300年的太阳黑子数
太阳黑子对地球的影响
会出现磁暴现象 会引起地球上气候的变化 会影响地球上的地震 会影响树木生长 会影响到我们的身体 ………………………
),
m
(4.10)
其中 . m ( jk )mm , i 2
a a
j j ji
定理4.4成立.
注:当 {a j} l2 时结论仍成立.
§1.5 严平稳序列及其遍历性
严平稳与宽平稳关系
遍历性
宽平稳遍历性例子
严平稳遍历定理
例 5.1
线性平稳列的遍历定理
(1)正态白噪声 (2)Poisson白噪声 (3)独立同分布的白噪声
参考书: 1. 时间序列的理论与方法 田铮 译
时间序列分析基础知识

时间序列分析基础知识简介时间序列分析是研究时间序列的一种统计分析方法,通过对时间序列数据的观测、建模和预测,可以揭示数据中存在的内部规律和趋势变化。
本文将介绍时间序列分析的基础知识,包括时间序列的概念、时间序列数据的特点以及常用的时间序列分析方法。
时间序列的概念时间序列是按照一定的时间间隔进行观测或测量得到的数据集合,其中数据与其对应的时间密切相关。
时间序列可以是离散的,也可以是连续的。
离散时间序列是在固定的时间点上观测到的数据,连续时间序列则是在一段时间内连续观测得到的数据。
时间序列数据的特点时间序列数据具有以下几个特点:趋势性:时间序列中包含着某种趋势的演变规律,例如随着时间的推移,销售额呈现逐渐增长或逐渐下降的趋势。
季节性:某些时间序列会受到季节因素的影响,例如每年夏季冰淇淋销量增加,冬季销量减少。
周期性:时间序列中可能存在周期性波动,例如经济周期、股市周期等。
随机性:除趋势、季节和周期外,时间序列中还可能包含无规律性的波动。
这些特点使得时间序列数据在分析和预测时与其他类型数据有所不同。
时间序列分析方法描述性统计分析描述性统计分析是对时间序列数据进行初步分析和总结,以便更好地理解其特点。
常用的描述性统计方法包括:均值:计算一组数据(如一年中销售额)的平均值,用于表示数据的集中趋势。
方差:衡量数据中个体间离散程度,方差越大说明个体间差异越大。
自相关函数:用于判断观测值之间是否存在相关性。
自相关函数图示能够帮助我们发现季节变化或者其他周期性模式。
百分位数:刻画了一组数据中各个子集合所占比例。
平稳性检验平稳性是指时间序列的均值、方差和自相关函数在任意时刻都保持不变。
平稳性检验对于后续模型建立和预测非常重要。
常见的平稳性检验方法包括:观察法:通过绘制时间序列图观察是否具有明显趋势或周期性。
统计检验:使用单位根检验(如ADF检验)来判断时间序列是否平稳。
时间序列预测基于对历史数据进行建模,并利用建模结果进行未来值预测是时间序列分析的核心内容。
时间序列分析课件

模型的诊断
残差诊断
检查模型是否符合残差的正态性和 平稳性,如是否存在自相关性等。
精度评估
使用MAPE、RMSE等指标对预测值 和实际值的误差进行评价。
过度拟合
注意模型过度拟合数据,需要在稳 定性和预测精度之间寻找平衡点。
时间序列模型的应用
股票价格的时间序列 分析
利用ARIMA模型对股票价格进行 预测和交易策略的优化。
真实案例:COVID-1 9疫情数据的时间序列分 析
数据收集
收集全球COVID-19疫情历史数据, 包括新增确诊、治愈、死亡等。
数据可视化
数据分析和预测
使用时间序列图表和热力图等方式, 使用ARIMA模型对未来疫情趋势进 展示疫情随时间和地域的变化趋势。 行预测和分析。
宏观经济指标的时间 序列分析
理解各项经济数据的趋势和关系, 对政策制定具有重要意义。
人口统计数据的时间 序列分析
预测社会变化,如人口流动、城 市化趋势等。
时间序列分析的未来展望
机器学习与数据挖掘
在更大的数据集上应用机器学习和 数据挖掘技术,进行复杂变量和非 线性关系的预测。
动态因果模型
建立具有时间约束和因果关系的复 杂模型,包括时间滞后、时间间隔 等。
差分技术
减少时间序列的非平稳性,包括一阶差分、季节性差分 等。
ARIMA模型
1
自回归模型
当前值受前阶数的过去值和噪声的影响。
2
差分
将非平稳时间序列转化为平稳时间序列。
3
移动平均模型
误差受前阶数的过去误差和噪声的影响。
Байду номын сангаас
ARMA模型
1 自回归模型
2 移动平均模型
时间序列分析教材

时间序列分析教材本教材将介绍时间序列分析的基本概念、常用方法和应用示例,帮助读者了解和掌握时间序列分析的基本原理和操作方法。
一、时间序列分析的基本概念1、时间序列的特点:时间序列数据具有趋势性、季节性和周期性等特点,可以通过分析这些特征来预测未来的数据变化。
2、平稳时间序列:平稳时间序列是指时间序列数据的统计特性在时间上保持恒定,如均值、方差和自相关系数等。
平稳时间序列可以使用各种统计方法进行分析和预测。
3、非平稳时间序列:非平稳时间序列是指时间序列数据的统计特性在时间上发生变化,如趋势变化、季节变化和周期变化等。
非平稳时间序列需要进行差分或转化处理,使其变为平稳时间序列再进行分析。
二、时间序列分析的基本方法1、时间序列的图形表示:通过绘制时间序列的折线图、散点图和自相关图等,可以观察数据的分布、趋势和季节性等特征。
2、时间序列的分解:时间序列的分解是将时间序列数据分解为趋势、季节和随机成分三个部分,以便更好地对数据进行分析和预测。
3、时间序列的平滑方法:平滑方法包括移动平均法和指数平滑法,可以减少数据的随机波动,更好地揭示数据的趋势性。
4、时间序列的预测方法:预测方法包括线性回归模型、ARIMA模型和季节性ARIMA模型等,可以基于历史数据对未来数据进行预测。
5、时间序列的评估方法:评估方法包括残差分析、均方误差和平均绝对误差等,可以评估预测模型的准确性和可靠性。
三、时间序列分析的应用示例1、经济学中的时间序列分析:时间序列分析可以应用于宏观经济指标的预测和监测,如国内生产总值、通货膨胀率和失业率等。
2、金融学中的时间序列分析:时间序列分析可以应用于股票价格、汇率和利率等金融数据的分析和预测,帮助投资者进行投资决策。
3、气象学中的时间序列分析:时间序列分析可以应用于气象数据的分析和预测,如气温、降雨量和风速等,帮助预测天气变化和灾害风险。
四、时间序列分析的实际案例1、某股票价格的时间序列分析:通过对某只股票价格的时间序列数据进行分析,预测未来股票价格的走势,指导投资决策。
时间序列分析

三、偏自相关函数(PACF) 1、偏自相关函数用来考察扣除zt 和zt+k之间zt+1 , zt+2,…, zt+k-1影响之后的zt 和zt+k之间的相关 性。
2、偏自相关函数的定义 设{zt}为零均值平稳序列, zt+1 , zt+2,…, zt+k-1对zt 和zt+k 的线性估计为:
(3)11 1 0.53 2 111 22 0.057 1 111 3 2 21 1 22 33 0.169 1 1 21 2 22 21 11 2211 0.560
第三节 线性平稳时间序列模型 一、自回归过程(A R (p)) 1、
(3)样本自相关函数
rk k r0
( z z )(z ( z z)
t t
t k 2
z)
(4)样本偏自相关函数
11 1 k 1,k 1 ( k 1 k 1 j kj )(1 j kj ) k 1, j kj k 1,k 1 k ,k 1 j , j 1,2,...,k
二、随机序列(时间序列) 1、当 t 0,1,2,...
时,即时刻t只取整数时,随机过程 zt , t T 可写成 zt , t 0,1,2,... 此类随机过程 称为随机序列,也成时间序列。
可见 (1)随机序列是随机过程的一种,是将连续时 间的随机过程等间隔采样后得到的序列; (2)随机序列也是随机变量的集合,只是与这 些随机变量联系的时间不是连续的、而是离 散的。
第一章 平稳时间序列分析导论
一、时间序列 1、含义:指被观察到的依时间为序排列的数 据序列。 2、特点: (1)现实的、真实的一组数据,而不是数 理统计中做实验得到的。既然是真实的,它 就是反映某一现象的统计指标,因而,时间 序列背后是某一现象的变化规律。 (2)动态数据。
时间序列分析基本知识讲解

时间序列分析基本知识讲解时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
它是统计学中的一个重要分支,在许多领域中都有广泛的应用,例如经济学、金融学、气象学等。
在时间序列分析中,我们通常假设观察到的数据是由内部的趋势、季节性和随机性构成的。
首先要介绍的概念是时间序列。
时间序列是按时间顺序记录的一组数据点,其中每个数据点代表某个变量在特定时间点的观测值。
每个数据点可以是连续的时间单位,如小时、天、月或年,也可以是离散的时间单位,如季度或年度。
时间序列数据通常包含趋势、季节性和随机成分。
趋势是时间序列长期上升或下降的的总体倾向,它可以是线性的,也可以是非线性的。
季节性是周期性出现在时间序列中的模式,它在一年中的特定时间段内循环出现,如一年中的季节、月份或周几。
随机成分是不可预测的随机波动,可能是由于外部因素或不可预见的事件引起的。
时间序列分析的目标通常有三个:描述、检验和预测。
描述的目标是对时间序列的特征进行统计分析,通过计算均值、方差、自相关系数等指标来揭示数据的规律和模式。
检验的目标是验证时间序列数据是否满足一定的假设条件,例如平稳性、白噪声等。
预测的目标是基于已有的时间序列数据来预测未来的值。
预测方法可以是单变量的,只使用时间序列自身的历史数据来进行预测;也可以是多变量的,将其他相关变量的信息纳入预测模型。
在时间序列分析中,有一些重要的概念和方法需要掌握。
首先是平稳性。
平稳性是指时间序列的均值、方差和自相关结构在时间上的不变性。
平稳性是许多时间序列模型的基本假设,它能够简化模型的建立和推断。
其次是自相关性。
自相关性是指时间序列中的观测值之间的相关性。
自相关结构可以通过自相关函数(ACF)和偏自相关函数(PACF)来描述,其中ACF表示不同时滞的自相关系数,PACF表示在剔除之前的滞后时其他滞后效应后,特定滞后的自相关系数。
另外,还有移动平均、自回归过程和ARMA模型等重要的方法和模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启蒙阶段
基础阶段
发展阶段
启蒙阶段
G.U.Yule
英国数学家。1927年,Yule提出用线性回归方程 来模拟一个时间序列 ,这是最早文学家。 1931年,Walker利用Yule的分析 方法 研究了衰减正弦时间序列, 得出Yule-Walker方程
时域分析方法
原理 事件的发展通常都具有一定的惯性,这种惯性用统计 的语言来描述就是序列值之间存在着一定的相关关系, 这种相关关系通常具有某种统计规律。 目的 寻找出序列值之间相关关系的统计规律,并拟合出适 当的数学模型来描述这种规律,进而利用这个拟合模 型预测序列未来的走势
特点 理论基础扎实,操作步骤规范,分析结果易于解释, 是时间序列分析的主流方法
太阳黑子的运动规律
德国业余天文学家施瓦贝(S.H.Schwabe)发 现太阳黑子的活动具有11-12年左右的周期
粮食价格波动的天文学解释
太阳黑子的运动周期和农业生产的周期长度非常 接近,这引起了英国天文学家、天王星的发现者 威廉· 赫歇尔(F. W. Herschel)的关注。最后他 发现当太阳黑子变少时,地球上的雨量也会减少。 所以在没有良好人工灌溉技术的时代,农业生产 会呈现出和太阳黑子近似的变化周期。 我们没有采用任何复杂的模型或分析方法,仅仅 是沿着时间顺序收集数据,描述和呈现序列的波 动,就了解到小麦产量的周期波动特征,以及产 生该周期波动的气候成因及该周期对价格的影响。
描述性时间序列分析
早期的时序分析通常都是通过直观的数据比较或 绘图观测,寻找序列中蕴含的发展规律,这种分 析方法就称为描述性时序分析。 古埃及人发现尼罗河泛滥的规律就是依靠这种分 析方法。 在天文、物理、海洋学等自然科学领域,这种简 单的描述性时序分析方法也常常能使人们发现意 想不到的规律。
欧洲粮食产量的描述性时序图
在范蠡之后2000年,欧洲经济学家在研究欧洲各地粮食 产量时发现了类似规律。 1884-1939年苏格兰与威尔士每英亩大麦产量时序图
Beveridge小麦价格指数序列
贝弗里奇(Beveridge) 小麦价格指数序列,它由15001869年逐年估计的小麦价格构成,可以清晰地看到该序 列有一个13年左右的周期
Robert F.Engle
C.Granger
时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP, Eviews 和SAS
, X 1990 , X 1991 ,
, X 2012 , X 2013 ,
通过统计,得到的1999—2008年全国高等学校的招生人 数序列就构成一个序列长度为10的观察值序列 我国1999~2008年全国普通高等学校招生人数 (单位:万人) 159.7,220.6,268. 3,320.5,382.2 447.3,504.5,546.1,565.9,607.7
尼罗河泛滥期 1月1日 6月17日 “落泪夜” 10月 12月
由于掌握了尼罗河泛滥的规律,使得古埃及的农业迅速发 展,解放出大批的劳动力去从事非农业生产,从而创建了 埃及灿烂的史前文明。
时间序列的定义
随机序列: 按时间顺序排列的一组随机变量
, X 1 , X 2 ,, X t ,
观察值序列: 随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列
应用时间序列分析
教材介绍
教材:《应用时间序列》,王燕编著,中国人民 大学出版社。 应用软件:eviews 练习数据库:Time Series Data Library /data/list/?q=provider:tsdl
第一章 时间序列分析简介
本章结构
1. 2. 3. 4.
引言 时间序列的定义
时间序列分析方法简介
时间序列分析软件
最早的时间序列分析
7000 年前,古埃及人把尼罗河涨落的情况逐天记录下来, 就构成所谓的时间序列。
对这个时间序列长期的观察使他们发现尼罗河的涨落非常 有规律。当天狼星第一次和太阳同时升起的那一天之后, 再过200天左右,尼罗河就开始泛滥,泛滥期将持续 70~80天,洪水过后,土地肥沃,随意播种就会有丰厚的 收成。
1999-2008年全国普通高等学校招生人数(单位:万人)
本章结构
1. 2. 3. 4.
引言 时间序列的定义
时间序列分析方法简介
时间序列分析软件
时间序列分析方法
序列
描述性时序分析 通过直观的数据 比较或绘图观测, 寻找序列中蕴含 的发展规律
统计时序分析 利用数理统计学 的基本原理,分 析序列值内在的 相关关系
时域分析方法的分析步骤
考察观察值序列的特征
根据序列的特征选择适当的拟合模型
根据序列的观察数据确定模型的口径 检验模型,优化模型 利用拟合好的模型来推断序列其它的统计性质 或预测序列将来的发展
时域分析方法的发展过程
Yule Walker
Box Jenkins
Engle Granger
描述性时序分析
通过直观的数据比较或绘图观测,寻找序列中蕴 含的发展规律,这种分析方法就称为描述性时序 分析 描述性时序分析方法具有操作简单、直观有效的 特点,它通常是人们进行统计时序分析的第一步。 局限性:它只能展示非常明显的规律性。
而在金融、保险、法律、人口、心理学等社会科学 研究领域,随机变量的发展通常会呈现出非常强的 随机性,想通过对序列简单的观察和描述,总结出 随机变量发展变化的规律,并准确预测出它们将来 的走势通常是非常困难的。
x1 , x2 ,, xn
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过分析观察值序列的性质,由观察 值序列的性质来推断随机序列的性质
案例
我们想研究全国高校招生人数的发展变化规律 那么每一年全国普通高等学校的招生人数就构成了一个 随机序列
我国稳定粮价的方法——“平粜法”
范蠡根据“六岁穰,六岁旱,十二岁一大饥”的自然 规律提出了我国最早稳定粮价的方法:“平粜法”
“夫粜,二十病农,九十病末。末病则财不出,农病 则草不辟矣。上不过八十,下不减三十,则农末俱利, 平粜齐物,关市不乏,治国之道也。” 这段话的意思是:如果是丰收年,粮食贱卖,会伤害 农民种粮的积极性。如果是大灾年,粮食天价,会伤 到老百姓的生存。所以要实行“平粜法”。政府应该 在粮食丰收时高于最低价购买粮食进行储备,以保护 农民的利益;在粮食短缺时,将储备粮食投放市场, 以稳定粮价,确保百姓的生存。这是对农民和百姓都 有利的政策,是一个国家的治国之道。
统计时序分析方法
频域分析方法
统计 时序分析
时域分析方法
频域分析方法
原理 假设任何一种无趋势的时间序列都可以分解成若干不 同频率的周期波动 发展过程 早期的频域分析方法借助富里埃分析从频率的角度揭 示时间序列的规律 后来借助了傅里叶变换,用正弦、余弦项之和来逼近 某个函数 20世纪60年代,引入最大熵谱估计理论,进入现代谱 分析阶段 特点 非常有用的动态数据分析方法,但是由于分析方法复 杂,结果抽象,有一定的使用局限性
基础阶段
G.E.P.Box和 G.M.Jenkins
1970年,他们出版了《Time Series Analysis Forecasting and Control》一书 书中,他们系统地阐述了ARIMA模型的识别、估计、 检验及预测的原理及方法。这些知识现在被称为经典 时间序列分析方法,是时域分析方法的核心内容。 为了纪念Box和Jenkins对时间序列发展的特殊贡献, 现在人们也常把ARIMA模型称为Box-Jenkins模型。
ARIMA模型的实质
单变量、同方差场合的线性模型
完善阶段
异方差场合 Robert F.Engle,1982年, ARCH模型 Bollerslov,1985年,GARCH模 型 Nelson等人提出了GARCH模型的 多种衍生模型 多变量场合 C.Granger ,1987年提出了协整 (co-integration)理论 非线性场合 汤家豪等,1980年,门限自回归 模型 C.Granger,1978年,双线性模 型
描述性时序分析案例——粮食生产与价格
《史记.货殖列传》记载,早在我国春秋战国时期,范蠡 和计然就提出我国农业生产具有“六岁穰,六岁旱,十二 岁一大饥”的自然规律。 《越绝书.计倪内经》则描述得更加详细:“太阴三岁处 金则穰﹐三岁处水则毁﹐三岁处木则康﹐三岁处火则 旱……天下六岁一穰﹐六岁一康﹐凡十二岁一饥。” 翻译成现代文就是:“木星绕天空运行﹐运行三年,如果 处于金位,则该年为大丰收年﹔如果处于水位﹐则该年为 大灾年;再运行三年,如果至木位﹐则该年为小丰收年﹔ 如果处于火位﹐则该年为小灾年,所以天下平均六年一大 丰收,六年一小丰收,十二年一大饥荒。” 这是2500多年前,我国对农业生产具有3年一小波动,12 年左右一个大周期的记录,是一个典型的描述性时间序列 分析。